Team 13

—/M\O]

- RANG

Team:

Carter Rice, Rohun Patel, William Archer

Faculty Advisor:
Tania Khanna

I Executive Summary

Our group is working on Remote Ranger because we want to improve the effectiveness
of search and rescue operations and develop a product that can be scaled into different areas.
When we began sorting through the projects we could work on, we threw several ideas on the
drawing board and came to two realizations that molded our ultimate project vision: hiking
search and rescue is long overdue for improvement and our project should result in a tangible
product at the end of the year. The combination of these two ideas brought us to Remote
Ranger, and the work put in throughout the semester has brought us closer to reaching our
goals. We determined that the foundation of the project could be done using the SigFox loT
network, because it fit perfectly for our system requirements. Low bandwidth, low power, and
long range set the standard for our project that we started from in the semester.

The project itself incorporated several different logistical requirements that were not all
required of past projects in our classes. We had several meetings throughout the year to both
ensure that progress was being made and to flesh out issues in our project that could cause
more problems going forward. Each of these meetings brought us closer to the product that we
had at the end of the year, which shows that having periodic discussions about the progress
made and progress that needs to be made helps to not only keep things moving, but to inspire
the right iterations of the project to improve its final form. The budget constraints on the project
did not end up being problematic, and most of the money spent was on multiple different units
that did not end up as part of the final product, which is a natural part of the prototype process.
The final cost of the development kit and battery gave us confidence that this product can be
affordable when brought to scale.

Il Overview of Project

Our group is working on Remote Ranger because we want to improve the effectiveness
of search and rescue operations and develop a product that can be deployed at scale into
different areas for various applications. When we began sorting through the projects we could
work on, we threw several ideas on the drawing board and came to two realizations that molded
our ultimate project vision: hiking search and rescue is long overdue for improvement and our
project should result in a tangible product at the end of the year. The combination of these two
ideas brought us to Remote Ranger, and the work put in throughout the year has culminated in
a product that achieves this. The project was built using the SigFox IoT network, due to various
design advantages that suited our system requirements. Low bandwidth, low power, and long
range were the design aspects that our project prioritized.

The current tracking system used by the National Park Service is a physical paper tag
given to hikers when they enter the park that keeps some personal information about the hiker,
but is not electronic and cannot communicate with the park rangers. Its purpose is to be able to
identify hikers in the event of a rescue effort. When hikers do not return after their estimated
return time or are reported missing by relatives, friends, or other hikers, the rangers begin their
search with only an estimation of the missing hiker’s location. Cell coverage is usually weak or
non-existent in national parks, so communicating with hikers is difficult. Alternatively, hikers
could purchase an expensive and bulky GPS device or satellite phones that would allow them to
track their location or call for help when it's needed. GPS-only devices are frequently unable to
transmit their location in the case of an emergency, and satellite phones are an expensive and
heavy solution that would not financially scale up to handle the number of hikers that visit
national parks.

Remote Ranger aims to make this process much more efficient by allowing rangers to
track a specific location of a hiker. If the hiker sends a distress signal to the rangers or if a hiker
takes an abnormal amount of time to return, the rangers can start their search with a precise
location resulting in rangers wasting less time in their efforts.

The widespread innovation that takes place in today’s technology marketplaces has a
huge impact on consumers and many products aim to make daily life easier for many people
across the globe. However, this innovation does not often reach products that do not provide an
immediate or probable profit in the future. There are many different areas where a new product
could provide positive impact, but that impact may never arrive without a company already in a
similar space looking to expand or if one is looking to enter a new space. Remote Ranger seeks
to inject innovation into the National Park search and rescue operations to improve on the
outdated system described above to provide the positive impact that today’s technology is able
to provide.

Outside of the specific problem being solved, there is other motivation from the group
that led us to this type of project. We started with the goal of creating a tangible product that
could have a real impact and that could be used across the country instead of just one specific
space. We also wanted to build something that would serve as an extension on the skills
learned through our curriculum, primarily our embedded systems backgrounds. We also wanted
additional challenges on top of that that we have not necessarily tackled before, such as form
factor and power optimization.

The objectives of the project can be summarized by meeting the goals of the problem
and group’s interests as described above. The main objective was to have a working final
product that could be used in the National Parks. At the same time, we hope that this final
product will provide a baseline for expanding into other search and rescue operations because
the scope of Remote Ranger is currently aimed at National Parks search and rescue, but the
impacts it could have are certainly not limited to it.

Il Method of Solution
1. Specification and requirements

When we set out to build a hiking beacon for Remote Ranger, we set out a few primary
goals for our device. The first is that it is a GPS-enabled tracking device for hikers in National
Parks that would significantly increase the effectiveness of search and rescue operations.The
design objectives we laid out included a long lasting battery life that would survive the duration
of a hike, accurate location tracking of a hiker by pinging their location every 10 minutes, and a
system that scaled to the capacity of hikers that national parks experience.

We hoped to maximize the range and battery life of the device. Communication methods
that were researched included RF frequencies used in walkie-talkies, CB radio communication,
and cellular signals. These methods were too power hungry for the range we desired, and had
bandwidth and communication speeds that we found unnecessary. They also had infrastructure
setup costs that would have been prohibitive. Figure 1 summarizes the different network
solutions.

L

—— L | P

+ High frequency + Sub-GHz frequency i « AM/FM frequency
+ High Bandwidth | - Low Bandwidth |+ High bandwidth
« Low individual range High individual range /// + High power requirements

.
Ny

Figure 1: Comparison of infrastructure solutions and network configurations.

Shorter range systems would require too many receiving nodes, and longer range systems that
operated with a single receiver were too power hungry. Looking into useful network choices for
loT devices (ones that are both low power requirement and low bandwidth), we decided to use
the SigFox network because of a few key design parameters.

SigFox is a company based in France that claims to be the world’s largest 10T network
with wide coverage in Europe and expanding coverage in the United States. It has a variety of
design choices that make it favorable for our specific application. First, it has a lightweight
communications protocol that limits the overhead and size of data sent in each packet that is
transmitted. The limit for data transmitted is 12 bytes of data. For reference, 1 GPS coordinate
requires about 4 bytes of data to send, so the 12 bytes of data could be used to successfully
transmit the latitude and longitude of a beacon in one ping. Sigfox has also removed signaling

on the network between nodes and relies on pseudo random packet sending from devices to
avoid collisions. This allows the network to quickly relay data from receiving SigFox stations to
SigFox servers. Lastly, the SigFox network operates at an ultra narrow band. This narrow band
results in a high sensitivity for the receiver and low power requirements for a transmitter.

These design parameters gave us a few key benefits that solidified the choice of the
SigFox network. The first of these is the ability to have an extremely long range of
communication. In urban areas, SigFox claims to get between 5 and 10km of range. In rural
areas that range extends up to between 30 and 50km. We have also found claims that SigFox
can reach up to 1000 km with direct line of sight. This led us to conservatively estimate a range
of 10 to 20 km in most national parks or national forests. In addition, we initially looked into
network setup costs for each communication range we considered. Since SigFox is planning on
expanding coverage to the full continental United States, the cost of network infrastructure
wouldn’t be passed on to the parks. The scaling of the network is also a burden that is not
placed on the parks, because the network is designed to handle a large capacity of devices. As
parks adopt the tracker, there would be no issues with network traffic. Lastly, the low bandwidth
requirements and low power requirements for transmission result in a longer battery life for
devices on the network. Sigfox also has a low cost subscription that parks could subscribe to for
all active devices. The subscription is not based on device traffic, it is instead based on device
capacity, that is, the number of active devices registered on the network.

An important part of the design is the battery life of the device. We used a 3.7 V LiPo
1200 mAh battery with the board, which allowed us to have a battery life close to two weeks
based on location pings every 10 minutes. Based on our measurements and the specs of the
final dev kit we used, GPS takes about 27 mA, Sigfox takes about 54 mA, and the sleep mode
uses about 1 mA of current. Based on 15 seconds of GPS mode, 30 seconds of transmission,
and the remainder of time sleeping, we arrived at 14 days of battery life for the unit. We can also
extrapolate this data to show what the battery life would be with a different amount of time
between pings. This data is shown in the graph below:

Battery Duration vs. Ping Frequency

W oW o g W
[T = T T = R T =

[=]

Lifetime (Days)
- M b :

[
o o or

o

5 minutes 10 minutes 30 minutes 1 hour 3 hours

Time Between Transmissions

Figure 2: Battery lifetime compared to location sending intervals

Each device’s lifetime should last a few years providing they were durably built. This
would give an optimal level of device turnover for parks and users. Producing these devices at
large volumes should also result in cost savings that put the final cost of the device at a
reasonable cost of $26.35 that a park would be able to afford. We also envision this system
being modified for an application in search and rescue during natural disasters. It could
potentially be deployed by being distributed to people in the path of an impending disaster to aid
rescue efforts.

2. What specific classes and knowledge does the project depend on?

There are a few different classes offered within the ESE department that are applicable
to this project. The primary two are ESE 350 (Embedded Systems) and ESE 578 (RFIC). Every
team member has taken ESE 350 and Carter has taken ESE 578. The system setup for the
project can be split into two different components to get a better idea of how each course
applies. The central Sigfox module that the device will use interacts with a microcontroller on the
board, which has to execute the right steps to access the functioning of the module.
Additionally, the C++ programming that was covered in ESE 350 is the same language being
used to program the current MCU. Memory, timing, and processing constraints that came into
play during the course are also being tested with this board, which makes it very beneficial to
come into the project with prior experience. The knowledge gained in ESE 578 applies to the
actual wireless signal being used to send information on the network, which came into play
earlier in the semester. The relationship between signal strength, power requirements, and
antenna size were all touched on in the course and helped the project get narrowed down to the
Sigfox network and communications instead of alternatives such as AM/FM or 1+ GHz signals.

v Self-learning

In order to complete this project, we had to familiarize ourselves with the benefits of
various networks. This involved learning bandwidth and power requirements of each type of
communication. In addition, we purchased a development kit that we had to learn how to
prototype with. It consisted of a debugging board and a SFM20Rx board. The SFM20Rx
board contained various peripherals including an NFC, temperature sensor, pressure sensor,
GPS antenna, SigFox antenna, Wifi antenna, and BLE antenna. We had to learn how to wire
the two boards together and flash the debugger to upload code to the SFM20Rx board. This
included becoming familiar with git to access documentation, downloading and learning how to
use uVision, the compiler for ARM devices, and the windows powershell to flash the debugger.
We also had to familiarize ourselves with the API provided in the documentation. We continued
with our self learning and were able to successfully program the board to ping it's GPS
coordinates and send them through the SigFox network. Lastly, Will spearheaded the
development of the web application, the skills to do which he learned on his own.

Vv Design and Iteration

Once we settled on the SigFox network to use, we started our project using a
WSSFM20R2 dev kit from Sea Slug labs for initial testing. We were able to successfully
configure the unit to get the GPS location and send it over SigFox, but we were having trouble
with the SigFox communication in some of the areas surrounding engineering, and nothing
worked indoors (including GPS). This led us to our fall demo, which was a proof-of-concept for
the GPS and the communication interface.

Moving into second semester, we started with the goal of condensing the GPS payload
to a smaller size that would provide higher accuracy as well as extra room for other data that we
would like to send, most notably the battery level. In order to test and fix this, we purchased a
network emulator that allowed us to quickly test how messages would be received without
waiting for them to be processed through the sigfox backend. This allowed us to condense the
GPS payload so that we could transmit the most precise coordinates possible. We also acquired
a smaller dev kit, the iHere, from Sea Slug labs for this part of the project. One of the notable
design differences that was key was the size of each antenna. For the fall demo, our GPS
antenna was a little larger than a quarter and the cable was roughly 20 feet long, while the
SigFox antenna was about 7 inches long and quite bulky. The iHere used a different GPS
antenna (common for PCB mounting) that was a little smaller and was soldered to the board
with no extra cord. The SigFox antenna was considerably smaller than the previous version and
now took up about one square inch of space on the board with a height of about half an inch,
which allowed for the final case design to be considerably smaller and provide a better final
product.

For the GPS coordinates, we successfully parsed the NMEA data that we received from
the GPS protocol and sent it using 4 bytes for longitude and 4 bytes for latitude This was
comprised of one byte to signal north or south and east or west, while the second byte was

degrees, the third byte was minutes, and the last byte was seconds. This provided GPS
accuracy down to 10 feet, which was ideal for the system design we needed.

[Throughout fall semester and into the beginning of spring semester, we had callbacks
set up on the sigfox backend that sent us emails of the location estimation (done by sigfox) and
the actual message (the board’s GPS location). To look at the GPS data and see if it was right,
we had to take the message and put it in a google sheet that converted each of the bytes into
the corresponding part of the GPS coordinates, and we manually mapped the position after that.
Needless to say, this would not be efficient for a demo of the product. Using an AWS callback,
the data was then sent to our AWS host as well and the web app was created to have a user
friendly display with all the information needed in one place. The main dashboard shows each of
the registered devices and the information associated with it, as well as an indicator that shows
if it has transmitted in the last 30 minutes. The map on the dashboard shows the latest location
for each device registered on the app. Each device also has its own page that displays its
information as well as a map that shows its location history with timestamps for each location
ping, which allows rangers to get a visual for the path that the hiker is taking.

Hiker Name: Carter Rlce

Phone Number: 1-757-653-1563

Departure: Smokey Mountains National Park Destination: Philadelphia
Date Left: Wed, Apr 11th Arrival Date: Wed, Apr ith
Emergency Name: Rohun Patel Emergency Phone: 1-757-653-1563

Current Latitude: 39.94555555555555
Current Longitude: -75.19833333333334

omSwrean
a a0
—— WsiAg of 9 §] 30 Sreet @
Contemporary At aCheatny o L
Wi 5y

unwershy of o . i

enn
,B E]' Mon AprSth0221 P X
Sprce g —
P pran AR [

Benn Museun iy &L mT

Schuy\k]
Rivet Park

Souhgy g it i
5 5 +

%, 4 ' "8 FITLER'SQUARE Ten
s SWCEDAR @ 2 & ’ ’
PARK U ' §
%, 8 nadeicha &

SQUIRREL HILL
B

DEVIL'S POCKET
Gdvgleesial

p cots 824115 Coogle _Terms of Usa

Figure 4: A screenshot of the device overview page for the web application.

The original case design we used for demo day is 4’x2”x2”, which is rather bulky, but
future iterations would use a case with a 3"°x2"x1” design that is much more suitable for hikers to
use. The reason for this is that we designed the original case to fit the iHere, battery,
booster/charger circuit, and USB cord since we did not have the proper header for the battery to
attach to the cord and there was plenty of extra room even with all 3 components. The next

design would have a very short connection from the battery to the board with no USB cable or
booster board, allowing the case design to be very small.

VI Societal, global and/or economic impact.
1. Context of the project

One of the benefits of the target impact of this project is that hiking and search and
rescue are not niche activities that are unique to the National Park Service, let alone the U.S. In
this way, Remote Ranger can be applied to very similar situations around the world to improve
search and rescue operations for hikers and rangers everywhere. While the economic impact of
this project may not seem obvious, it is essentially providing an alternative to equipping every
hiker with a commercially-available GPS unit. These units can cost hundreds of dollars, making
it infeasible for such a rollout to occur. Remote Ranger provides a much more economic
alternative to make the concept for rollout. In addition, the cost of devices and a SigFox
subscription would be far less than the cost savings that this system is driving. Shorter search
and rescue operations result in significantly lower costs for national parks to incur and lower
loss of life. An additional note on the project is its ability to scale into different search and rescue
operations, most notably hurricane relief in the US and Caribbean. The device could be
distributed to people that do not evacuate and could send a distress beacon if they need to be
recovered, which can make the job of emergency services much more efficient.

2. Ethical Issues

Hikers could potentially be concerned about their location being tracked while in the
park. If the project is clear enough about the frequency of the GPS pings and clear that they are
for the purpose of safety in the event of a search and rescue, there should be no issue with the
use of the device from the hiker side. The national park service that uses the tracker should
have no ethical issues with the proposed system architecture or devices. Since SigFox is
responsible for installing infrastructure across the continental United States, the park service
should be able to use it without any additional setup. In the worst case if coverage is deemed
too sparse, the park could partner with SigFox to build a few extra receiving stations, but this
event remains highly unlikely and will likely be of negligible cost.

VIl Summary of Meetings

e Meeting with Tania 9/19
o Attended by all group members
o Discussed beginning idea of project and motivation
m Initial desire to aid disaster relief
m Breaking down the problem into search and rescue
o Discussed first research steps
m Look into key parameters of range and battery life
m Look into various communications options

e Meeting with Sid, Jorge, Neil 9/20
o Attended by all group members
o Discussed project motivation, direction, and scope
o Discussed implementation
m Preliminary research ideas of communication methods
m Preliminary discussion of key parameters and device specs

e Meeting w DeHon 9/22

o Attended by all group members

o Discussed research on communication methods
m Piggybacking off of cellular network
m Piggybacking off of walkie talkie networks or CB radio
m Creating our own network

o Further research into loT networks

o SigFox was suggested

e Meeting with Max 10/13
o Attended by all group members

o Discussed project progress, development kit, milestone development and
refinement

o Discussed additional research into FCC compliance
m Discussed current understanding and implications of requirements

e Meeting with Tania 12/1
o Attended by Carter and Rohun

o Discussed progress with prototype using the development kit and refined device
design specs

Discussed an appropriate presentation for upcoming fall demo day
Discussed appropriate milestones for the spring semester

e Meeting with Sid, Jorge, Neil 12/1
o Attended by Carter and Rohun

o Discussed milestone progress with prototype and updated design specs of the
device and proposed system
Discussed the plan for demo day
Discussed milestones for the spring semester

e Meeting with Jorge, Leroy 1/25
o Attended by Carter, Rohun, and Will
o Discussed progress from fall demo day and plans for the rest of the semester
o Discussed plans to buy individual modules and proto-board before pcb

e Meeting with Sid and Jorge 2/20
o Attended by Carter, Rohun, and Will
o Discussed need to get pcb out before spring break
o Discussed plans for testing unit over next month

e Meeting with Leroy and Sid 3/28
o Attended by Carter, Rohun
o Discussed standards for project

VIl Final schedule with milestones

Milestone Carter Rohun Will
Establish SigFox as protocol September
Reach out to NPS/other parks October

Order original dev kit October

Program dev kit for winter demo | November November November
Winter demo December December December
Urban testing January

Iterate to iHere February February

Develop PCB February
Minimize GPS data size March March
Rural testing April

Finalize AWS/SigFox backend April
Complete web app front end April

Final demo April April April

IX Discussion of teamwork.

The team members have similar skill sets, with each of us having taken ESE 350 and
having a background in hardware development. Fall semester, Will was responsible for
determining the best way to develop on the board, helping determine and debug the installation
of the IDE and help flash the board. Carter and Rohun took the lead on developing on the board
to ping GPS and send the signal through the SigFox network. Rohun and Carter also took the
lead on developing the team poster and presentations.

During spring semester, Will took the lead on the GPS parsing issue we were having as
well as the web app that we used for the demo, which was very important since it was the
method we used to demonstrate the capabilities of the project for a live demo. Carter and
Rohun focused on the rest of the software for the board and the testing that was done. Carter
took the lead on the logistics for the team and preparing the presentations throughout the
semester.

X Budget

Our fall semester budget comprised of a WISOL Quad EVK WSSFM20R2 board that
cost $130, a Nordic NRF52-DK debugger board that cost $40, and a 10-pin J-link cable that
cost $3. These components provided the baseline demo that we needed for this semester in
order to present a proof-of-concept for the product design. While these prices are high for
individual units, they were not outside our expectations since we were using a development kit
and debugger board, both of which have several capabilities that are meant for any developer,
but will not be needed for our project.

Spring semester had a higher budget due to the iterations that we will do on the project.
Starting from the baseline demo we provided, we purchased another development kit ($130) to
assist with field testing, and 3 wisol modules ($26), antenna kits ($30 total), and debuggers ($90
total) in our initial attempt to move off the development kit. Additionally, we purchased a sigfox
network emulator costing $160 that saved us a tremendous amount of time by simulating the
sigfox network in Detkin lab. We finally settled on ihere development boards ($84 total) for our
final demo and proceeded to purchase the batteries and voltage boosting circuits to complete
the demo and enable our outdoor testing ($50 total)

Xl Work for Second Semester

The main deliverables for spring semester were the smaller dev kit and the web app we
used for demo day. The smaller dev kit was crucial because it made the design feasible in terms
of size, while the original dev kit was too large and awkwardly shaped to reasonably be attached
to a backpack. The web app was also critical because it gave a view of the functionality that this
project is aiming for. We wanted to be able to show that each device has an ID that can be

assigned to a person, and then that person can then be tracked with a map visual that also
shows how long it has been since the device has transmitted.

While we intended to make a custom PCB for the project, we did not end up doing so for
two reasons. The main reason was the difficulty we experienced tracking down the correct
antenna subcomponent to properly impedance match the circuit as well as the need for very
small components to fit together on the board. This lead to us running out of time to produce an
adequate unit that we could realistically iterate on in time for demo day. The second reason was
the smaller dev kit that we found. We did not know that it existed prior to spring semester and it
ended up having the vital components we needed, so it worked well enough to program and use
in our demo. The smaller antenna size was a huge plus since we were planning on using the
bulkier antenna on our PCB. If we were to go forward on this project, we would make a custom
PCB tailored to the application’s needs (National Parks, natural disasters, etc.) with the smaller
PCB antenna found on the smaller dev kit.

Xl Standards and compliance

Since we are developing on the SigFox network which operates in the unlicensed band
between 902 and 928 MHz with a 915MHz center frequency. FCC compliance with transmitting
in this band are handled by the Sigfox protocol. Additionally, FCC mandates that our transmitter
has to produce an electric field weaker than 50 mV/m at a distance of 3 meters from the
transmitting antenna. Since we are such a low power device, this isn’'t an issue we ran into. In
addition, we have to be mindful that the third, fourth, and fifth harmonics fall in restricted bands
so we need to also ensure that the transmitting SigFox antenna does not accidentally transmit
these frequencies. Regarding the charging, discharging, and safe handling of the lithium ion
batteries, we have to comply with IEC 62133, UL 2054, and UL 9990. These standards all
ensure that the batteries safely recharge, discharge and handle physical stress and fire in an
appropriate way. It also mandates a safe charging cable and safe use in households. We
wanted to ensure that the standards and quality maintained by battery manufacturers are not
tarnished or lowered by our use of the components. We created a case with the safe storage of
these components in mind. The user data from the GPS pings is transmitted securely using
Sigfox’s encryption and the data is stored and encrypted using HTTPS on Sigfox servers.

Xl Conclusion

The work that we put in this year culminated in a proof of concept for the remote ranger
system that serves as a key stepping stone to a product that we could legitimately market. We
began the year by using a development kit with tons of features in order to lock down the
functionality of GPS and Sigfox, which allowed us to iterate to a smaller board that served the
functions we needed, all while maintaining our goals of low cost and long battery life for the
system. Additionally, the small case design that we came up with is perfect for the system since
it is lightweight and small enough that it would cause no obstructions for hikers.

One of the main challenges we faced was the design of the PCB that we wanted to
make for the final demo. While we all had some PCB experience, the components on the board

were much smaller than we were used to and we encountered a big problem when trying to
design the antenna circuit to impedance match. We also faced a challenge in contacting the
national park service to get their input on the project. This isn’t much of a surprise for the team
since the premise of the project is based on the NPS being on a rather strict budget, so they
don’t necessarily have the resources to look into something like this. All this has taught us the
importance of patient and constant iteration on a project since it is very difficult to know
everything at the very start and there are challenges along the way that need to be dealt with,
and some that are very hard to overcome.

The remote ranger project has a potential future outside of this year. It can be applied to
natural disasters to aid in other areas of search and rescue, while it could even make its way
into private companies, such as vacation companies that need to track their clients or assets in
rural environments. The major challenge that we face is the rollout of the Sigfox network, which
is not yet ready for our desired application in the US, but could be used in that fashion in many
areas of western Europe. Creating a custom board and bringing the product to scale allows us
to have the affordable and effective solution that we sought to create in September.

XV Appendices

Appendix A: Code

Code uploaded to the iHere board to complete a GPS ping and send the result through
the SigFox network.

l[ﬂy' Copyright (c) 2017 WISOL Corp. All Rights Reserved.
a * The information contained herein is property of WISOL Cor.
4 * Terms and conditions of usage are described in detail in WISOL STANDARD SOFIWARE LICENSE AGREEMENT.
s *
€ * This heading must NOT be removed from
7 * the file.
B L
-] */
a5 -
11 E/** @file
13 * @brief tracking Sample Application main file.
14 .
15 * This file contains the source code for an tracking sample application.
15 -
17 <stdbool.h>
18 <stdint.h>
19 "cfg board def.h"
20 "ble.h"
21 "ble hci.h"
22 "ble_srv_common.h"
2 "ble_advdata.h"
24 "ble_advertising.h"
2 "pble_conn_params.h"
26 "ble_conn state.h"
27 "ble flash.h"
28 "nordic common.h"
2 "softdevice_handler.h"
30 "peer manager.h"
31 "bsp.h"
2 "app timer.h"
33 "nrf_delay.h"

"cfo app main.h"

$include

34 #include "bsp.h"

35 #include "app_ timer.h"

36 #include "nrf delay.h"

37 #include "cfg app main.h"

38 #include "cfg_sigfox module.h"

39 #include "cfg bma250 module.h"

40 #include "cfg_tmpl02_module.h"

41 #include "cfg gps_module.h"

42 #include "cfg_dbg_log.h"

43 #include "cfg wifi module.h”

44 #include "cfg board.h"

45 #include "nrf drv_gpiote.h"

46 #include "fstorage.h"™

47 #include "fds.h"

48 #include "nrf drv_twi.h"

49 #include "nfc t2t_lib.h"

50 #include "nfc uri msg.h"

51 #include "nfc launchapp msg.h"

52 #include "hardfault.h"

53 #include "ble dfu.h"

54 #include "ble_nus.h"

55 #include "nrf drv clock.h”

56 #include "cfg external sense gpio.h"

57

58 unsigned int main schedule tick = 0;

59 wvolatile bool main wakeup interrupt;

60 []#ifdef CDEV_NUS_MODULE

61l Tnua_service_parameter_t m nus_sService_parameter;
62 “#endif

63 module peripheral data t m module peripheral data;
64 module peripheral ID t m module peripheral ID; //id values (ble mac,
€5 module parameter_t m module parameter; //setting values
€6 bool m module parameter update_req;

67 uint8_t avg_report_volts:

68

&9 |

70

71 E]#if (NRF_SD_BLE_API VERSION == 3)

sigfox id, wifi mac ...)

72 | #define NRF_BLE_MAX MIU SIZE GATT_MIU SIZE_DEFAULT
73 “#endif

74 #define CENTRAL_LINK COUNT o

75 #define PERIPHERAL LINK COUNT 1

7€

ol]

/**< MIU size used in the softdevic

/**< Number of central links used b
/**< Number of peripheral links use

78 /* If you want to check GPS NMEA data, you have to define this[FEATURE_GPS_NMEA LOG_CNOFF] - default disable *f

79 //#define FEATURE_GPS_NMEA_LOG_ONOFF

80

8l static void ble_stack_init_minimal (void)

82 H{

83 uint32_t err_code;

84

85 nrf_clock_.l.f_ch_t clock_lf_cfg - NRF_CLOCK_I.FCI.KSRC_ZSO_PEH;
86

87 // Initialize the SoftDevice handler module.

88 SOFTDEVICE_HANDLER INIT (&clock 1f cfg, NULL):

89

S0 ble enable params t ble enable params;

g1 err_code = softdevice_enable_get_default_config (CENTRAL_LINK_COUNT, PERIPHERAL _LINK_COUNT, &ble_enable_params);
s2 A.PP_ERROR_CEECK terr_code} f]

23

g4 //Check the ram settings against the used number of links

95 CHECK_RAM_START_ADDR (CENTRAL LINK_COUNT, PERIPHERAL_LINK COUNT):

96 [J#if (NRF_SD BLE API VERSION == 3)

97 ble_snable_params.gatt_enable_params.att_mtu = NRF_BLE_MAX MTU_SIZE;
98 [-#endif

89 // Enable SoftDevice stack.

100 err_code = softdevice_enable (séble_enable_params):

101 APP_ERROR_CHECK (err_code);

102 |}

103 -

104 unsigned int main_get_param val(module_parameter_item e item)
105 H{

106 unsigned int ret = 0;

107

108 (| switch (item) {
109 case module parameter_item gps_tracking time sec:

110 ret = m module parameter.gps_acquire tracking time_sec:;
111 break:

112

113 default:

114 break:

115 - }

116 return ret;

117 |}

118 -

119 void main set_param val (module parameter item € item, unsigned int val)
120 (1

121 return;

122 |}

133 -

124 bool module parameter get_bootmode (int *bootmode)

125 =H1{
12¢ return false;

233)

128 Dbool module parameter erase_and_reset(void)
129 [¢

130 return false;

131 |}

132 L

133 void module parameter check update (void)
134 EH{

135 if (m _module_parameter update_req)

136 m_module_parameter_update_req = false;
137 return;

138 |}

adn

140 void main examples prepare(void)

141 H{

142 return;

143 |}

a4s: -

145 wvoid convert nmea to_lat_deg min sec(char *lat, uint8_t *deg, uint8_t *min, uint8_t *sec)
146

147? char degs([3] = { lat[0], lat[1l], '\O' };

148 char mins[3] = { lat[2], lat[3], "\O' }:

149 char frac mins[7] = { '0', lat[4], lat([5], lat[&], lat([7], lat[8], '\0' }:
150

151 uint8_t degrees = (uintf_t)atol(degs);

152 uint8_t minutes = (uint8_t)atoi(mins); //atof converts to float
153 uint8_t seconds = (uint8_t) (atof(frac_mins) * &0);

154

155 *deg = degrees;

15¢ *min = minutes;

157 *sec = seconds;

158 | }

159 L

160 wvoid convert_nmea_ to_long_deg _min sec(char *lon, uint8_t *deg, uint8_t *min, uintd_t *sec)
16l [H{

162 char degs[4)] = { lon[0], lon[l], lon([2], '\O"' };

163 char mins([3] = { lon[3]), lon[4], "\O' };

164 char frac mins[7] = { '0', lon[5], lon[€], lon[7], lomn[B2], lon[%], '\O' };

165

lée uint8_t degrees = (uint8_t)atoi (degs):;

167 uint8_t minutes = (uint8_t)atoi(mins): //atof converts to float
168 uint8_t seconds = (uint8_t) (atof(frac mins) * €0);
169

170 *deg = degrees;

171 *min = minutes;

172 *sec = seconds;

173 | }

198 L

175 woid run GPS_SFX()

176 H{

177 cPrintLog (CDBG_MAIN LOG, "ABET can suck a dick"):
178 //char data [12] = ™3957.05038";

179 //char latitude [12] = "3957.05038";

180 //char longitude [12] = ™1234.5678%9";

181 int result = 0;

182 unsigned int tracking time = 0;

183 unsigned int gps_sec = 0;

184 | |char *ns;

185 char *latitude;

186 char *ew;

187 char *longitude;
188 char *hdop;
189 char *speed:
190

191 uint8_t hour;
192 uint8_t minute;
193 uint8_t second;
194

195 uint8_t year;
196 uint8_t month;
197 uint8_t day:
198

199

200 | // timer Initialize
201 | APP_TIMER_INIT(APP_TIMER PRESCALER, APP_TIMER OP_QUEUE_SIZE, false):

202

203 | // sd init

204 ble_stack init minimal():;
205

206 | // Initalize for GPS module(initializing gpio of gps)
207 gps_init():

208
209 | // set gps tracking interval time
210 gps_sec = 120; // sec

211 gps_tracking_set_interval (module parameter item gps_tracking time sec, gps_sec):

212

213 | // get gps tracking timeout

214 tracking time = gps_tracking get_interval (module parameter item gps_tracking time sec);
215 cPrintLog (CDBG_MATN LOG, "GPS get Tracking time[%d] \n", tracking time);

216

217 | // set enable/disable of gps C/NO check(save current consumption)

218 set_cn0_current savetime enable (module parameter item gps_cn0_current_savetime enable, CGPS_CNC_CHECK DISABLE);
2139

220 | // nmea data request of gps tracking

221 result = start_gps_tracking():

222

223 []#ifdef FEATURE_GPS_NMEA_LOG_ONOFF

224 0 wnile (1) I

225 nrf delay ms(200);

228 cPrintLog (CDBG MAIN LOG, "LINE[%d] —II \n", _ LINE_):
227 cDataDumpPrintOut (CDBG_MAIN LOG, m_cGpsRxNMEA Buf, CGPS_SPI_BUF_SIZE);:

228 cPrintLog (CDBG_MAIN LOG, "[%¥d] size[%¥d] m cGpsNMEABuf[%s] \a", __LINE_ , sizeof(m_ cGpsRxNMEA Buf), m cGpsRxNMEAR Buf);
229 cPrintLog (CDBG MAIN LOG, "LINE[%d] --11 \n", _LINE_):
230

231 1F (cGPS_waicinq_trackinq_end_check(]]

232 break;

233 - }

234 | #endif

235

236 result = start_gps_nmea_data_check():

237 if (result == CGPS_Result OK) {
238 | // get last location (gps position fixed)

239 GPEINELOg (CHNG. MATN TG, M e e e e e e e e e \n") »
240

241 result = qet_miEA_Locationt&.lacitude, &longitude) ;

242

243 H if (result == CGP5_Result_OK) {

244 | // success of get gps data

245 cPrintLoq(CDBG_MAIN_LOG, "@ GPS Position Latitude([%s]\n", latitude):;

246 cPrintLoq(CDBG_MAIN_I.OG, "@ GPS Position Longitude[%s]\n", longitude);

247 } else {

248 | // no gps data

249 cPrintLoq(CDBG_lﬂIN_LOG, "GPS Module NoData!\n"):;

250 }

a51

252 get NMEA Direction(&ns, &ew):

253 cPrintLog (CDBG_MAIN LOG, "@ N/S[%s] E/W[%s] \n", ns, ew);

254

255 get NMEA UTCDate(&year, &month, &day);

256 cPrintLog (CDBG_MAIN LOG, "@ Year[%d] Month[¥d] Day[¥d]\n", year, month, day):
257

258 get_NMEA UTCTime (€hour, &minute, &second);

259 cPrintLog (CDBG_MAIN LOG, "@ Hour[%d] Minute[%d] Second[%d]\n", hour, minute, second):
280

261 get NMEA HDOP(&hdop):

262
263
264
2865
266
267
268
269
270
271
272
273
274
275
2786
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
2949
255
296
297
298
299

cPrintLog (CDBG MAIN 1OG, "@ HDOP[%s] \n", hdop):

get_NMEA Speed knot (&speed); // knote
cPrintLog (CDBG_MAIN LOG, "€ Speed(%s]/knote \n", speed):
R o CBBG R TN Ny e e e e e e s \n");
} else if (result == CGPS5_Result_NoData) {
// no gps data
cPrintLog (CDBG_MAIN LOG, "GPS Module NoData!\n");
} else if (result == CGP5_Result NotStarted) {
// gps C/NO dB-Hz check
cPrintLog (CDBG_MAIN LOG, "GPS C/NO dB-Hz Low!\n");
} else if (result == CGP5_Result Fix Fail) {
ff position fix fail
cPrintlog (CDBG_MAIN LOG, "GPS Tracking Fail!\n");
return;
} &lde
// not available GPS
cPrintLog (CDBG_MAIN 10OG, "Not Available GPS Module!\n");
}

// user data
uint8_t test_data[SIGFOX_SEND PAYLOAD SIZE]:
uint8 t *p down link data:

//timer is initialized in GPS code

//timer Initialize
//APP_TIMER_INIT(APP_TIMER_PRESCALER, APP_TIMER COP_QUEUE_SIZE, false): //only if GPS is commented

//8d init
//ble_stack init minimal(): //only if GPS is commented

//3snek mode enable
m_mdu.le_parameter . siqfox_anek_testmode_enahle = 1;

300 cPrintLog (CDBG_MAIN LOG, "Lat: [%s] and long: ([%s]\r\n", latitude, longitude):
301

302 uint8_t lat_deg = 0;

303 uint8 t lon deg = 0;

304 uint8_t lat_min = 0;

305 uint8_t lon min = 0;

306 uint8 t lat_sec = 0;

307 uint8_t lon sec = 0;

308

309 convert_nmea to_lat_deg min sec(latitude, &lat_deg, &lat_min, &lat_sec):
310 convert _nmea to_long deg min sec(longitude, &lon_deg, &lon min, &lon_sec):
311

312

313 test_data[0] = *ns;

314 test_data[l] = lat_deg:

315 test_data[2] = lat_min;

3le test_data[3] = lat_sec:

317 test_data[4] = *ew;

318 test_data[5] = lon_deg;

319 test_data[g] = lon min;

320 test_data[7] = lon_sec;

321 test_data[8] = (uint8 t)99; //battery level, need to fix
322 test_data[9] = (uint8_t)oOx4l; //status, not sure how to check;
323 test_data[l0] = (uint8_t)99: //temperature 'a' unsure

324 test_data[ll] = (uint8_t)12; //temperature 'b' unsure

325

326 cPrintLog (CDBG_MAIN LOG, "debug: lat deg[%d]l, min[%d], sec[%¥d]\r\n", lat_deg, lat_min, lat_sec):;
327 cPrintlog (CDBG_MARIN LOG, "debug: lon deg[¥d], min[%d], sec[%d] Ax\n", lon_deg, lon_min, lon_sec);
328 cPrintLog (CDBG_MAIN LOG, "debug: full packet $s\r\n", test_data);
3259

330 // create sigfox timer instance

331 cfg_sigfox timer create():

332

333

334 //5et the power level

335 |i.f. (!cfg_sigfox set powerlevel(14))

336 cPrintLog (CDBG_MAIN LOG, "ERROR SET POWER LEVEL"):

337 f/set RCZ

336 cPrintLog (CDBG_MAIN LOG, "ERROR SET POWER LEVEL"):

337 //set RCZ

338 sigfox set_rcz (RCZ_2);

339 //cPrintLog (CDBG_MAIN_LOG, "trying to send %s \n", buffer lat):

340 int sent_try = 0:

341 int sent_success = 0;

342

343 while (!sent_success && sent_try < 2) |

344 cPrintLog (CDBG_MAIN LOG, "Attempt %d to send data to sigfox.\r\n", sent_try):

345 sigfox_send _payload(test_data, &p_down_link_data);

346

347 cPrintLog (CDBG_MAIN_LOG, "%s %d SIGF30X downlink data:%s, size:%d\n", _ func__, _ LINE_, (const char *)p_down_link_data, strlen((const char *)p_down_,
348 (] if (strlen((const char *)p_down_link data) == 5) { //MEOUT - five bytes time out

348 sent_try++;

350 } else {

351 sent_success = 1;

352 break;

353 }

354 }

355

356

357

358

359 (// END OF ADDED SIGFOX CODE

360

361 | return;

3ez |1

363

364

365 -

366 int main(void)

367

SGHE while (1) {

369 run GPS_SFX():

370 nrf delay_ms(700);

371 +)

372 | }

373 L

Appendix B: System Architecture

GPS Antenna SigFox Antenna SigFox Network

(1) S - (D

Device ID, GPS Data

AWS/Remote Ranger

WSSFM20R2

(SigFox Module)
Backend

Parsed Live Update of Hiker
GPS Location History

.
P
8]
=
b}
(3]
M

Ranger Station Ul

ARM Cortex
M4

