
Sum-of-Squares Optimization

Akilesh Tangella

1 Introduction
Polynomial optimization is a fundamental task in mathematics and computer science. Such
tasks rose to popularity with the advent of linear and semidefinite programming. Research
on these topics has led to beautiful theoretical results, such as the simplex algorithm, duality,
the ellipsoid algorithm, etc. A number of applications also exist in a variety of fields, such as
operations research, combinatorial optimization, etc [JM07].

Though linear and semidefinite programming are powerful, they are limited. In both cases,
the objective function being optimized is linear, and thus, polynomials with higher degree
cannot be directly dealt with. Thus, other tools and ideas have been developed to deal with
such cases. At a high level, two paradigms exist for polynomial optimization. The first is lo-
cal search, where one starts with some solution and then iteratively improves it until a local
minimum or maximum is reached. Gradient descent, a ubiquitous tool in machine learning,
is an example of such a process. Although local search is useful in many se�ings, problems
emerge with it. Particularly, it can get stuck at local minima or maxima, and never obtain
the globally optimal solution [BS16].

The other paradigm, which Sum-of-Squares (SOS) optimization follows, takes a global ap-
proach, exploiting the structure of the polynomial being optimized. At the heart of SOS
optimization lies a connection between three seemingly disparate tasks/objects: 1) checking
whether a polynomial is nonnegative over a given domain (this leads to what is known as the
SOS proof system), 2) semidefinite programming, and 3) probability distribution-like entities
known as pseudodistributions. In this exposition, we make the details of this connection
clear and show how it is useful in designing algorithms [BS16].

From a broader perspective, SOS optimization inspires new ideas for the algorithm design
process. Particularly, in the current state of a�airs, each algorithmic problem usually requires
a creative, tailor-made solution. However, since polynomial optimization encapsulates many
problems in theoretical computer science, SOS optimization can be viewed as a step toward
a general framework for algorithm design. Lastly, SOS introduces the novel idea of turning
proofs into algorithms. We see what is meant by this in section 4.

1

2 Convex Programming and Relaxations
In this section we discuss the concept of a relaxation in linear and semidefinite programming.
The general ideas presented here are important. Before beginning we note one convention we
will use throughout the rest of the paper: approximation factors for minimization problems
will be greater than or equal to 1 and for maximization problems will be less than or equal
to 1.

2.1 Linear Programming
Definition 1 (Linear Program) A linear program (LP) is an optimization problem of the fol-
lowing form:

Input: A matrix A ∈ ℝ
m×n, an vector b ∈ ℝ

m, and a vector c ∈ ℝ
n.

Goal: Find a vector x ∈ ℝ
n to minimize (maximize) cTx subject to Ax ≥ (≤)b.

The inequality between vectors above is termwise in its components. Notice that the objec-
tive function and the constraints are all linear, hence the name linear programming. If the
entries of A, b, and c are rational and can be expressed with l bits of space, then LP can be
solved in poly(n,m, l) time via the ellipsoid algorithm. When the entries of x are restricted
to be integers, and in particular, 0 or 1, LP encapsulates many combinatorial optimization
problems. This version of LP is called integer linear programming (ILP). ILP is NP-complete,
however, as we will see in the next section, this is no reason to completely lose hope [Kha16].

2.2 LP Relaxations
A paradigm for designing approximation algorithms for problems that can be expressed as
ILPs is as follows:

• Cast the problem as an ILP.

• Drop the constraint that the solutions should only be integer-valued vectors to obtain
an LP (this process is known as the LP relaxation of the problem).

• Solve the LP, which gives a fractional-valued vector as its solution. Note that since the
feasible region for the LP is a superset of the feasible region for the ILP, the solution
that the LP obtains is at least as good as the optimal ILP solution.

• Round the LP solution to an integer solution and show that the objective function does
not change by more than a factor of � . This gives an �-approximation algorithm.

We now design approximation algorithms for two famous combinatorial optimization prob-
lems: vertex cover and set cover. In the former, a deterministic rounding procedure allows for
a 2-approximation, while in the la�er, a randomized rounding procedure is used to obtain a
useful approximation [Kha16].

2

2.2.1 Vertex Cover

Recall that a vertex cover of a graph G = (V , E) is a subset of vertices such that for any edge
in the graph, at least one of its incident vertices is in the subset. The vertex cover problem is
to output a vertex cover of minimum cardinality. Le�ing x representing a vector where each
variable corresponds to a vertex in the graph, we can express vertex cover by the following
ILP:

Minimize: ∑
i∈V

xi .

Subject to:

– ∀(i, j) ∈ E, xi + xj ≥ 1

– ∀i ∈ V , xi ∈ {0, 1}

Let’s briefly discuss what this ILP "means." For each vertex i, xi is assigned 1 if it is part of the
vertex cover, thus, the objective function is the size of the vertex cover. The first constraint
indicates that for each edge, at least one of the vertices should be labelled 1 (be part of the
vertex cover), and the second constraint enforces that the solutions should be 0/1 vectors. So
indeed, a solution to this ILP gives the minimum cardinality vertex cover.

We relax the ILP to an LP by removing the integrality constraints. Now, we must convert
the fractional solution of this LP to a feasible 0/1 vector. Let the fractional solution vector be
x
∗. The rounding procedure is: for each vertex i ∈ V if x ∗

i
≥ 1/2 in the LP solution set xi to 1,

otherwise set it to 0.

Claim 2 The above rounding procedure gives a 2-approximation for vertex cover.

Proof We show two things. First, that the rounding procedure results in a valid vertex
cover, and second that it is a 2-approximation. To see that the rounding procedure results in
a valid vertex cover, consider any edge (i, j) ∈ E. In the fractional solution, x ∗

i
+ x

∗

j
≥ 1, thus

we must have either x ∗
i

or x ∗
j

is greater than or equal to 1/2. This means at least one of xi
or xj is 1, so xi + xj ≥ 1 in the rounded vector as well. To see that the rounding procedure
results in a 2-approximation, note that the cost only blows up when we round up to 1, and
we only round values greater than or equal to 1/2 up to 1, so no term in the solution vector
gets increased by over a factor of 2 [Kha16].

Before moving on, we discuss the important idea of an integrality gap. The integrality gap is
the worst case gap between the cost of an optimal LP solution and an optimal ILP solution.
One can intuitively think of the integrality gap as a lower bound on the approximation factor
that can be obtained via LP relaxation for a minimization problem (consequently, one sanity
check is to make sure the integrality gap is greater than or equal to 1).

Claim 3 The integrality gap for vertex cover is 2.

Proof Consider the complete graph on n vertices. The minimum vertex cover is of size
n − 1. This is because if we had a vertex cover of cardinality less than n − 1, then we have
at least two vertices not in the vertex cover so the edge between them is uncovered. On the

3

other hand, an optimal LP solution is xi = 1/2 for all i ∈ V , which gives an objective function
value of n/2. Thus, the blowup factor of an LP relaxation on this instance must be at least 2
[Kha16].

2.2.2 Set Cover

In the previous section, the rounding procedure is deterministic. That is each fractional solu-
tion maps to exactly one rounded solution. In this section, we find the need for randomized
rounding procedures. Recall the set cover problem. We are given a universe of n elements,
U = {1, 2, ..., n} and a collection of m subsets of U , S1, S2,...,Sm. The goal is to find the smallest
collection of these subsets whose union is U . We can cast set cover as an ILP as follows,
where each component in the vector x corresponds to a subset in the collection:

Minimize: ∑m

j=1
xSj

Subject to:

– ∀i ∈ U , ∑
Sj∶i∈Sj

xSj
≥ 1

– ∀j ∈ {1, 2, ..., m}, xSj
∈ {0, 1}

Again, let’s briefly discuss what this ILP "means." Se�ing a component in x to 1 means we
include the corresponding subset in our set cover. The integrality of x is enforced in the sec-
ond constraint. The first constraint enforces the fact that for each element in the universe,
at least one subset in the set cover contains it [Moi16].

We relax the ILP to an LP by removing the integrality constraints. Let x ∗ be the fractional so-
lution. Let’s informally see what goes wrong with a similar deterministic rounding procedure
to the previous section: suppose every component of x ∗ that is less than 1/2 is set to 0 and oth-
erwise set to 1. Consider the following instance: U = {1, 2, 3, 4}, S1 = {2, 3, 4}, S2 = {1, 3, 4},
S3 = {1, 2, 4}, S4 = {1, 2, 3}. The optimal fractional solution sets x ∗

S1
= x

∗

S2
= x

∗

S3
= x

∗

S4
= 1/3,

which means x is the 0 vector. Thus, no guarantees can be given on the approximation factor.

Instead, consider the following randomized rounding procedure. For each x ∗
Sj

, j ∈ {1, 2, ..., m},
in the fractional solution set xSj to 1 with probability �x ∗

Sj
and to 0 with probability 1 − �x ∗

Sj
.

We will specify � later. What is the probability that the rounded solution forms a set cover?
For each i ∈ U , let Yi = ∑

Sj∶i∈Sj
xSj

. Note that E[Yi] ≥ � . We have for each element i ∈ U :

Pr[i is uncovered] =

Pr[None of the subsets containing i has its corresponding solution vector term rounded to 1] =

Pr[Yi < 1] = Pr
[
Yi < E[Yi] ⋅

1

E[Yi]
]
≤ exp

(
−

E[Yi]

2

(1 − 1/E[Yi])
2

)
=

exp
(
−

(E[Yi] − 1)
2
)

2E[Yi]
)
≤ exp

(

−E[Yi]

8)
≤ e

−�/8

4

The first inequality is due to the multiplicative Cherno� bound and the last inequality is
true whenever � ≥ 2, which we will set it to be. Note that when � = 16 ln n, we have that
the probability i is le� uncovered is upper bounded by 1/n

2, so by the union bound, the
probability that all the elements get covered is lower bounded by 1 − 1/n. Now, what is the
approximation factor achieved by this algorithm? We can analyze this in expectation. We
have: E[∑

m

j=1
xSj
] = �∑

m

j=1
x
∗

Sj
, so the expected value of the rounded solution is at most �

times greater than the optimal ILP solution. Finally, we also have the following fact, which
we state without proof [Moi16].

Fact 4 The integrality gap for the set cover problem is Ω(log n) [Kha16].

2.3 Semidefinite Programming
Definition 5 (Positive Semidefinite (PSD) Matrix) A matrix X ∈ ℝ

n×n is positive semidef-
inite (PSD) (denoted X ⪰ 0) if it satisfies any of the following (equivalent) properties:

• ∀a ∈ ℝ
n, aTXa ≥ 0.

• X = B
T
B for some matrix B ∈ ℝ

n×n. This is known as the Cholesky decomposition.

• All of X ’s eigenvalues are nonnegative.

Definition 6 (Semidefinite Program) A semidefinite program (SDP) is an optimization prob-
lem of the following form:

Input: Matrices C, Ai ∈ ℝ
n×n and vector b ∈ ℝ

m where i ∈ {1, 2, .., m}.

Goal: Find an X ∈ ℝ
n×n to minimize ⟨C, X⟩ = ∑

1≤i,j≤n
cijxij such that ⟨Ai , X⟩ = bi for each

i ∈ {1, 2, .., m} and X ⪰ 0.

Note that SDPs encapsulate LPs, since LPs consist of the case when the matrix X is diagonal.
Thus, SDPs can solve a broader class of problems than LPs. Via the ellipsoid method SDPs
can be solved to arbitrarily (but not 0) accuracy in time polynomial in the dimension of the
matrix and polylogarithmic in the inverse of the accuracy desired [Moi16].

3 SDP Relaxation for MAXCUT
Recall the MAXCUT problem. Given a graph G = (V , E), we can bipartition the vertices by
labelling some vertices as 1 and others as −1. The resulting number of edges which have
exactly one incident vertex labelled 1 and another labelled −1 is called the cut size induced
by the bipartition. The goal of the MAXCUT problem is to find the bipartition which induces
a cut of maximum size.

There is a simple 1/2-approximation algorithm for MAXCUT. For each vertex, label it 1 with
probability 1/2 and -1 with probability 1/2. Output the resulting bipartition. Let’s calculate
the expected value of the cut size of the resulting algorithm. An edge (i, j) ∈ E in the graph is
part of the cut either if i is labelled 1 and j is labelled -1 (happens with probability 1/4) or if i

5

is labelled -1 and j is labelled 1 (happens with probability 1/4). Thus, the expected cut size is
|E|/2. Via the method of conditional expectations, this algorithm can be derandomized and a
cut size that is within 1/2 of the maximum cut size can be obtained with probability 1. Can
we increase the approximation factor beyond 1/2? Inspired by the previous section on LPs,
we can try to cast MAXCUT as an ILP. Le�ing the components of z correspond to edges and
the components of x correspond to vertices, the ILP for MAXCUT is:

Maximize: ∑
(i,j)∈E

z(i,j).

Subject to:

– ∀(u, v) ∈ E, z(u,v) ≤
1+xu

2
+

1+xv

2

– ∀(u, v) ∈ E, z(u,v) ≤
1−xu

2
+

1−xv

2

– ∀(u, v) ∈ E, z(u,v) ∈ {0, 1}

– ∀v ∈ V , xv ∈ {−1, 1}

We leave it to the reader to confirm that this ILP corresponds to the MAXCUT problem.
If we relax the integrality constraints on z and x , an optimal fractional solution to the LP
is ∀(u, v) ∈ E, z(u,v) = 1 and ∀v ∈ V , xv = 0. This gives the largest possible MAXCUT of
|E|. However, in a complete graph the MAXCUT is about size |E|/2 (put half the edges in
one partition and the other half in another partition), which means LP relaxation cannot
guarantee an approximation factor be�er than 1/2. So, what to do? Consider the following
SDP, where X ∈ ℝ

|V |×|V | (note that this program does indeed align with definition 6 of an
SDP):

Maximize: ∑
(u,v)∈E

1

2
−

1

2
Xuv .

Subject to:

– ∀v ∈ V , Xvv = 1

– X ⪰ 0.

This SDP is a relaxation for MAXCUT. In what way? Well suppose we restrict X to be of the
form xx

T , where x ∈ ℝ
|V |. Suppose even further that we restrict the entries of x are +1/ − 1.

Then, the SDP would exactly output the MAXCUT, with the entries in x specifying whether
to label a vertex 1 or −1. Restricting the SDP in this way is analogous to pu�ing integrality
constraints on an LP. Solving this restricted SDP e�iciently is unlikely, because MAXCUT is
NP-hard. So, we need to use the solution to the relaxed SDP and round it to a solution for
MAXCUT.

Let X be the matrix output by the relaxed SDP. Since X is PSD we can write it as Y T
Y

for some matrix Y ∈ ℝ
|V |×|V |. Similar to X , thinking of the columns of Y as corresponding to

vertices and le�ing yv be the column corresponding to vertex v, we have that Xuv = ⟨yu, yv⟩.
Note that the columns of Y are unit vectors since all the diagonal entries of X are 1. From
this, how do we get a rounded vector x from the last paragraph. Choose a random unit vector
a ∈ ℝ

|V | and let xv = sign(⟨a, yv⟩) for each v ∈ V .

6

Theorem 7 (SDP Aprroximation for MAXCUT) The above rounding procedure gives a

min
0≤�≤�

2�

� (1 − cos �)

≈ 0.879

-approximation to MAXCUT in expectation.

Proof We must compare the following two quantities: 1) the contribution of each edge in
the relaxed SDP to the objective function and 2) the expected contribution of each edge in
the rounded solution to the objective function. In the relaxed SDP, the contribution of edge
(u, v) is:

1

2

−

1

2

Xuv =

1

2

−

1

2

⟨yu, yv⟩ =

1

2

−

cos �

2

where � is the angle between vectors yu and yv . Without loss of generality we take � to be
0 ≤ � ≤ � . The last inequality uses the fact that the inner product of unit vectors is the cosine
of the angle between them. To obtain the expected contribution of edge (u, v) in the rounded
solution, we calculate the probability that edge (u, v) is part of the cut, which is equivalent
to calculating the probability sign(a, yu) and sign(a, yv) di�er. This happens if and only if the
orthogonal hyperplane to a lies between yu and yv . The probability of this occurring is �

�

since a is chosen uniformly. So, the expected contribution of an edge is �

�
. Thus, the worst

case approximation ratio is:

min
0≤�≤�

�

�

1

2
−

cos �

2

= min
0≤�≤�

2�

� (1 − cos �)

≈ 0.879

[GW94]

4 Sum-of-Squares (SOS) Fundamentals

4.1 Generalizing SDP Relaxations
We begin right where we le� o�: the MAXCUT problem. Interestingly, MAXCUT can be
phrased as a polynomial optimization problem over the hypercube:

max
{−1,1}

|V |

1−xixj

2

Subject to: gv(x) = x2v − 1 = 0 for all v ∈ V .

Clearly, since MAXCUT is NP-Hard, this polynomial optimization is di�icult. Let’s think for
a moment what relaxations truly do: they take a problem over a restricted domain which is
di�icult to solve and enlarge the search space. They then solve the problem in the enlarged
search space and map it usefully to a solution in the restricted domain. We can think of the
SDP relaxation for MAXCUT as a relaxation for the above polynomial optimization problem
in the following way. First, we replace the monomial xixj with the variable Xij and we remove
the integrality constraints on the Xij ’s. The result is the relaxed SDP for MAXCUT in the
previous section [Sch16].

7

Definition 8 (Polynomial Optimization Problem) A polynomial optimization problem Q

over a domain D (commonly the boolean hypercube or ℝn for some positive integer n) is an
optimization problem of the following form:

Input: A polynomial p ∶ D → ℝ and polynomials gi ∶ D → ℝ, ∀i ∈ {1, 2, ..., m}.

Goal: Maximize p(x) over x ∈ D such that gi(x) = 0, ∀i ∈ {1, 2, ..., m}.

Can the above technique for relaxing polynomial optimization problems to SDPs be ex-
tended? This question lies at the heart of SOS optimization and as we will see, the answer
is indeed yes. Assume the maximum degree of any polynomial p, g1, g2, ..., gm is at most 2d .
Similar to the MAXCUT relaxation, we replace each monomial ∏

i∈S
xi with an SDP variable

XS for each ordered multiset S such that |S| ≤ 2d . We let X∅ = 1. These variables are then
arranged into a matrix X with each row and column indexed by SDP variables correspond-
ing to monomials of degree at most d . We then let each matrix entry correspond to an SDP
variable: if R is the multiset indexing the row and C is the multiset indexing the column then
the corresponding entry is XR∪C . Consequently, every SDP variable for multisets with cardi-
nality at most 2d will be included in X . Note by basic combinatorics that X ′

s dimension is
(n + 1)

d
× (n + 1)

d , where n is the length of the vectors in the domain we are optimizing over.
The matrix X for d = 2 is shown below with the corresponding monomials in parentheses
(assume there are two variables x1 and x2, in other words n = 2):

∅ {1}(x1) {2}(x2)

()

∅ X∅(1) X{1}(x1) X{2}

{1}(x1) X{1}(x1) X{1,1}(x
2

1
) X{1,2}(x1x2)

{2}(x2) X{2}(x2) X{2,1}(x1x2) X{2,2}(x
2

2
)

Before solving for X (and taking the hint that we are doing an SDP relaxation) we set the
following constraints:

• X∅ = 1 (Normalization Property)

• For multisets S, T , U , V , XS∪T = XU∪V . This is a natural constraint because XS∪T corre-
sponds to the monomial that results when the monomials associated with XS and XT

are multiplied (similarly true for XU∪V). (Commutativity or Symmetry Property).

• X ⪰ 0. This is a natural constraint due to claim 10 below. (PSD Property)

Definition 9 (Kronecker Product) The Kronecker product of an m × n matrix A and a j × k
matrix B is the mj × nk matrix denoted A ⊗ B. Its entries can be indexed by pairs such that the
(a, b), (c, d)-th entry is AacBbd where 1 ≤ a ≤ m, 1 ≤ b ≤ n, 1 ≤ c ≤ j, and 1 ≤ d ≤ k. The
Kronecker product is the generalization of the vector outer product. The d-th Kronecker power
of a matrix A results from taking the Kronecker product of A with itself d times and is denoted
A
⊗d .

Example 1 ([1, x]
T

)

⊗2

= [1, x, x, x
2
]
T . Note the dimensions match up, the 2nd Kronecker prod-

uct of a 1 × 2 vector should be a 1 × 4 vector.

8

Claim 10 For any y ∈ ℝ
n the matrix Xy that results when we set XS = ∏

i∈S
yi for X ’s entries is

PSD.

Proof Let ŷT = [1yT]. Then note that Xy = ŷ⊗d (ŷ⊗d)T . Noting that the inner product of two
vectors a and b is ⟨a, b⟩ = a

T
b, we have for any vector v ∈ ℝ

n that vTXyv = ⟨v, ŷ
⊗d

⟩

2

≥ 0.
Therefore, by definition 5, Xy is PSD.

Any feasible solution y ∈ ℝ
n toQ yields a feasible matrix X , by simply se�ing XS = ∏

i∈S
yi for

X ’s entries. Our description of the SDP relaxation still requires some formalization provided
in the definition below.

Definition 11 (Sum-of-Squares Relaxation at Degree 2d) Given a polynomial optimiza-
tion problem Q with deg(p) ≤ 2d and deg(gi) ≤ 2d for all i ∈ {1, 2, .., m}, the degree-2d sum-
of-squares relaxation for Q is denoted as sosd (Q). A variable XS is defined for each unordered
multiset S with elements in {1, 2, .., n} and size less than or equal to 2d . These variables are
arranged in a (n + 1)d × (n + 1)d matrix X . X ’s rows and columns are indexed by the multisets
and the entry corresponding to the row indexed by multiset U and column indexed by multiset
V contains variable XU∪V . Let poly(≤ 2d) be the set of polynomials of degree at most 2d and
define the linear operator Ẽ ∶ poly(≤ 2d)→ ℝ such that Ẽ [∏i∈S

xi] = XS when |S| ≤ 2d . Then
sosd (Q) is the following optimization problem:

Maximize: Ẽ[p(x)]

Subject to:

– X ⪰ 0

– X∅ = 1

– Ẽ [gi(x)∏i∈U
xi] = 0, ∀i ∈ {1, 2, ...m}, U ⊆ {1, 2, .., n}, deg(gi) + |U | ≤ 2d .

Since SDPs can be solved in polynomial time, sosd (Q) can be solved in time polynomial in
(n + 1)

d . In the case of the MAXCUT relaxation, the resulting SDP has a beautiful geometric
meaning, as seen in the previous section. However, for general polynomial optimization prob-
lems how do we make sense out of the definition for sosd (Q). In this case, although there is
no elegant geometric picture, the notions of pseudodistributions help provide an explanation
[Sch16].

4.2 Pseudomoments, Pseudoexpectations, and Pseudodistributions
Suppose we could solve Q directly. The result would either be an optimal solution y

∗ or a
distribution Y over a set of solutions in ℝ

n which maximize the objective polynomial p so
that OPT(Q) = Ey∈Y [p(y)]. However, we cannot expect that sosd (Q) outputs an actual distri-
bution over the solutions to Q, however, Ẽ satisfies many of the properties of the expectation
operator and other useful properties:

• Linearity of Expectation: Ẽ[p(x) + q(x] = Ẽ[p(x)] + Ẽ[q(x)] when deg(p), deg(q) ≤ 2d

since Ẽ is a linear operator.

9

• Non-Negativity of Low-Degree Squares: Ẽ[p(x)2] ≥ 0 if deg(q) ≤ d because X is PSD and
thus we can write Ẽ[p(x)

2
] as vTXv ≥ 0 where v is the coe�icient of vector for p.

For this reason we call Ẽ the pseudoexpectation. The solution to sosd (Q) specifies the pseu-
doexpectations of the monomials with degree at most 2d , which we call pseudomoments:

Ẽ
[
∏

i∈S

xi
]
= XS .

Thus, we can think of X as a distribution-like object over the solutions to Q. The solution to
sosd (Q) is known as a pseudodistribution [Sch16].

4.3 Hierarchies, The Big Picture
Note that for an SOS relaxation at degree 2d we require that deg(p) ≤ 2d and deg(gi) ≤ 2d ,
∀i ∈ {1, 2, ..., m}. By increasing d we can obtain SOS relaxations with more constraints and
variables. These relaxations turn out to be more powerful, however they come at a cost since
solving an SDP with more constraints and variables requires more time. The family of SOS
relaxations that results from increasing the degree is known as the sum-of-squares hierarchy
[Sch16].

4.4 Sum-of-Squares Proofs, The Dual View
Why is the SOS relaxation so powerful? To see, we must consider the dual version of the
optimization problem sosd (Q).

As a warmup, we begin with a discussion of duality in the theory of linear programming.
Consider the two linear programs:

Maximize cTx

Subject to:

– Ax ≤ b

– x ≥ 0.

and:

Minimize yTb

Subject to:

– y
T
A ≥ c

T

– y ≥ 0

Though they may seem unrelated, they are in fact intimately related, and are known as duals
of each other.

10

Theorem 12 (Weak Duality of LPs) If x is a a feasible solution (satisfies the constraints) to
the first linear program above and y is a feasible solution to the second linear program above
then:

c
T
x ≤ y

T
b

Proof Since x ≥ 0 multiplying both sides of yTA ≥ c
T (which is also true) by x gives:

y
T
Ax ≥ c

T
x.

Similarly, since Ax ≤ b and yT ≥ 0 we have:

y
T
Ax ≤ y

T
b

The result follows immediately [Moi16].

In fact the two LPs are even more closely tied, under certain mild conditions, both of them
have the same optimal value! This result is known as strong duality, however, we will not
give a proof for it here. Broadly, duality relates the solutions to two seemingly unrelated
problems. SDPs also possess a theory of duality and consequently, so do SOS relaxations. To
begin our venture into duality for SOS relaxations we introduce some convenient notational
changes. Recall the inner product between two matrices used in the definition of SDPs in
section 6: ⟨A, B⟩ = ∑

(i,j)
AijBij . We then let P, G1, G2, ..., Gm be (n + 1)d × (n + 1)d matrices such

that ⟨P, X⟩ = Ẽ[(p(x)] and ⟨Gi , X⟩ = Ẽ[gi(x)] (note that the polynomial constraints can be
redefined to capture the SDP constraints). We can then rephrase sosd (Q) as a minimization
SDP program, sos−

d
(Q):

Minimize − ⟨P, X⟩

Subject to:

– ⟨Gi , X⟩, ∀i ∈ {1, 2, .., m}

– X ⪰ 0

– ⟨M∅, X⟩ = 1

M∅ is the matrix with 1 in the entry with both row index and column index corresponding to
∅ and it encapsulates the condition that X∅ = 1 from above. It is quite clear that the optimal
value for sos−

d
(Q) is the negative of the optimal value for sosd (Q). The dual SDP program for

sos−
d
(Q) is sos+

d
(Q):

• maxy∈ℝm+1 y∅

• Subject to:

– −P − y∅ ⋅M∅ −∑
j∈{1,2,..,m}

yj ⋅ Gj = S ⪰ 0

11

We can think of y as a vector in ℝ
m+1 whose first index is ∅ and whose last m indices are

{1, 2, ..., m}. SDP duality says that the optimal value for sos+
d
(Q) is an upper bound for the

optimal value of sos−
d
(Q), thus le�ing y∗

∅
be the optimal value of sos+

d
(Q), we have:

y
∗

∅
= c + OPT(sos−

d
(Q) = c − OPT(sosd (Q))

for some nonnegative number c. From the definition of sos+
d
(Q) we have:

P = −y
∗

∅
⋅M∅ − S + ∑

j∈{1,2,..,m}

y
∗

j
⋅ Gj

Take:
S
′
= S + c ⋅M∅

Note that S′ is PSD since S is PSD, c ⋅M∅ is PSD (note that multiplying
√

c ⋅M∅ by itself results
in c⋅M∅), and because the sum of two PSD matrices is PSD. Rewriting P by using the definition
of y∗

∅
(that results from duality) and the definition of S′, we get (below OPT = OPT(sosd (Q)):

P = −(c − OPT) ⋅M∅ − S + ∑

j∈{1,2,..,m}

y
∗

j
⋅ Gj =

M∅ ⋅ OPT − c ⋅M∅ − S + ∑

j∈{1,2,..,m}

y
∗

j
⋅ Gj =

M∅ ⋅ OPT − S′ + ∑

j∈{1,2,..,m}

y
∗

j
⋅ Gj

Let x ∈ ℝ
n. Let x̂ = [1, x

T
]
T . Note that S′ is positive semidefinite so we can write it as

S
′
= AA

T for some matrix A. But note that AAT can also be wri�en as the sum of the outer
products of the itℎ column of A with the itℎ row of AT (which are both the same vectors)
where i ranges over the number of rows/columns in A. Thus, S′ is of the form ∑ aa

T . Taking
the quadratic form of P with x̂

⊗d we get:

(x̂
⊗d
)
T
P (x̂

⊗d
) = OPT(x̂⊗d)TM∅(x̂

⊗d
) − (x̂

⊗d
)
T

∑(aa
T

) (x̂
⊗d
) + ∑

j∈{1,2,..,m}

y
∗

j
(x̂

⊗d
)
T
Gj(x̂

⊗d
)

Note that the le� hand side is just p(x) and that (x̂⊗d)TGj(x̂
⊗d
) = gj(x). Since (x̂⊗d)TM∅(x̂

⊗d
) = 1

and since for any two vectors we have ⟨a, b⟩ = a
T
b, overall, we get:

p(x) = OPT −∑⟨a, x̂
⊗d

⟩

2

+ ∑

j∈{1,2,..,m}

y
∗

j
gj(x)

Let qa(x) be the polynomial ⟨a, x̂⊗d⟩ with coe�icients specified by a, then we get:

p(x) = OPT −∑ qa(x)
2
+ ∑

j∈{1,2,..,m}

y
∗

j
gj(x)

Though this may not seem like much at first, it is actually quite astounding! In fact, the
right hand side of the equation above has a special name: it is known as a sum-of-squares
proof. For any vector x in the feasible region for Q, the gj(x)’s is 0 and since qa(x)2 is always
non-negative, we get that for any feasible point OPT is an upper bound for p(x). Overall, we
have the following theorem.

12

Theorem 13 (Sum-of-Squares (SOS) Proof) The dual of sosd (Q) provides a degree-d sum-
of-squares proof for the inequality p(x) ≤ OPT(sosd (Q)) for all x in the feasible region for Q.

The above theorem also suggests we can go the other way. Providing a SOS proof that p(x)
has some upper bound c implies that the objective function of the SDP (the pseudoexpecta-
tion of p(x)) is upper bounded by this value, as well. Thus, SOS proofs are a method for upper
bounding pseudoexpectations. This is the basic theory of duality for SOS [Sch16]. This is the
reason SOS-based techniques are said to take proofs to algorithms!

5 Toolkit for SOS Proofs and Pseudoexpectations
As seen in the last section, coming up with SOS proofs for various polynomial inequalities
is an important task. As a result, a standard toolkit for this endeavors would be invaluable.
Furthermore, tools for manipulating pseudoexpectations are also useful. In this section, we
explore these goals.

5.1 SOS Proofs
We begin with slightly changing the se�ing and definition of an SOS-proof and by introduc-
ing some notation. This will be especially useful for notational convenience. First, we change
our constraints from equalities to inequalities. We let our set of polynomial constraints be
G = {g1(x) ≥ 0, g2(x) ≥ 0, ..., gm(x) ≥ 0}. We say G implies p(x) ≥ 0 with an SOS-proof, if we
can write:

p(x) = ∑

S⊂{1,2,..,m}

bS(x)∏

i∈S

gi(x)

where bS(x) are sums of squares of polynomials. For each S ⊂ {1, 2, ..., m} if deg (bS(x)∏i∈S
gi(x)) ≤

d then we say the proof is of degree d and write:

G ⊢d p(x) ≥ 0.

A few remarks are in hand:

• G ⊢ r(x) ≥ s(x) is the same as G ⊢ r(x) − s(x) ≥ 0.

• Our constraint set G can include equalities of the form r(x) = s(x), since this can just
be encapsulated by two inequalities: r(x) − s(x) ≤ 0 and r(x) − s(x) ≥ 0.

• If there are no constraints, we simply write: ⊢d p(x) ≥ 0

We now start the main task: expanding our SOS-proof toolkit:

Claim 14 (Squaring SOS-Proofs) If ⊢d p(x) ≤ q(x), and p and q are sums of squares then
⊢2d p(x)

2
≤ q(x)

2.

Proof q(x)
2
− p(x)

2
= (q(x) + p(x))(q(x) − p(x)) Since p, q are sums of squares, their sum

and di�erence are too. Since the product of two sum of squares is also a sum of squares, the
result follows [Hop18].

13

Theorem 15 (SOS Triangle Inequality) Let t be a power of 2. Then⊢t (a+b)
t
≤ 2

t−1
(a

t
+b

t
).

Proof We use induction. We take t = 2 as the base case. We need to show ⊢2 (a + b)
2
≤

2(a
2
+ b

2
). This follows because 2(a2 + b2) − (a + b)2 = a2 + b2 − 2ab = (a − b)2. Now suppose:

⊢t/2 (a + b)
t/2
≤ 2

t/2−1
(a

t/2
+ b

t/2
)

Using the claim above for squaring SOS-proofs, we get:

⊢t (a + b)
t
≤ 2

t−2
(a

t/2
+ b

t/2
)
2

Then, we can just apply the proof for the base case taking a
′
= a

t/2 and b
′
= b

t/2, and the
result follows immediately [Hop18].

Many times we want to take integer constraints, for instance x ∈ {0, 1} and relax them to
0 ≤ x ≤ 1. As such the following SOS-proof is useful.

Claim 16 (SOS Boolean Inequality) x
2
= x ⊢ 0 ≤ x ≤ 1

Proof The constraint is really two inequalities x ≤ x
2 and x ≥ x

2. The la�er implies x ≥ 0.
We have:

1 − x = (1 − x)
2
+ (x − x

2
) ≥ 0

The last inequality follows again because x ≥ x
2. Overall this implies x ≤ 1, as desired

[Hop18].

We end with an SOS version of one of our most beloved inequalities, Cauchy-Schwartz.

Theorem 17 (SOS Cauchy-Schwartz Inequality) Let x1, x2, .., xn, y1, y2, ..., yn be a set of vari-
ables. Then:

⊢2
(

∑

i∈{1,2,..,n}

xiyi
)

2

≤
(

∑

i∈{1,2,...,n}

x
2

i
)(

∑

i∈{1,2,...,n}

y
2

i
)

Proof The equality below can be checked via expanding both sides carefully.

(
∑

i∈{1,2,...,n}

x
2

i
)(

∑

i∈{1,2,...,n}

y
2

i
)
−
(

∑

i∈{1,2,..,n}

xiyi
)

2

=

∑

1≤i,j≤n

(xiyj − xjyi)
2

Since the right hand side is a sum of squares, we are done [Hop18].

14

5.2 Pseudoexpectations
As in the case of SOS proofs, standardizing tools for manipulating pseudoexpectations is
useful. As such, we end this section with such a tool: the pseudoexpectation version of the
Cauchy-Schwartz inequality.

Theorem 18 (Pseduoexpectation Version of Cauchy-Schwartz Inequality) Let � be a
degree d pseudodistribution and let p and q be polynomials of degree at most d/2, then:

(Ẽ�pq)

2

≤ (Ẽ�p
2

) (Ẽ�q
2

)

Proof We can assume both Ẽ�p
2 and Ẽ�q

2 are positive since if either is 0, the proof becomes
trivial. We can also scale p and q by positive scalars such that:

Ẽ�p
2
= Ẽ�q

2
= 1

Thus, we are le� to prove:
Ẽ�pq ≤ 1

We have:
Ẽ�(p − q)

2
≥ 0 ⟹ Ẽ�p

2
+ Ẽ�q

2
− 2Ẽ�pq ≥ 0 ⟹ 2 ≥ 2Ẽ�pq

as desired. Note that throughout this proof we have used the fact that Ẽ�ℎ
2
≥ 0 for any

polynomial ℎ of degree at most d/2, this property is also stated in the last section where
pseudoexpectations are introduced [Hop18].

6 Tensor Decomposition and SOS
In this section, we explore an important problem in unsupervised learning known as tensor
decomposition. We give a classical algorithm for a certain version of this problem. We then
outline (but do not rigorously prove) how SOS-based techniques can be used for it.

6.1 Tensor Basics
6.1.1 What is a Tensor?

In our case, a tensor will be a grid of numbers arranged in a dimension ≥ 3. An n1 ×n2 × ...×nk
k-tensor contains n1n2n3 ⋅ ... ⋅ nk numbers. An n1 × n2 × n3 tensor is a set of n3 n1 × n2 matrices
stacked on top of each other. So the (i, j, k)-th entry of this matrix (where 1 ≤ i ≤ n1, 1 ≤ j ≤ n2,
1 ≤ k ≤ n3) is the (i, j)-th entry of the k-th matrix in the stack. For most of these notes, we
will we will focus on 3-tensors [Rou17].

6.1.2 Tensor Products

Tensor products are the higher dimensional analogs of outer products for matrices, and are
denoted by the symbol ⊗. Specifically, given vectors v1, v2, ..., vs with lengths n1, n2, ..., ns ,
respectively, their tensor product v1 ⊗ v2 ⊗ ... ⊗ vs is the n1 × n2 × ... × ns s-tensor whose
(i1, i2, ..., is) entry is v1(i1)v2(i2) ⋅ ... ⋅ vs(is), where vs(is) denotes the is-th entry in vector vs
[Rou17]. Note another name for the tensor product is the Kronecker product, which we have
already seen above.

15

6.1.3 Tensor Rank

Similar to the matrix case, a rank one tensor is a tensor that can be wri�en as a tensor product
of vectors. The rank of a tensor T is the minimum number r such that T can be wri�en as
the sum of r rank one tensors [Moi14].

6.1.4 Matrix Decomposition and the Rotation Problem

We turn to a famous example called Spearman’s Hypothesis. Charles Spearman was a fa-
mous psychologist who believed human intelligence consisted of two parts, math and verbal,
and that a person’s performance on a test should depend on how good one is at both these
types of intelligence. Spearman then took the test scores of m individuals on n tests and
constructed a m×n matrix M , where the (i, j)-th entry is the score of individual i on test j. To
test if M agreed with his ideas on intelligence, Spearman took a rank 2 approximation to M
of the form u1v

T

1
+ u2v

T

2
for vectors u1, v1, u2, v2 (perhaps by doing a singular value decompo-

sition), and confirmed his hypothesis to a reasonable extent by viewing u1 and u2 as vectors
representing each students math and verbal abilities, respectively, and v1 and v2 as vectors
representing how much each exam tests math and verbal abilities, respectively.

The problem with this approach is that even if we had some algorithm which spits factor
analyses of matrices (approximating them in terms of outer products of vectors) and even if
every matrix M had some factoring which can be nicely interpreted, such as in Spearman’s
case above, the algorithm may not spit out the factoring that is easily interpretable since ma-
trix factorizations are not unique. To see why this is true first note that u1vT1 + u2v

T

2
= UV

T ,
where U is the matrix with columns u1 and u2 and V is the matrix with columns v1 and v2.
Also, note for any orthogonal matrix O, OOT

= I . Take some orthogonal matrix O which is
not the identity. We have:

UV
T
= U (I)V

T
= U (OO

T
)V

T
= (UO)(O

T
V
T
)

Clearly, since O ≠ I , UO ≠ U and OT
V
T
≠ V

T , taking the columns of UO and rows of OT
V
T

leads to a new factorization of the matrix. This is known as the rotation problem.

What is nice about tensors is that they do not su�er from this problem, in other words,
under very general conditions, the factors when we express them as sums of outer products
are unique [Moi14].

6.1.5 Discrepancies between Linear Algebra for Matrices and Tensors

Although above we see tensors do have advantages over matrices, in many other aspects
they are far worse and awkward. Here is a list:

• In matrices, the column rank equals the row rank, in tensors there is no similar notion.

• The best rank k approximation of a matrix is the best rank k approximation of the best
rank k + 1 approximation of the matrix (for instance, when using the SVD to get the
best rank t approximation one truncates and leaves the first t terms of summation).

16

• For a matrix, decomposing it using real or complex numbers yields the same rank, but
this is not the case with tensors.

In general, given standard complexity assumptions, there is no nice way to compute the
minimum rank of a tensor by decomposing it (this task is NP-Hard) (however, we will see
later, that under very but not fully general conditions there is an algorithm for decomposing
3-tensors) [Rou17].

6.2 Classical Algorithm for Tensor Decomposition
6.2.1 The Tensor Decomposition Problem and Upper Bounds on Rank

The tensor decomposition problem is given a rank r tensor T , to output a decomposition of it.
The noisy tensor decomposition problem is to recover an approximate rank r decomposition
of T . An �-approximate decomposition of T with respect to some norm ‖⋅‖ is a decomposition
D, such that ‖T − D‖ ≤ �‖T ‖.

We end with a discussion on upper bounds for tensor rank. Let us consider 3-tensors that are
n × n × n (most results with a li�le extra work are generalizable when the the dimensions are
not all equal). An upper bound for such a tensor, T , is n3 (by literally adding the tensor with
Tijk in the (i, j, k) position and 0’s else where for each triple of i, j, and k, for 1 ≤ i, j, k ≤ n).
More formally, let es denote the n-dimensional vector with a 1 in the s-th position and 0’s
elsewhere. Then:

T = ∑

1≤i,j,k≤n

Tijkeiejek

This upper bound can be improved to n2. To see why, view T as n slices of n × n matrices. Let
these matrices be known as M1, M2, ..., Mn. Then, we have:

T =

n

∑

i=1

Mi ⊗ ei

We are kind of abusing notation here by referring to the tensor product between a matrix
and vector. Each matrix Mi has rank at most n, since it is an n × n matrix, and thus, can be
decomposed into the sum of at most n vector outer products. Thus, in the decomposition of
T above, we can split each of the n terms into a sum of at most n vector outer products, thus
giving a rank at most n2.

As we will see in the next section, under very general assumptions, there is an algorithm
for decomposing 3-tensors for rank at most n. However, the upper bound we have given for
3-tensor rank is n2, and in fact, with very high probability a random tensor (with entries cho-
sen independently at random from the interval [0, 1]) has rank on the order of n2. This task
of decomposing 3-tensors with rank much greater than n is known as the overcomplete case,
and is one of the main focuses of recent research.

6.2.2 Jennrich’s Algorithm

Theorem 19 Given an n × n × n rank r 3-tensor T = ∑
r

i=1
ui ⊗ vi ⊗ wi , there is an algorithm to

recover this decomposition (up to constant scaling) given the following conditions: 1) the vectors

17

in the set {u1, ..., ur} are linearly independent, 2) the vectors in the set {v1, v2, ..., vr} are linearly
independent, 3) the vectors in the set {w1, ..., wr} are pairwise linearly independent.

We note two things. Firstly, condition 3 is weaker than requiring all the vectors in the set
{w1, ..., wr} to be linearly independent. This is because if all the vectors are linearly indepen-
dent then any two of them must be linearly independent. However, if each pair of them are
linearly independent, then the entire set might not be linearly independent, here is an exam-
ple: {(1, 0, 0), (0, 1, 1), (1, 1, 1)}. Secondly, the conditions limit the rank r to be ≤ n because if a
set of n-dimensional vectors is linearly independent then it has at most n vectors in it. Here
is the algorithm:

• Choose uniformly at random unit vectors x, y ∈ ℝ
n
.

• Define the matrix Ax as follows. Think of T as n slices of n × n matrices, M1, M2,...,Mn.
Then let Ax = ∑

n

i=1
xiMi (the sum of the n matrices weighted by the coordinates of x).

Define Ay analogously.

• Compute the eigendecompositions of the matricesAxA
−1

y
andA−1

x
Ay . Then, the ui’s and

vi’s will appear as the columns/rows of the matrices in the eigendecomposition (more
clarity is given below). ui and vi can be paired o� since the eigenvalues corresponding
to them will be reciprocals. From this, we have a linear system of equations and can
solve for the wi’s.

We now prove the correctness of this algorithm. We have the following lemma:

Lemma 20 Ax = ∑
r

j=1
⟨wj , x⟩ujv

T

j
and Ay = ∑

r

j=1
⟨wj , y⟩ujv

T

j

Proof Let wi = (wi1, ..., win) and x = (x1, .., xn). We think of T in its decomposed form
∑

r

i=1
ui ⊗ vi ⊗ wi . Then if we think of each of the r tensors in this summation as being sliced

into n n × n matrices, Ax results when we multiply xi times the sum of the i-th slice from
each of the tensors for 1 ≤ i ≤ n and sum the resulting matrices up. xi times the sum of the
i-th slice from each of the tensors is ∑

r

j=1
xiwjiujv

T

j
. Now, we sum over all the slices to get

Ax = ∑
n

i=1
∑

r

j=1
xiwjiujv

T

j
= ∑

r

j=1
∑

n

i=1
xiwjiujv

T

j
= ∑

r

j=1
⟨wj , x⟩ujv

T

j
, as desired. The proof for

Ay is analogous.

Now, let U and V be the matrices with columns {u1, ..., ur} and {v1, ..., vr}, respectively. Then,
we have Ax = UDV

T and Ay = UEV
T , where D and E are the diagonal matrices with entries

{⟨w1, x⟩, ..., ⟨wr , x⟩} and {⟨w1, y⟩, ..., ⟨wr , y⟩}, respectively. We now have:

AxA
−1

y
= (UDV

T
)(UEV

T
)
−1
= UDV

T
V
−T
E
−1
U
−1
= U (DE

−1
)U

−1

and:
A
−1

x
Ay = (UDV

T
)
−1
(UEV

T
) = V

−T
D
−1
U
−1
UEV

T
= V

−T
(D

−1
E)V

T

Now, assume the eigendecompositions for these two matrices are unique up to constant scal-
ing (this is true if the eigenvalues are unique and we will soon explain the intuition for why
this is the case). Then, the columns of first matrix in the first eigendecomposition must be
the ui’s and the rows of the second matrix in the second eigendecomposition must be the

18

vi’s. But how can we pair o� a ui with a vi? Well, when we invert a diagonal matrix, we get
a diagonal matrix with entries as multiplicative inverses of the original matrix, and when we
multiply two diagonal matrices we get a diagonal matrix with the products of the original
entries as entries. Thus, DE−1 and D−1

E have entries of the form ⟨wi ,x⟩

⟨wi ,y⟩
and ⟨wi ,y⟩

⟨wi ,x⟩
, respectively

for 1 ≤ i ≤ r , so indeed the eigenvalues will be reciprocals of each other so we can pair the
eigenvectors o� accordingly.

Now, the last issue to consider is the uniqueness of the eigenvalues. Suppose, two of the
eigenvalues in DE

−1 were equal. Then, we would have: ⟨wi ,x⟩

⟨wi ,y⟩
=

⟨wj ,x⟩

⟨wj ,y⟩
. However, such an

event will not take place (a more rigorous argument is needed to truly prove this) because wi

and wj can never be multiples of each other due to our condition that the vectors in the set
{w1, ..., wr} are pairwise linearly independent [Har70].

6.3 Incorporating Sum-of-Squares
SOS-based techniques are utilized to deal with various issues in tensor decomposition. We
give a very high level outline how this can be done. First, we rephrase the tensor decompo-
sition problem, as follows:

Definition 21 (Redefining Tensor Decomposition Problem) Given the first threemoments
of a uniform distribution over the unit vectors a1, a2,...,an, recover the vectors. Recall that the k-th
moment of such a distribution is:

Mk =

1

n

n

∑

i=1

a
⊗k

i

We note that a1, a2, .., an can be taken to be orthogonal due to something known as the
whitening transformation [BS16]. We consider the case when a1, a2, .., an are themselves ran-
domly chosen unit vectors and deal with an overcomplete case. In particular, we consider
when n << d1.5. In that case, the following general plan of a�ack works:

• Li� the third moment M3 into sixth moment M6.

• Apply Jennrich’s algorithm on sixth moments. This should give: a⊗2
1
, ..., a

⊗2

n
(up to some

error). From here a1, a2, ...an can be recovered. Intuitively, Jennrich’s algorithm should
work reasonably well since the a⊗2

i
has length d

2 and n << d
1.5 so all the vectors in

{a
⊗2

1
, ..., a

⊗2

n
} should look linearly independent.

• The main question at hand is how to li� the third moments to sixth moments. One
approach would be to find some distribution over unit vectors which has third moment
close to M3 and output the sixth moment of that distribution. This approach works in
the sense that the outpu�ed sixth moment will actually be close to the sixth moment
of a1, a2, ..., an. However, the issue remains how to find such a distribution. Since pseu-
dodistributions can be optimized over, via SDPs as shown above, reducing the search
space to such objects, we get a pseudodistribution with desirable properties. Using
tools like the quadratic sampling lemma (see [BS16]) which lets one sample from a dis-
tribution with similar properties to a given pseudodistribution, we can usefully achieve
various needed tasks.

19

Of course there are many details to be filled in, but hopefully, this provides a glimpse into
how SOS-based techniques are used in real algorithmic problems [SHM+16].

7 Historical Notes and Conclusion
The origin of SOS optimization is algebraic geometry. In the late 19th centuries mathe-
maticians David Hilbert and Hermann Minkowski asked whether any non-negative poly-
nomial could be wri�en as the sum of squares. Hilbert showed the answer is no with a
non-constructive argument and in the 1960s Motzkin gave an example of such a polynomial,
now known as the Motzkin polynomial:

1 + x
4
y
2
+ x

2
y
4
− 3x

2
y
2

The nonnegativity of this polynomial can be easily verified via the AM-GM inequality:

1 + x
4
y
2
+ x

2
y
4

3

≥ (x
4
y
2
x
2
y
4
)
1/3
= x

2
y
2

As his 17th problem, Hilbert famously asked whether any nonnegative polynomial can be
expressed as the sum of squares of rational functions (which are quotients of polynomials).
In this case, the answer turned out to be a�irmative due to the work of Emil Artin. Then, in
a result now known as Positivstellensatz, Krivine and Stengle showed that any unsatisfiable
set of polynomial constraints can be proven so via an SOS proof. Basically, the proof is of
the form: if the polynomial constraints are satisfiable, then there exists polynomials pi , such
that ∑

i
p
2

i
= −1, however, this is not possible so the polynomial constraints are unsatisfiable

[BS16] [Kri64] [Ste74].

In the early 2000s, Pablo Parrilo (2000) and Jean Laserre (2001) independently discovered
the relationship between SOS proofs, semidefinite programming, and polynomial optimiza-
tion, which is elaborated upon in this exposition. This is the reason that the SOS hierarchy
described in this paper is alternatively known as the Parrilo-Laserre hierarchy. Naum Shor
had similar but not as general results, as well [Par00] [Las01].

SOS-based techniques have had a significant impact in theoretical computer science. They
have been used to prove lower bounds in complexity theory and have an intimate connection
to the unique games conjecture. They have also been used for algorithmic applications as
seen in this paper. Problems SOS-based techniques have been used for are: planted clique,
MAXCUT, planted sparse vector, dictionary learning, tensor decomposition, etc [BS16].

Though SOS techniques are many times viewed as highly theoretical, e�orts have been made
to make them practical. For instance, Parrilo’s research group has a MATLAB tool known as
SOSTOOLS for formulating and solving SOS optimization problems. The details can be found
on the tool’s website [PPA+18]. In terms of its applications, SOS optimization has the poten-
tial to impact fields, such as machine learning, control and dynamics of robots, statistics,
quantum computation, so�ware verification, and more [BS16].

20

8 Acknowledgements
I want to thank Professor Aaron Roth for his valuable mentorship. I also thank him for pro-
viding the LATEX template used in this paper. I am also grateful to Professor Sanjeev Khanna
for introducing him to theoretical computer science. I would also like to thank Sidhanth
Mohanty for a helpful discussion.

21

References
[BS16] Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through the lens

of sum-of-squares. 2016.

[GW94] Michel Goemans and David Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. 26th
Annual ACM Symposiumn on the Theory of Computing, 1994.

[Har70] R. Harshman. Foundations of the parfac procedure: model and conditions for
an ‘explanatory’ multi-mode factor analysis. UCLA Working Papers in Phonetics,
pages 1–84, 1970.

[Hop18] Sam Hopkins. Clustering and sum of squares proofs: Six blog posts on unsuper-
vised learning. 2018.

[JM07] Bernd Gartner Jiri Matousek. Understanding and Using Linear Programming.
Springer, 2007.

[Kha16] Sanjeev Khanna. Lecture notes in randomized algorithms 3-4: Approximation via
randomized rounding. 2016.

[Kri64] Jean-Louis Krivine. Anneaux préordonnés. Journal d’analyse mathématique, 1964.

[Las01] Jean Laserre. Global optimization with polynomials and the problem of moments.
SIAM Journal of Optimization, 11:796–917, 2001.

[Moi14] Ankur Moitra. Algorithmic aspects of machine learningy. 2014.

[Moi16] Ankur Moitra. Lecture notes in advanced algorithms 11 (introduction to linear
programming) and 19 (maxcut and semidefinite programming). 2016.

[Par00] Pablo Parrilo. Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization. phd thesis. 2000.

[PPA+18] Pablo Parrilo, Antonis Papachristodoulou, James Anderson, Giorgio Valmorbida,
Stephen Prajna, and Peter Seiler. Sostools - a sum of squares optimization toolbox
for matlab. 2018.

[Rou17] Tim Roughgarden. Modern algorithmic toolbox lecture 10 (tensors and low-rank
discovery). 2017.

[Sch16] Tselil Schramm. Intro to the sum-of-squares hierarchy. 2016.

[SHM+16] David Steurer, Sam Hopkins, Tengyu Ma, Tselil Schramm, and Jonathan Shi. Ten-
sor decompositions, sum-of-squares proofs, and spectral algorithms. 2016.

[Ste74] Gilbert Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geom-
etry. Mathematische Annalen, 1974.

22

	Introduction
	Convex Programming and Relaxations
	Linear Programming
	LP Relaxations
	Vertex Cover
	Set Cover

	Semidefinite Programming

	SDP Relaxation for MAXCUT
	Sum-of-Squares (SOS) Fundamentals
	Generalizing SDP Relaxations
	Pseudomoments, Pseudoexpectations, and Pseudodistributions
	Hierarchies, The Big Picture
	Sum-of-Squares Proofs, The Dual View

	Toolkit for SOS Proofs and Pseudoexpectations
	SOS Proofs
	Pseudoexpectations

	Tensor Decomposition and SOS
	Tensor Basics
	What is a Tensor?
	Tensor Products
	Tensor Rank
	Matrix Decomposition and the Rotation Problem
	Discrepancies between Linear Algebra for Matrices and Tensors

	Classical Algorithm for Tensor Decomposition
	The Tensor Decomposition Problem and Upper Bounds on Rank
	Jennrich's Algorithm

	Incorporating Sum-of-Squares

	Historical Notes and Conclusion
	Acknowledgements

