
Flair: Social Product Discovery

Tanmay Chordia, Yash Shirsath, Alec Wang, Aditya Radhakrishnan

CIS Senior Design 2019

Abstract

Your friends know your preferences better than you do, and
certainly better than Facebook does. What if you could use
this information to connect people to products they actually
care about? Flair is a recommendation engine that rewards
users for finding friends who care about particular products.
Our repeated recommendation algorithm quickly discovers
the people in a social network graph who care most about
a product, giving advertisers maximum bang for their buck.
Users improve product recommendations, while interacting
with advertising for the first time in a fun and engaging way.

Motivation

People in the modern day are peppered with ads around the
clock. The average internet user easily sees dozens or even
hundreds of ads across platforms such as Facebook, Google,
Amazon, and Instagram. However, most people very rarely
(if ever) interact with these ads, despite the billions of dol-
lars Facebook and Google have spent on machine learning
algorithms to better target ads. Most people no longer reg-
ister seeing the ads at all, and have learned to simply filter
them out. On the other hand, people really do have the need
to buy things that solve their problems, and they rarely find
these things in ads. At best, ads just familiarize people with
products so they have some idea of what to look for in the
future.

We have identified several deep rooted problems in the ad
targeting space in Table 1. All of these issues guided our de-
velopment of Flair: a platform specifically designed to culti-
vate social product discovery.

Solution

Our solution is to create a fun social environment in which
friends recommend products for each other and discover
products they might like. We do this by incentivizing users
to buy products on our app (with discounts) and by shar-
ing ad revenue with users who make good recommendations
(with an in-app gold mechanism).

The following is a basic user-perspective flow of our app,
for test user Alice.
Copyright c� 2019, Team Flair, CIS Senior Design. All rights re-
served.

1. Alice logs in and verifies email.
2. Alice sees a popup of the current product and chooses to

buy on Amazon, recommend to friends, or skip.
3. If Alice want to recommend she see a list of Tinder-style

cards of their friends. When she swipes right her friends
are sent the product.

4. After three recommendations, Alice moves on to the next
product.

5. Eventually, those three friends will see the recommended
product.

6. If Alice buys, everyone who recommended the product to
her gets gold.
Figure 2 helps visualize the user flow.

Technical Approach

UX

One of the most important parts of any app is the UX (user
experience). UX is also one of the most tricky parts of an
app to properly develop. While we all agreed on using the
familiar swiping mechanism for recommending products to
users, almost every other design aspect was contentious. We
also found our disagreements to be difficult to reason around
since much of the appeal of a UX is more of a gut feeling
than anything quantifiable. For this reason, we spent several
months developing a design thesis and a design process be-
fore we reached a final design.

UX Motivation We established early on that we wanted
to app to be easy to use, fun, competitive, and intuitive. We
wanted the app to also be visually appealing in terms of color
scheme and layout. For these reasons, we decided to stick to
relatively simple layouts involving one or two pages acces-
sible through a bottom bar as well as a simple and vibrant
color scheme.

Design Process We quickly realized that developing good
design as a team was difficult from a process perspective.
Our approach was to quickly generate a wide diversity of de-
signs and then trim them down until we reached a mutually
agreeable design. We used Sketch to quickly iterate through
mockups of our app. To maximize our diversity of designs,

Problems Description Solution in Flair

Inconvenience People are forced to watch ads before videos Distinct time and place for product discovery
Irrelevance People rarely want the product in an ad Recommendations from friends who know what you want
No Active Engagement Passively view ads Actively interact with ads and share them

Table 1: Summary of problems and solutions

Figure 1: Left: Flowchart of user activity on Flair. Right: Simple visualization of the recommendation incentive system.

we split into different pairs each meeting and listened to dif-
ferent genres of music, browsed different internet sources,
and spoke to different friends while creating our mockups.
After about 2 months of following this process, we eventu-
ally converged to our final design (you can see our design
mock-up iterations in Appendix A).

Final Design and Layout Ultimately, we decided on a de-
sign with the name Flair which represented the personality
flairs being uncovered by our the recommendations on our
app. The Flair design had a color scheme inspired by flare,
a play on words of the title. We felt the warm colors were
friendly and inviting to our users.

The Flair design combined aspects of a variety of dat-
ing app card-based swiping mechanisms to form an intu-
itive user experience. This is displayed prominently on the
main screen of the app. Secondly, the Flair design utilized a
leaderboard for the in-app currency. We decided to put the
product above the leaderboard to remind users of the current
product being shown. Finally, we added a feed of recent pur-
chases and recommendations (inspired by Venmo) to make
the app more fun and competitive. You can see the final UX
design in figure 13 in Appendix A.

Card Based Interactions As stated above, we wanted the
frontend to be as aesthetically pleasing and user-friendly as
possible. We decided the right mechanic is a swipe based
user interaction that Tinder popularized. The animations for
swiping a card as well as all network requests and calcula-
tions are run asynchronously in JavaScript leading to many
potential race conditions that had to be dealt with correctly.
First of all, we decided to have a local cache of card objects
because cards are expensive to load through a network re-
quest due and we found that users want to swipe through
cards quickly without having to wait for a network request

to finish. Therefore, when the cache reached 70% depletion,
we launched a background request to fetch new cards and
replenish the cache.

Optimistic UI Furthermore, in the name of usability, we
implemented optimistic UI. This is a design practice of up-
dating state locally even if network requests to update the
state in our persistence layer have not yet finished. This
makes the UI more seamless for users, i.e. the votes remain-
ing changes directly after a swipe (as expected) rather than
after a network request to update Neo4J completes. How-
ever, this may lead to inconsistencies between client state
and persistence layer state (if a network request failed for
some reason). We resolved this by synchronising persistence
layer state and client state on cache depletion.

Tech Stack

Frontend Tech Stack The frontend of this application was
built using React Native, a NodeJS-based platform that tran-
spiles JavaScript into native Android and iOS code. We
chose to use React Native for its ease of use, rapid itera-
tion time, and rich library of third-party components that al-
lowed us to essentially access native functionality through
our JavaScript code.

Another reason for choosing react native over native iOS
is the ability to use Expo. Expo is similar to containerization
software like Docker. It allows the JavaScript source code
to be streamed directly to a client container on the users de-
vice. The JS is then rendered into to native code within the
client container App. This has many benefits. First of all,
there is a lot of helpful built-in tooling and remote debug-
ging that comes with Expo. But most importantly, Expo al-
lows us to hot push client-side updates to our Beta Test users
instantaneously over the air. The client container only has to

Figure 2: The Flair Tech Stack

go through App Review once, and basically never has to be
updated. Compare this with the multi-day process of submit-
ting an iOS app for review, and then the potentially infinitely
long process of waiting for users to update their apps. Be-
cause the goal of this project was an exercise in shipping
live code, user testing, and rapid iteration on feedback, this
feature was invaluable to us.

Backend Tech Stack The tech stack of our backend con-
sists of an Express server, Facebook authentication, and both
Neo4j and Firestore databases. Using Facebook authentica-
tion allows us to directly access the users Facebook profile
picture and friends list (only friends who were already using
the app and accepted the permissions) which allows us to
have a shorter onboarding process. Our user actions and al-
gorithms which we will describe below are all graph-based
so the graph database Neo4j was a clear choice for our pri-
mary database of user actions and data. We have an addi-
tional Firestore database for time series data such as pur-
chase and recommendation history since graph databases are
poorly equipped for handling such data. We host separate
test and production versions of the server hosted on Heroku,
and test and production versions of the databases on GCP
(Google Cloud Platform).

Algorithms

Three key algorithms underpin the incentive structure that
makes our app work.

1. Cards Algorithm The first and simplest algorithm is the
cards algorithm, which determines the order in which you
see other people on the main recommending screen. Since
we want to capture latent social information, we want to
show users their closest friends first since users know the
most about them and their likes and dislikes. To this end,
we show users their friends ordered by their number of
mutual friends (a proxy for closeness) plus some Gaussian

noise (so you do not see the same people in the same order
every time).

2. Conversion Kickback Algorithm The kickback algorithm
is our mechanism for rewarding good recommendations.
When a user purchases a product, we receive a conver-
sion fee which is split as follows: 20% is our margin,
20% is given as a discount for the purchasing user, and
the remaining 60% is distributed as a kickback among
those who recommended the product to the purchasing
user. We want to reward recommenders roughly propor-
tionally to their contribution to the purchase. We proxy
this by constructing a reverse BFS tree of the recommen-
dations rooted at the purchasing user and assigning shares
to each recommender equal to 0.5d where d is the rec-
ommenders depth in the tree (see Appendix B for an ex-
ample). The normalized shares of each recommender then
represents the percentage of the recommenders kickback
each recommender receives. We distribute these kick-
backs through our in-app currency gold which can then
be directly redeemed for cash.

3. Product Algorithm This gold (net of redemptions) also
conveniently doubles as a proxy for how good a user is
at recommending products. We want to show people the
most relevant products to them based on other users rec-
ommendations. Consequently, when a user moves to a
new product, we show that user their current most rec-
ommended product weighted by the quality of those rec-
ommendations defined as the natural log of the recom-
menders gold (see Appendix B for an example). In com-
bination, these three algorithms allow our app to achieve
its goal of converting latent social information into great
product recommendations.

Evaluation

Our evaluation was two-fold. We first verified that our algo-
rithms actually showed the right products to the right people,
and that over time everyone who wanted to buy the product
did. Secondly, we recruited 20 people to use the alpha ver-
sion of the app and got user experience data from them.

Simulation

We created a simulation in which we ran all of our algo-
rithms with a Python script on a simulated graph of 100
users and 1000 products. We used the NetworkX graph li-
brary and the Numpy linear algebra library to implement
the product recommendation and kickback allocation algo-
rithms. Our algorithm runs as follows: we initialize a graph
of users and products, then iterate through the users and sim-
ulate actions on their part. After their swipes / purchases, we
update the users product queues and kickbacks according to
the algorithms described earlier.

We formally define the problem setting as follows with
the following three definitions and two assumptions.

1. Let Gf = (V,E) be the undirected friends graph, in
which users u and v are neighbors if u and v are friends.
Let n = |V | = 100. Gf is randomly generated as a small-
world graph.

2. Let Uvp be the utility matrix that gives the utility that user
v receives from product p.

3. Let Eu
vp be user u’s estimate of Uvp.

4. Estimation. Your friends have an unbiased estimate of
your utility for a product. Formally, Eu

vp = Uvp+N(0,�),
with adjustable noise parameter �.

5. Smoothness. Your utility vector across products is corre-
lated with your friends utility vector across products. For-
mally, the vector ⇢(Ua, Ub) > ↵, for tunable parameter
↵. Note that this is nontrivial to implement. If a and b are
friends, and b and c are friends, but a and c aren’t friends,
there is implicit correlation between a and c despite this
not being explicitly modelled in the graph.
We modelled this by drawing U:p from an n dimen-
sional multivariate gaussian distribution N(0,⌃). We de-
fine ⌃ = (I + ↵A)�1, where I is the identity matrix, and
A is the adjacency matrix of Gf . In other words, we define
the precision matrix of the distribution so that friends have
partial correlation at least ↵. As long as |↵| is sufficiently
small, this matrix is positive semidefinite by Gershgorin
circle theorem, and so the distribution is well defined.

At runtime we use the following algorithm to generate the
graph.

1. Randomly initalize Gf using the Watts-strogatz small
world graph generation algorithm

2. Randomly draw each column of U (a vector of length n
that represents the utility vector of a particular product)
from N(0,⌃) to satisfy the smoothness criterion.

3. Loop
(a) Select a user u.

(b) Show them the next product p from their product queue.
(c) Show them a list F of their top 20 friends, sorted by

mutual friends, plus some noise.
(d) For f 2 F , they swipe right on a friend if Eu

fp > �
(that they estimate that their friend is � standard devia-
tions above the mean in terms of liking this product).

(e) They buy the product if Uup > �. After a purchase,
Uup is set to 0 (the user won’t buy twice).

(f) We update product queues and kickbacks based on the
algorithms mentioned earlier.

Simulation Results

The goal of the simulation is to demonstrate that our algo-
rithm is precise and complete: it both shows users product
they like, and shows products to all users who want to buy
them. The following graphs of user purchasing behaviour
over time demonstrate these results. The results of the simu-
lation are shown in Figure 3.

These graphs show that our algorithms meet all of the cri-
teria we designed. The recommendation plots show that the
number of ’Best’ recommendations (recommendations that
led to a purchase), is very high for the first several days. This
means that users are mostly seeing products they really like.
Furthermore, the purchasing converges very rapidly until the
entire market is saturated. The market saturates because we
assume that users won’t buy the same product twice, and that
user preferences don’t evolve over time. Furthermore, we as-
sume that each user interacts with 10 products per day. Thus,
after 100 users interacting with 50 products each, we con-
verge to the purchase limit (in other words, everyone who
wanted to purchase a product does purchase the product). On
the other hand, with random recommendations, only 12% of
possible purchases are made. Our algorithm is so effective
that every product is purchased about the same number of
times as the total number of purchases under a random rec-
ommendation algorithm! This result is quite astonishing, as
each user only actually interacts with 5% of the product set
in order to find every product that they want to purchase.

Furthermore, our algorithm distributes a very large
amount of money back to the users, with a right skewed dis-
tribution. In other words, most users receive about 100 gold,
but the best recommenders receive as much as 500.

Overall, our simulation shows that our algorithms are both
precise and complete. Users see products that they like most
of the time, and after interacting with only 5% of the prod-
ucts given, the simulation converges to the purchasing limit.

User Testing and Feedback

To validate whether our app was usable, we conducted user
beta testing. We reached out to fellow Penn students with
access to iOS devices, and asked them to download our app
via TestFlight, an iOS service specifically made for running
beta testing. We ended up getting more than 20 users to ac-
tually use the app. We also distributed a survey asking ques-
tions about users experiences using the app to help them
offer meaningful feedback to us. This survey can be found
HERE. The questions are broken up into the following cat-
egories: onboarding, usage, understanding, feed, and prod-

https://docs.google.com/document/d/1rYomLR9Sft3SG7Y3TwvwRVz0_TP0GrBugNDYtkzbJlU/edit?usp=sharing

Figure 3: Simulation results over time. Left: Recommendation behaviour over time. Shows that the number of ’Best’ recom-
mendations starts our in the lead, but slows down as all of the products listed saturates the market, at which point ’Good’
recommendations and random recommendations start to take over. This is largely due to the fact that when a user purchases a
product, their future utility of that product drops to 0. Overall, these plots show that users will see content that they like, and
that products will very rapidly saturate the market (in a period of only 5 days, in this model), assuming that users interact with
10 products on the platform per day. Right: The number of purchases over time converges to the purchase limit after only 50
product interactions per person (5 days simulation time). People only need to interact with 5% of the product set for them and
everyone else to see all of the products they would like to buy. Bottom: The distribution of gold at the end. Most users have
around 100 gold, and some users have as much as 6 times the mean (for making better recommendations)

ucts, with a final general category for the questions that did
not fit in any of the others. Feed and products were two of
the three screens used in the app (with the third being the
simple leaderboard screen), so it made sense to ask ques-
tions related to them. Onboarding is a critical component of
the app, as this is where users gain understanding as to how
to use the app. If they do not get it, they will leave. Naturally,
understanding is thus also important to gauge independently.
Exploring usage is important to see how users interact with
the app.

Conducting user testing ended up being a valuable exer-
cise. We received a number of positive reaction from users,
with many expressing admiration for the UI and the ease of
use of the app. We also received critical feedback ranging
from bugs that had to be fixed immediately, to new ways of
interacting with the app to provide better user experiences, to
simple things like making sure the tutorial fit on the screens
of older, smaller phones. Here is a comprehensive list of all
the fixes we made over the course of user testing, and the
rationale behind them.
Resizing the tutorial We found that the iPhone 6 and 6S

had issues with the tutorial fitting on the screen. Surpris-
ingly, the button to end the tutorial was off the screen, and
thus the app ended up hanging for some users. We resized
the tutorial to solve this issue

Including a skip button Many users complained that some
of the products on our catalog did not fit their interests,
and they wanted to be able to skip products until they
came across an interesting one. We debated internally
whether we wanted to add this feature, since we felt the
whole point of a platform like ours is not for users to en-
gage with products they find interesting, but for them to
engage with products their friends might find interesting.
Another point in favor of the skip button is that it is diffi-
cult for us to put out targeted products for users when they
first start using the app because we have no additional in-
formation about them. Better product selection happens
when your friends start recommending products to you.
We settled on adding a skip button with a limited number
of skips per day, so as to encourage users to explore new
products, but giving them some opportunities to browse
around.

Improving the product catalog A lot of users wanted to
see products that better fit their everyday lives (like house-
hold cleaning items) rather than just niche products. We
added some items in this category so as to diversify our
catalog.

Adding events to the product catalog Beyond just want-
ing good products in the catalog, some users expressed
excitement that the platform could be used to find out
about new events, such as concerts, wine tastings, and the
like. We decided that our app fit perfectly with the man-
ner in which people find out about events: word of mouth
through their friends. If someone hears about a concert
where an artist their friend really likes is performing, they
are pretty likely to reach out and let them know. Our plat-
form just makes this process simpler, and offers an avenue
for promoters of little-known-events to get the word out.

Figure 4: Boxplot of Server Latency Times

We thus added events in Philadelphia from EventBrite and
other similar event/ticket websites to our product catalog.

Server Latency Testing

Before deploying our app to users, we wanted to verify that
they would have a seamless experience using the app. We ran
latency tests on all our major server routes, which consists
of the login, getMyUser, advanceProduct, userConverts, and
getCards routes. The login route is used to login to the app.
The getMyUser route is used to access important metadata
associated with a user, including their profile picture, gold,
votes, and so on. The advanceProduct route is used to ad-
vance the user to the next product after they have either fin-
ished voting on the current one, or have skipped it. The user-
Converts route runs the conversion kickback algorithm. The
getCards route is used to get the set of user cards that will
be displayed to the user. The box plot below shows the dis-
tribution of latencies for each route, with each of the routes
having been called 50 times to generate this graph.

Ethical Considerations

As with any consumer-product facing product, there are a
few important ethical considerations to consider. Primarily,
we are concerned with protecting consumer data. To that
end, we have incorporated features into our app so that con-
sumers transparently understand what information they are
allowing us to access.

Users use Facebook to login to our app. This makes it eas-
ier on our end to protect user information, since passwords
and other sensitive information is thus secured by Facebook.
By agreeing to login via Facebook, users allow the app to re-
ceive access to their profile picture and friends list. We need
this information to allow full functionality of the app, as the
whole point of the app is to recommend products to your
friends. If users do not wish to share this information, using
the app would not be of any benefit to them.

One feature that users can opt out of is the feed. Our feed
screen allows other users to see what the most recent ac-
tions taken across all users are, but if you elect to, you can
choose to have any actions involving you to be excluded
from this feed. We believe that this is a necessary feature
to have, since some users would be uncomfortable with oth-
ers knowing that they have purchased a certain product, or
have recommended that product to a friend.

We also elected to use SSL and HTTPS within our app to
make our routes secure. This protects the app against server-
side attacks. Additionally, we made use of Cloud Firestore’s
Security Rules functionality to define access controls and
prevent user information in the Firestore database from be-
ing accessed by malicious entities. We took similar steps
with our Neo4j database by defining authentication and au-
thorization rules for the same purpose.

Acknowledgements

Thanks to Brett Hemenway and Ani Nenkova for all of
their help and support throughout the process of doing this
project.

Appendices

Appendix A

All iterations of our design mock-ups are shown below.

Figure 5: TipTop Mock

Figure 6: Coconut Mock

Figure 7: Apex Mock

Figure 8: Falcon Mock

Figure 9: Volley Mock

Figure 10: Limelight Mock

Figure 11: Flair Mock #1

Figure 12: Flair Mock #2

Figure 13: Flair Final Design

Appendix B

Figure 14: Conversion Kickback Algorithm Example

Figure 15: Product Recommendation Algorithm Example

fla r

Yash Shirsath, Tanmay Chordia, Alec Wang, Aditya Radhakrishnan

M&T Integration Lab
 

fla r

fla r

NEED
The current paradigm of ad delivery relies on inferring user characteristics by browsing history, likes, and other online behavior.
However, current methods do nothing to address the wealth of information about user preferences stored in social networks:
your friends are very likely to understand your preferences and your pet peeves. Management scientists call this social
understanding transactive memory. Transactive memory is currently a huge and completely untapped source of information
about customer needs. Our ad platform is the first to allow advertisers to access transactive memory to better target ads.

SOLUTION
Our solution is a novel approach to display ads. We’ve created an interactive ad experience that combines an Ad distribution
platform with a social network. Users are asked to recommend products to their friends within the ad slot. A typical experience
for a user might go as follows:
1. The user sees our full screen ad on a website or an app
2. At the bottom of the ad are a selection of friends that we think might be interested in the product.
3. The user either clicks the product if he/she is interested, or clicks a friend to recommend the product to.
4. Users who are recommended the product will see the product in a future ad, and can see who recommended it to them.
5. Users who consistently make good recommendations are rewarded with points / monetary reward

On the back end, we distribute an open source sdk (software development kit) for app developers to integrate our ad unit into
their mobile apps. They then use the Flair Ad Network to match with advertisers and monetize their apps.
The project described in the accompanied technical report is a prototype of what a specific ad slot will look like. It is currently a
standalone app, but will be integrated into an SDK that 3rd party developers can import to easily display our full screen popup
ads. Ad buyers can then bid on the ad slots in a similar fashion to current ad distribution networks.

STAKEHOLDERS
	 Similarly to traditional ad networks, Flair operates on a 4 party system: Ad Buyers, Ad Unit Sellers, Ad network, and
Ad Viewers. We’re using an auction model to auction ad slots (eg. slots on mobile devices) to advertisers (eg. Nike). Our in
house recommendation system will determine which users to target based on industry standard targeting methods and which
of their friends to present as secondary alternatives. As individuals recommend their friends and narrow down which users are
most interested in this product, we will command a higher CPC (cost per click) and CPM (cost per thousand impressions).

Other stakeholders include governments and other privacy lobbies. As can be seen by the growing scrutiny of the
large incumbents in the space, these stakeholders are gaining a larger pulpit and more power over traditional advertisers.

VALUE PROPOSITION
	 Flair solves two problems simultaneously. First of all, virality research shows that users are much more engaged with
content when it includes their friends. Secondly, ads are extremely relevant because users, are personally recommending them
for their friends. Due to the 6 degrees of separation rule of social graphs, ads are almost guaranteed to efficiently be routed to
those who are most interested in viewing them.

fla r

	 On a competitive note, one might argue that Facebook is harnessing information within a social network. This is a fair
point: they do a good job of gathering data about you specifically and targeting based on that. However, they don’t do such a
great job of unlocking the information that user a knows a’s friends. 	
	 A critical piece of our value proposition is related to the aforementioned governments and privacy lobbies. Incumbent
advertisers are in hot water right now because their value proposition to end users is orthogonal to their value proposition to
advertisers. I.e. they provide some service to consumers with an ad network bolted on to the side to allow the service to be
free for users. This causes misalignment of incentives and confusion around who owns the data. Better targeting often involves
gathering more and more personal data. However, Flair is different. We’ve gamified the ad itself. A large part of the reason
users use our platform is because they get better product recommendations and they actually enjoy recommending products
to their friends.

CUSTOMER SEGMENTATION
Because we are an ad distribution platform operating on a B2B2C model, we have targeting decisions for three different types
of stakeholders: ad slot sellers, ad buyers, and ad viewers. Our targeting decision for ad viewers and ad buyers is dependent
on who we choose as our ad slot sellers. This is because ad slot sellers each cater to specific customer demographics and ad
ad buyers want to target those demographics.
	 We believe the best ad slot sellers to target are mobile games for many reasons. Firstly, there is ample supply of
mobile games that turns over very frequently. And these game developers are always looking for the best way to monetize their
mostly free apps. Secondly, mobile games already utilize interactive/playable full screen popup ads. Thirdly, mobile games cater
to a younger demographic who will theoretically be more familiar with our swiping mechanics because of dating apps like
Tinder.

MARKET RESEARCH
Every new media format for ads has had its pioneer. Google AdX with search ads. Facebook with social ads. Youtube

for pre-roll video ads. AdMob for mobile ads, and DoubleClick for display ads. Which each new frontier of advertising, the
trailblazer develops the real estate (i.e. grows visibility and customer acceptance of the new format) and spawns a plethora of
competitors and M&A targets for incumbents. We assume that the same tried and true process will occur as well with this
format.

The net digital ad revenues for the top three players are projected to be $102.4 Billion, $67.2 Billion, and $30.5 Billion
for Google, Facebook, and Alibaba respectively. The total market size of digital ad spending is $129.34 Billion, representing
year over year growth of 19%. Furthermore, digital ad spending will surpass traditional ad spending for the first time in 2019.
On top of this, mobile ad spending will make up a full 66% of this [Source].

From this, we can conclude that the future of advertising is digital and mobile. While the current ad distribution
networks already have huge reach, none of them are currently not harnessing the transactive knowledge stored in social
networks and providing the same value proposition as us. Because we have a unique approach to monetizing this knowledge,
we project that we will command an increasing share of this massive and growing market.

https://www.emarketer.com/content/us-digital-ad-spending-will-surpass-traditional-in-2019

fla r

REVENUE MODEL
On our platform, the money flows from ad buyers to ad sellers. Because we own the platform, we take a portion of this as a
fee. We retain 20% of this revenue as our gross margin, and disburse the remaining 80% as kickbacks to our users as
incentives for good recommendations. Furthermore, Under these assumptions we can model out revenue as follows:

*Source

Revenue Projections ($1,000)

2017 2018 2019 2020 2021
Global Digital Ad Spending* $273,000.00 $286,650.00 $300,982.50 $316,031.63 $331,833.21

Mobile Spending (CAGR
19.27%) $125.34 $149.49 $178.30 $212.66 $253.64

Market Penetration 0.00% 0.00% 0.50% 1.00% 5.00%

Projected Revenue $0.00 $0.00 $0.89 $2.13 $12.68

Margin $0.00 10% 20% 20% 20%

Projected Disbursements 0 $0.00 $0.71 $1.70 $10.15

https://www.emarketer.com/content/emarketer-total-media-ad-spending-worldwide-will-rise-7-4-in-2018

	Motivation
	Solution
	Technical Approach
	UX
	Tech Stack
	Algorithms

	Evaluation
	Simulation
	Simulation Results
	User Testing and Feedback
	Server Latency Testing

	Ethical Considerations
	Acknowledgements
	Appendix A
	Appendix B

