
CIS 400 Senior Project
Spring 2018 Final Report

1 Student Information

Group #18: Paul Lou.

Project title: ParaLLL: Parallelizing the LLL Algorithm

2 Advisor Information

Advisor: Dr. Nadia Heninger. We’ve have weekly lab meetings on Wednesday at
11AM with the rest of the lab present as well, though Dr. Heninger was away at
conferences a few times and I skipped two weekly meetings (once in March, once in April)
due to coursework. Dr. Heninger is also present regularly on other days for chats about the
project since I’m usually in the lab at least 3 out of the 5 week days working on this project.

Mentor: Luke Valenta. Luke and I usually worked together on Fridays, sitting
together to discuss relevant papers and write/edit code.

3 Summary

We aim to parallelize and implement the parallelized Lenstra-Lenstra-Lovász lattice basis
reduction algorithm (LLL) for cluster-distributed cryptanalysis on Lattice-based cryptography
schemes, reducing real-time computation time for any algorithms involving LLL-reduced basis.

4 Overview of Problem and Approach

A Euclidean lattice is a discrete subgroup of n-dimensional Euclidean space. Lattice-
based cryptography is a subfield of cryptography in which lattice-based cryptosystems rely on
the hardness of problems in Euclidean Lattices.

One such problem is the shortest vector problem: given a basis for the lattice, find the
shortest non-zero vector of minimal Euclidean norm in the lattice. Solving the exact version of
this problem has been shown to by NP-Hard.

We can solve the approximation version in time polynomial in the lattice dimension n using
the Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL). LLL produces an
”LLL-reduced” basis whose shortest basis is an 2O(n)-approximation on the shortest-vector. In
practice, LLL beats the upper bound, facilitating practical cryptanalysis of non-lattice-based
cryptography schemes such as the Merkel-Hellman knapsack cryptosystem and in cryptanalysis

1

Figure 1: Two-dimensional visualization of LLL Reduction

on the RSA cryptosystem. Despite its prevalence, LLL is the runtime bottleneck in its appli-
cations, with a runtime of O(n5 log3B) where B = maxi{|bi|} [1].

We begin by understanding bottlenecks within the LLL algorithm and then we implement
and experiment with variants of the LLL algorithm to understand how LLL can be effectively
parallelized.

5 Implementation

Other than fast and parallel arithmetic operations, three primary approaches are of interest
in understanding how to parallelize LLL: translations, input manipulation, and swaps. Of these
three, the first two were tested the past semester and third one is implemented but testing is
still underway.

We implemented in Python the classic LLL and a floating-point variant of the LLL al-
gorithm. The original LLL algorithm worked with integers, but integer representation and
operations become computationally expensive relative to floating-point operations. Still, Vic-
tor Shoup mentions in his number theory library NTL that the integer variant of LLL can
result in faster runtimes compared to the floating-point variant on some types of inputs. In
general, LLL’s behavior on various types of lattices is not well understood. However, slight
modifications to the the size-reduction step must be made to address numerical instability of
the Gram-Schmidt procedure. We briefly describe the LLL algorithm and its components to
motivate our experiments. Let b1, . . . , bn form a linearly independent basis for lattice Λ of di-

2

mension n and let b∗1, . . . , b
∗
n be their Gram-Schmidt orthogonalization. The Lovász Condition

is as follows:
|b∗i+1 + µi+1,ib

∗
i |2 ≥ δ|b∗i |2 (1)

The Lovász Condition encapsulates the goal of producing basis vectors whose norms are
within some function of δ from each other and preserving some degree of orthogonality as
described the Gram-Schmidt coefficient µi+1. The LLL algorithm runs its main loop until all
basis vectors satisfy the condition.

Algorithm 1 General LLL

1: Given: basis b1, . . . , bn, reduction factor δ
2: Size reduce b1, . . . , bn (alg. 2)
3: if any bj does not satisfy eqn. (1) then
4: swap bj and bj+1

5: goto step 2
6: end if
7: return LLL-reduced b1, . . . , bn

Algorithm 2 Gram-Schmidt Size Reduction

1: Given: basis b1, . . . , bn, reduction factor δ
2: Compute Gram-Schmidt coefficients µi,j

3: for i = 2 to n do
4: for j = i− 1 downto 1 do
5: bi ←− bi − dµi,jcbj
6: for k = 1 to j do
7: µi,k ←− µi,k − dµi,jcµj,k

8: end for
9: end for

10: end for

Input manipulation is an attempt to break the input basis vectors into blocks to perform
a mergesort-esque LLL reduction. The mergeLLL algorithm runs the C++ fplll for each LLL
subroutine. A discussion on different merge algorithms is saved for the evaluation.

Algorithm 3 MergeLLL

1: Given: basis b1, . . . , bn, reduction factor δ
2: E ← LLL({b2k : k ∈ Z, 2k ∈ [1, n]})
3: O ← LLL({b2k−1 : k ∈ Z, 2k − 1 ∈ [1, n]})
4: M ← merge(E,O)
5: return LLL(M)

Aiming to parallelizing swaps leads to us implementing the following algorithm due to
Villard [2]. Testing this implementation is not finished.

3

Algorithm 4 General even-odd LLL

1: Given: basis b1, . . . , bn, reduction factor δ
2: Size reduce b1, . . . , bn (alg. 1)
3: while swaps remain do
4: for even j simultaneously do
5: if bj does not satisfy eqn. (1) then
6: swap bj and bj+1

7: end if
8: end for
9: Size reduce b1, . . . , bn (alg. 1)

10: Repeat steps 3 through 7 for odd j
11: end while
12: return LLL-reduced b1, . . . , bn

Note that all relevant variants of LLL algorithm follow the general structure involving size
reduction and swaps defined by algorithm 1.

6 Evaluation

On each iteration of the LLL algorithm, an iteration being the execution of lines 2 through
4 of the General LLL algorithm, the most computationally expensive step is the size-reduction.
Within size reduction (algorithm 2), line 5 is the translation step and the takes up the most
time. We benchmarked the runtime of each component of the floating point variant of LLL and
provide a visualization of the relative runtime of the translation step (line 5 in algorithm 2) in
fplll, a state-of-the-art C++ implementation of the floating-point variant of the LLL algorithm.

4

Note that in all our following experiments, the inputs were tested on random lattices gen-
erated by producing lower triangular matrices were random inputs whose bit sizes were grown
by adding randomly chosen rows to each other.

A cursory glance suggests a naive parallelization method on the translations in which each
thread performs rounding on a Gram-Schmidt coefficient and one multiplication. The result
of each threads computation is then joined by subtracting the results out of the basis at the
current working index. However, this approach resulted in runtimes that were three to five times
slower on our Python implementation of floating point LLL with multiprocessing compared to
without multiprocessing. Such a result confirms the suspicion that translation computations
happen too frequently and the overhead of managing threads at this deeply nested line of code
is too expensive for any runtime speedups.

Ruling out naive translation parallelization, we turn to a simpler approach: input manipula-
tion. The nature of the LLL algorithm is similar to that of a sorting algorithm with additional
orthogonality constraints. In fact, the original integer version of LLL acts as a slow bubblesort.
A natural thing to try is to apply a divide-and-conquer approach. We divide a given linearly
independent basis {b1, b2, . . . , bn} into two blocks, B1, B2 where we make the ad hoc decision
that B1 contains the vectors with odd indices and B2 contains the vectors with even indices. We
apply the LLL algorithm on B1 and B2 in parallel, resulting in two sets of LLL-reduced basis
vectors LLL(B1) and LLL(B2). Two different merge steps were tested, the stack merge and
the interleave merge. The stack merge is the naive merge algorithm, placing B1 on top of B2 to
produce {B1, B2}. Since the LLL algorithm’s output is sorted by basis norm, however, intuition
suggests that an interleaving merge in which a vector is picked in an alternating fashion from
B1 and B2 can perhaps better satisfy the Lovász conditions, removing a few iterations of the
LLL algorithm.

Dim. Vanilla fpLLL Stack Interleave

50 20.5 21.8 26.3
100 183.5 190.0 239.8
150 790.6 759.1 775.8

Table 1: Average wall time in seconds with Sage’s LLL()

Reported timings are averaged across 5 iterations. Timings were volatile and input de-
pendent due to uncontrolled orthogonality between even and odd indexed basis elements. We
see slight speedups in higher dimensions on the average from the stack and interleave merge
methods. Note, however, stacking and interleaving on individual trials beat the Vanilla fpLLL
up to 61% on wall-clock time.

Finally, Villard’s even-odd algorithm provides a theoretical framework for parallelizing
swaps. We have implemented an alternate version of the integer LLL algorithm in C++ using
the NTL library that performs parallelized swaps. Testing, however, is still underway.

In summary, we evaluate and analyze two different approaches to parallelizing the LLL
algorithm through the translation step and input manipulation. We show that the translation
step is ineffective due to threading overhead but we show that the divide-and-conquer approach

5

provides speedups on the average on lattices of dimension 150 and the overhead of splitting
and merging vectors decreases as the dimension increases, suggesting increased speedups as the
dimension increases. Parallelizing swaps is trickier but more promising and tests are underway.

7 Lattice Cryptography in the Real World

Although the LLL algorithm provides a way to attack a variety of problems, lattice cryptography
in general offers the construction of post-quantum security and a basis on which to construct
useful cryptographic tools such as fully homomorphic encryption. According to the 2017 Official
Annual Cybercrime Report sponsored by the Herjavec Group, cybercrime will cost the world $6
trillion annually by 2021 [3]. This cost and risk will only increase with the advent of adoption of
the internet of things with not only wearables but entire public infrastructure systems. Much
of the deployed cryptography relies on problems such as the discrete log problem or integer
factorization which are unknown to be NP-Hard. However, Shor’s algorithm is a polynomial-
time quantum algorithm that would efficiently solve both problems. While it is most likely not
the case that the advent of quantum computing would end practical security offered by such
cryptography in an instant, quantum computing is pushing the cryptography community to
explore ”post-quantum cryptography”, which is defined as cryptography that is usable today
but still safe in the presence of a fully operational quantum computer. Lattice cryptography is
one of many avenues through which post-quantum cryptoschemes can be constructed. Other
avenues include multilinear maps and supersingular isogenies, but of these approaches, the
usage of lattices is older, more established, and has more of a proven resilience to cryptanalytical
attempts.

Fully homomorphic encryption (FHE) can be informally described in the following scenario.
A user wants to compute some function on some data in the cloud but does not want the cloud
server to know the plain data. FHE allows the user to send her encrypted data and the server
to reply with the result of the function on the encrypted data where the decryption of the result
is the result of the function on the non-encrypted data. Lattice theory enabled the construction
of the first FHE scheme by Gentry in 2009. Yet, the existence of algorithms such as LLL has
posed a risk to existing schemes. As such, FHE is not ready for industrial use as it fails to
satisfy both usable security and efficient compute-times.

Parallelizing LLL, then, aims to find greater vulnerabilities in lattice based cryptoschemes
and constructs. Having it as an open source library aids researchers in their cryptanalysis.
Detecting such vulnerabilities protects both industry and the public against misplaced trust in
existing and newly proposed schemes.

8 Individual Contributions

Most of the work reported above is performed by Paul. Luke modified the C++ fplll code
to parallelize translations with OpenMP and noticed that just compiling the C++ fplll with
OpenMP or pthreads caused a 15x overhead on our Intel machines. This overhead was confirmed
by Dr. Daniel J. Bernstein in the Netherlands on an AMD machine. Luke also obtained
Paul Kircher’s parallelized lattice basis reduction algorithm and his partially written paper
from Kircher’s advisor. He ran some inputs on Kircher’s algorithm and showed that Kircher’s

6

algorithm performs extremely fast compared to sequential fplll. On a dimension 500 lattice fplll
finishes reducing the lattice in 46 hours while Kircher’s finishes in 37 minutes. We are not quite
sure what how the algorithm works, but what is clear from the paper is that it is a combination
of a whole bunch of existing techniques.

Dr. Heninger provided the overall direction throughout this ongoing project.

References

[1] The LLL Algorithm. Springer, 2009.

[2] G. Villard. Parallel lattice basis reduction. ISSAC, July 1992.

[3] Morgan S. Cybercrime damages $6 trillion by 2021. Cybersecurity Ventures, 2017.

[4] P. Q. Nguyen and D. Stehlé. An lll algorithm with quadratic complexity. SIAM Journal on
Computing, 2009.

[5] B. Werner and S. Wetzel. Parallel lattice basis reduction - the road to many-core. High Performance
Computing and Communications (HPCC), 2011.

[6] Albrecht et al. fplll. https://github.com/fplll/fplll, 2018.

7

