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Abstract

In this paper, we analyze a class of probability models known
as Buy-’Til-You-Die or BTYD models and lay out a prospectus
for using variable selection techniques to adopt these methods to
large data sets. The theory of the BTYD models is laid out and
frameworks for incorporating regression elements to the model
class are developed. We take variable selection procedures as
developed for machine learning and extend them to the case of
multi-component regression models. We then propose possibili-
ties for formulating a full specification of a BTYD model that can
effectively handle several independent variables.

1 Introduction

Although the standard linear model of regression is incredibly effective over a

wide variety of applications, interest in the nuances of certain complex prob-

lems has led to more sophisticated regression techniques being developed

to give a more detailed analysis than otherwise possible. In particular, the

problem of analyzing and predicting customer behavior has resulted in the

development of the class of Buy-’Til-You-Die models (abbreviated as BTYD)

proposed by Fader and Hardie, which can make individual-level claims about

customer behavior using only small samples. However, the complex speci-

fications of the models in the class result in estimation procedures that are
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statistically and computationally difficult, as well as an inability to incorpo-

rate observed variables into the model, Together, these two issues hinder the

performance of BTYD models on larger data sets.

One solution to this problem can be found in the statistical learning liter-

ature, where a common problem that arises with regards to regression models

is selecting which of a thousand or million independent variables should be

included or excluded in the model. Since the number of subsets of indepen-

dent variables is exponential in size to the number of independent variables,

it is computationally very inefficient to fit a regression model for every pos-

sible subset of variables. Thus, algorithms such as stepwise, stagewise, and

streamwise regression have been developed to perform a greedy search over

the space of independent variables in polynomial time, yet still obtain near-

optimal results in practice.

In this paper, we wish to explore these two topics to develop possible

methods for combining the explanatory features of “small-data” models with

some simplifying techniques from “big-data” methods. First, we develop

the theory of the BTYD model class as a combination of individual compo-

nents and reason about how such models can be better adopted as multi-part

regressions over large data sets. We then turn our attention to variable selec-

tion procedures and modify such techniques to account for complex regression

models which are built up from multiple regression components.

The benefits of this approach to these problems are twofold. First, this

will increase the effectiveness of complex regression models such as the BTYD

model class on larger data sets, which will allow their analytical and predic-

tive power to be more effective when applied in practice. Secondly, algo-

rithmic approaches that specifically deal with standard linear regression can

now be generalized to apply to complex models, effectively opening up the

opportunity to generalize other machine learning meta-algorithms.

Section 2 builds up a class of probability and regression models leading up

to the BTYD class. Section 3 discusses possibilities for further introduction

of regression coefficients in the BTYD framework and specifies a hypothetical

model of interest. Section 4 discusses algorithmic variable selection proce-

dures as currently used in the statistical learning literature. Section 5 then

explores how these models can then be adopted to the case of BTYD regres-

sions. Section 6 discusses possible economic and business opportunities for
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BTYD modeling. Lastly, section 7 concludes and summarizes all recommen-

dations for future work.

2 Regression Models and the BTYD Frame-

work

A fundamental concept in modern statistics is the standard linear regression,

usually known as ordinary least squares or OLS regression. While very com-

monly used, the standard model assumes an unbounded, real-valued support

for the dependent variable. In this section, we present the framework of the

generalized linear model as an extension to accommodate varying supports

for the dependent variable, and discuss using mixture models to further gen-

eralize these models in an empirical Bayesian setting. We then conclude

by discussing a class of models known as the Buy-’Til-You-Die models or

BTYD, which combine many aspects of the above models and serve as a

suitable setting for generalizing variable selection procedures.

2.1 Generalized Linear Models and Poisson Regression

The standard linear model requires several assumptions, an important one

being that the response variable y is distributed according to N (µ(x), σ2)

with µ(x) = βᵀx. The generalized linear model or GLM, as specified by

Nelder and Baker (1972), Wedderburn (1974), relaxes the assumptions placed

on the standard model. In particular the GLM allows, with broad limita-

tions, response variables to take on arbitrary distributions provided these are

connected to the independent variables by an arbitrary function called a link

function.

Both ordinary linear regression, as well as logistic regression, fall un-

der the banner of the generalized linear model. In particular, any meta-

algorithms that do not rely on the normality and linearity assumptions of

the original linear model, such as variable selection algorithms will still work

under the GLM framework.

A particular case of the GLM that is interesting for our purposes is the

Poisson Regression Model. The Poisson regression formulation is a specific
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case of a GLM, with the distribution being a Poisson distribution over the

nonnegative integers and the link function being the natural logarithm, the

inverse of which (called the mean function in the context of GLMs) is the

exponential function.

The model is specified as follows:

• The response variables y follow a Poisson distribution as follows:

P(y | x,β, λ0) =
λ(x)ye−λ(x)

y!

Where λ(x) is the Poisson rate parameter and:

λ(x) = λ0 exp(βᵀx)

Where x is the vector of regressors and β is the vector of weights, and

λ0 is a normalizing factor, equivalent to an intercept in standard linear

regression.

The Poisson regression and its variations are commonly used in econometrics

and the social sciences as a model for count data, where response variables

can take on unbounded positive integral values (Cameron and Trivedi, 2013).

2.2 Negative Binomial Regression

Although the Poisson Regression formulation is commonly used for count

data, a major restriction inherent in the model is the assumption that the

specified mean of the Poisson distribution is equal to its variance. We can

relax this assumption by introducing a mixture model formulation of Poisson

Regression.

• Starting from the Poisson Regression specification, we generalize this

by specifying that λ0 is now distributed randomly. In particular, we

assume that λ0 follows a Gamma distribution parametrized by shape

parameter r and scale parameter α as follows:

P(λ0 | r, α) =
αrλr−1eαλ

Γ(r)
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Where Γ(r) is the gamma function.

• We then formulate the mixture model as:

P(y | x,β, r, α) =

∫
P(y | x, λ0) P(λ0 | r, α)dλ

Thus:

P(y | x,β, r, α) =
Γ(r + y)

Γ(r)y!

(
α

α + βᵀx

)r(
βᵀx

α + βᵀx

)y
The above regression framework, known as Negative Binomial Regression

or NBD regression, is particularly interesting for a variety of reasons. The

case with no independent variables (simply called the NBD model) has been

extensively used for customer behavior modeling since Ehrenberg in 1959.

Compared to the standard Poisson regression, rather than having a con-

stant λ for each observation, we can maintain a distribution which is both

parametrized by the regressors and refined via Bayesian updating. If each

observation x, y represents individuals in a population, then each λ can be in-

terpreted as an unobserved individual-level parameter, distributed according

to r, α,x.

2.3 Proportional Hazards Regression

Apart from being interested in a count of events happening, we may also be

interested in the time taken between events. It turns out that a regression

framework similar to Poisson regression exists for timing data. Such models

are called Proportional Hazards Models and they were originally formulated

by Cox in 1972:

• We first define the hazard function for a non-negative, real-valued dis-

tribution as:

h(t) =
f(T = t)

1− F(T < t)

Where f is the probability density function and F the cumulative dis-

tribution function.
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Note that given any hazard function h(t), we can obtain a correspond-

ing cumulative distribution function through the following formula:

F(t) = 1− exp

(
−
∫ t

0

h(u)du

)
• We then specify the hazard function as:

h(t | x,β, λ0) = λ0 exp(βᵀx(t))

Where x is the vector of regressors and β is the vector of weights, and

λ0 is the exponential baseline hazard parameter.

• We will now assume that observations of x, y occur in discrete blocks

of time, thus we can write the integral of the hazard rate and simplify

it as: ∫ t

0

h(u | x(u),β, λ0)du = λ0

t∑
i=0

exp(βᵀx(i)) = λ0A(t)

Thus we can write the cumulative distribution function of the expo-

nential proportional hazards regression model as:

F(t | x,β, λ0) = 1− e−λ0A(t)

The exponential hazard baseline can further be generalized by using a

similar mixture framework as described above:

• Again, we specify that λ0 follows a Gamma distribution parametrized

by shape parameter r and scale parameter α as follows:

P(λ0 | r, α) =
αrλr−1eαλ

Γ(r)

• Using a similar formulation for the mixture model as above. we have:

F(t | x,β, r, α) =

∫
F(t | x,β, λ0) P(λ0 | r, α)dλ0
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F(t | x,β, r, α) = 1−
(

α

α− A(t)

)r
This is called the Pareto II Model with Covariates. The Pareto II

distribution was originally formulated by Lomax (1954).

Note that the behavior induced by the addition of regressors in this model is

slightly different than that of the negative binomial regression model above.

In particular, the proportional hazards regression model allows for regressors

that vary across time as opposed to regressors that just vary across individ-

uals. This means that it will be ideal to use different regressors in statistical

models that integrate both regression models as components, as we shall see

below.

2.4 The Pareto/NBD BTYD Model

Taken as probability models (without any independent variables or regression

coefficients), the above distributions can be combined in a class of models

called Buy-’Til-You-Die Models, abbreviated as BTYD. These models are

commonly used for analyzing and predicting future customer behavior, and

involve the integration of various component distributions such as those de-

scribed above to analyze more complex data and processes.

The Pareto/NBD model as proposed by Schmittlein et al. (1987) is the

standard model used for customer behavior analysis. The model applies

to continuous time noncontractual purchase settings, where the only obser-

vations made are the number of purchases per customer and when these

purchases are made. The model specification is as follows:

• Customers exist in one of two states: They are “alive” for a random

period of time after which they become permanently “dead”.

• While alive, the number of times they purchase is distributed according

to a time-varying Poisson distribution with an individual parameter λ:

P(x(t) | λ) =
(λt)xe−λt

x!
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• Each customer’s unobserved lifetime is exponentially distributed with

an individual parameter µ as follows:

f(τ | µ) = µe−µτ

• λ itself is distributed according to a gamma distribution with parame-

ters r, α:

P(λ | r, α) =
αrλr−1eαλ

Γ(r)

• µ is also distributed according to a gamma distribution with parameters

s, β:

P(µ | s, β) =
βsµr−1eβµ

Γ(s)

• λ and µ are independent across customers.

These assumptions result in deriving a combination of both an NBD and a

Pareto II model, hence the overall model’s name. The resulting model is

incredibly complex, thus we refer the reader to Fader et al. (2005) for a full

treatment of the derivation of the likelihood and other useful quantities. In

fact, because of the model’s complexity, several simpler models have been

developed to serve as alternatives to the Pareto/NBD, such as the BG/NBD

model as proposed by Fader et al. (2005).

3 Introducing Independent Variables in the

BTYD Framework

Currently, Fader and Hardie (2007) specify the inclusion of independent vari-

ables in the Pareto/NBD using a different method than specified above.

Rather than introducing a mixture over a constant coefficient in the regres-

sion model, they specify that the model parameters themselves are a function

of the regression coefficients as follows:

α = α0 exp(−γ1x1)
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β = β0 exp(−γ2x2)

Although mathematically convenient, such a specification is not ideal for the

following reasons:

• The specification only works for time-invariant independent variables.

This is a limiting assumption because while the dynamics of the NBD

portion of the model are time-invariant, the dynamics of the Pareto

portion can be better modeled with the hazard function varying across

time.

• The coefficients do not have the same interpretability of the GLM and

mixture fomulations specified above. In both Poisson and NBD regres-

sion, an additive increase in an independent variable corresponds to

a proportional increase of a specific individual’s latent rate of behav-

ior, whether constant as in the Poisson formulation or governed by a

prior as in the NBD formulation. In the Pareto/NBD specification,

changes in the variables correspond to changes in the entire distribu-

tion of possible latent variables, thus each observed individual has a

different associated prior.

• The effects of observed heterogeneity among individuals (as borne out

by the variables and regression coefficients) cannot be separated from

the effects of unobserved heterogeneity (as borne out by the Bayesian

prior), which makes the value of observed data difficult to quantify.

Several papers, including Abe (2009), Babkin and Goldberg (2017), and

Schweidel and Knox (2013), have attempted to modify the specifications

of the Pareto/NBD and other BTYD models further to accommodate time-

varying variables separately from the model parameters. As of now there is

no proposed model that is able to account for time-varying variables in both

the count and timing processes in a BTYD model, independent of the model

parameters.

As the derivation of the Pareto-NBD model as-is is already incredibly

complex, we will not attempt to derive a new formulation of the Pareto/NBD

that allows for independent variables to be incorporated into the individual

and time-varying level, although we recommend future work in this direction.

9



Instead, we will consider the BTYD framework in general and develop a pos-

sible methodology to incorporate these variables, independent of any model

we can consider. Nevertheless, at the end of this section we will utilize our

approach to hone in on a possible model specification similar to one described

above that we believe will serve as a good alternative when compared to a

full Pareto-NBD regression model.

In the BTYD framework, independent variables can fall into three main

categories:

• Variables which differ across individuals but are constant across time.

• Variables which are constant for all individuals but differ across time.

• Variables which differ across both individuals and time.

Note that any variables in the last category can be converted into variables

that fall into either of the first two categories by either averaging across

individuals or averaging across time.

Since all models in the BTYD framework assume that the process that

governs purchase frequency is static over time, it only makes sense to include

variables from the first category in the purchase frequency section of a BTYD

model. We will also argue that for the process that governs dropout behavior,

it makes more sense to use only variables which vary only across time.

• The actual point of a customer’s dropout is unobserved, meaning we

will not be able to accurately visualize how an individual-level hazard

function affects customer dropout directly.

• Estimation itself may be statistically difficult, since the model has to

consider every possible point of dropping out and fit an individualized

hazard function to accommodate all those possibilities.

• Lastly, it is more computationally efficient to only work with variables

with either individual or time dependency. Having variables which

depend on both will require computation time O(nt) for calculating

the overall likelihood, where n is the number of individuals and t the

number of units of time each variable is measured at. By contrast,
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an estimation procedure which does not have such variables will re-

quire computation time O(n+ t), since the data can be pooled and the

likelihood for both components of the model computed separately.

With those issues in mind, it makes sense to strongly consider using only

individual-varying variables for estimating purchase frequency, and only time-

varying variables for estimating dropout. Thus it is recommended to simply

convert the variables in the third category above to either individual-varying

only or time-varying only.

Nevertheless, if the dynamics of the individual and time-varying variables

are significant enough that information is lost when they are flattened into

one dimension only, an alternative approach that may work is to segment the

customer base into discrete segments. This can easily be done using a hard

selection algorithm such as K-Means (Lloyd, 1982). However, an alternative

approach that may work better is to estimate a mixture of time series models

on the time-varying covariates, then for each individual hard-select the most

likely time series model that fits the data as the segment that that individual

belongs to.

From there, there are several ways that an estimation procedure for the

BTYD model can proceed. One extreme is to simply estimate a single BTYD

model for the whole dataset, with the variables differing by segment. This

approach is the simplest but may mask the differences in behaviors between

segments. The other extreme is to estimate a BTYD model for each individ-

ual segment. This helps separate and delineate differences between segments

but this requires many more parameters and is computationally more expen-

sive.

If the segments are such that they explain most of the heterogeneity across

the data, an alternative approach will be to instead use a soft segmentation

technique such as Gaussian Mixture Models, then replace the use of contin-

uous priors as the mixing distribution in the BTYD framework with finite

mixture models. For instance, in the case of the Pareto/NBD model, instead

of specifying that λ, µ are distributed according to independent gamma dis-

tributions, we instead say that each segment has a specified value of λ, µ and

that each individual has a certain probability of belonging in each segment

based on their individual variables. Although the estimation procedure for

such models may be difficult due to the added parameters and increased
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potential for degenerate solutions, such a specification does reduce the com-

plexity of the models themselves and is a nice compromise between utilizing

rich probability models versus utilizing rich datasets.

The specification posed above actually poses a strong middle-of-the-road

approach to all the ideas we have been discussing so far. First, we relax

the assumption that latent parameters are distributed from a continuous

parametric distribution and are instead one of a fixed number of values cor-

responding to segments in the customer base. Second, we find a way to

incorporate both individual-level and time-varying variables into a single

model specification but restrict them to affecting separate model sections.

Lastly, we do not allow for variables to differ in both individuals and time

on a per-segment level, but we instead segment the individuals according to

differences in these variables. A formal formulation of such a model will be

able to introduce the possibility of using large multi-dimensional data sets in

a BTYD analysis, and we strongly recommend further work in this direction.

4 Variable Selection Procedures

In this section, we explore algorithmic techniques for selecting which inde-

pendent variables to include in the model. Clearly, searching all possible

subsets for the best combination of variables is infeasible and will result in

performing whichever parameter estimation algorithm is used for the model

an exponential number of times. Variable Selection Procedures aim to reduce

the time needed to find the best set of variables for a model by restricting the

subset search to sequentially increasing set sizes through an ordered selection

of variables. Variables are included into the model if a certain criterion that

scores their fit is above a certain threshold.

We consider three different ways to simplify the search to a smaller set of

combinations, each of which presents a different trade-off between computa-

tional complexity and goodness-of-fit for the model.

4.1 Stepwise Regression

Stepwise Regression, originally proposed by Efroymson (1960), is the least

greedy of the variable selection procedures we will consider. It comes in
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two main types, forward selection, where the algorithm starts with no inde-

pendent variables first then fits succeeding ones one-by-one, and backward

elimination, which starts with a model specified with all independent vari-

ables then removes them one-by-one.

The forward selection procedure is as follows:

1. Fit a model with no regressors and evaluate it using a predetermined

criterion.

2. For each remaining regressor left out of the model xi, estimate a new

model including xi. and evaluate it using the same criterion.

3. Of the new models above, select the one which provides the best im-

provement to the criterion, then repeat the procedure using this model

as a baseline, until the model can no longer improve over the threshold

with each regressor.

The backward elimination procedure is similar:

1. Fit a model with all regressors and evaluate it using a predetermined

criterion.

2. For each remaining regressor in the model xi, estimate a new model

excluding xi. and evaluate it using the same criterion.

3. Of the new models above, select the one which provides the best im-

provement to the criterion, then repeat the procedure using this model

as a baseline, until the model can no longer improve over the threshold

with each regressor.

Both procedures are significantly better than all-subsets regression, as only

O(n2) subsets of the variables are examined instead of O(2n). However, since

estimation complexity usually scales with the number of variables, forward

selection should be computationally faster than backward elimination by a

significant amount. In particular, for the the complex regression models we

have been discussing so far we should see forward selection outperforming

backward elimination, as the optimization procedures required by such mod-

els are non-convex in nature and scale poorly.
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4.2 Stagewise Regression

In order to reduce the time needed to run the estimation procedures in step-

wise regression, an alternative will be to fit the model at the start, hold

the parameters fixed, and fit each new variable sequentially without chang-

ing the parameters estimated beforehand. This forms the bulk of stagewise

regression, as follows:

1. Fit a model with no regressors and evaluate it using a predetermined

criterion.

2. For each remaining regressor left out of the model xi, estimate the value

of the model coefficient βi for xi on the residual y− ŷ, holding all other

parameters fixed, and evaluate it using the same criterion.

3. Of the new models above, select the one which provides the best im-

provement to the criterion, then repeat the procedure using this model

as a baseline, until the model can no longer improve over the threshold

with each regressor.

Stagewise regression (Efron, Hastie, Johnstone, Tibshirani, et al., 2004) pro-

vides the same benefits as stepwise regression, but now since only the new

parameters are fit at each step the time taken to estimate each new model

is reduced significantly. A major drawback to this formulation however is

the fit of the model, as interdependency between parameters can cause pa-

rameter estimates to vary significantly with the addition of a new variable in

the model. This problem can be a major factor with some of the regression

models above, which include an extra parameter in the base model for hyper-

dispersion which may no longer be necessary with the addition of observed

data.

Note that the specification for stagewise regression involves regressing on

the residuals, which does not generalize to the regression models above. We

can however easily fix this by specifying the estimation procedure to perform

maximum likelihood estimation (or any other specified estimation technique)

by varying only the new variable coefficient and holding all else fixed, which

is fundamentally equivalent.
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4.3 Streamwise Regression

Streamwise regression (Zhou, Foster, Stine, and Ungar, 2006) is by far the

greediest of the selection techniques we are considering, as it only considers

each variable exactly once. The procedure is as follows:

1. Fit a model with no regressors and evaluate it using a predetermined

criterion.

2. For each regressor xi, estimate a new model including xi, and evaluate

it using the same criterion.

3. If the model including xi is better than the current model over the

threshold, set it as the current model. Otherwise, keep the current

model and repeat with the next variable.

The asymptotic performance of this procedure is the best out of all the three,

with O(n) complexity relative to the number of variables considered. This

procedure also re-estimates all the parameters at each step, so it is less likely

to commit itself to suboptimal parameter values early on, at the expense of

committing to variables quickly. Lastly, the most important feature of this

method is that it allows for variables to be streamed in succession, meaning

models can be updated continuously as new data arrives in sequential order.

5 Variable Selection in BTYD

In this section we develop possible methods to apply the above selection

techniques to the BTYD framework. First we will focus on the possibility of

feature generation in the BTYD framework. We then turn our attention to

dealing with the issue of having two or more different model components to

select variables for.

5.1 Feature Generation

Recall that the BTYD framework has three classes of variables:

• Variables which differ across individuals but are constant across time.

15



• Variables which are constant for all individuals but differ across time.

• Variables which differ across both individuals and time.

As stated before, variables in the third category pose several problems for

BTYD-style models, and thus we can convert them to instances of the first

two through averaging and segmentation.

However, an interesting question that arises is which of the first two

categories should the variables be converted to. While a simple answer will

be to simply convert the variables into both categories, this will effectively

increase the number of variables considered in the overall model, which can

affect the required estimation time further down the line. To avoid increasing

the number of variables being considered, we can simply take the averages

across each dimension and assign it to the category where there is a higher

variance in the remaining dimension. That way, we maintain the number of

variables we are considering for the model, but also make sure the variables

are assigned to the class where they will presumably have a more noticeable

effect on the data.

5.2 Variable Selection Across Model Components

First we will consider some possibilities for applying variable selection proce-

dures to the standard case where a BTYD model only has a count component

and a timing component:

• Since we already categorized our variables as specified above, and the

components of the BTYD model each only take one kind of variable,

we don’t need to specify a way of sorting each variable into their model

components. Thus, the sequential selection procedures as described

above can work well even in this setting, since we have already made

the decision of separating the variables earlier on in the process.

• If we do want to optimize our selection procedures further, one possi-

bility that can work for stepwise or streamwise regression is to focus on

adding variables to the model component that will benefit from more

observed variables. For instance, in the Pareto/NBD formulation, both

the latent count and timing parameters are governed by independent
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gamma distributions with shape parameters r, s. Higher values of these

parameters represent more concentrated prior distributions. Therefore,

it makes sense that adding a variable to a component will most likely

increase that component’s shape parameter, since we are adding obser-

vations that explain the underlying heterogeneity in the data. What

we can do in each iteration of the variable selection algorithm is to

select which model component has a lower shape parameter then add a

variable to that component, effectively prioritizing adding observations

to the component which we are less certain about.

We then consider the case where we can now estimate separate regression

components across multiple segments:

• In the case of the finite mixture BTYD variation, one simplification that

can be done is to restrict the regression coefficients to be the same across

segments. This has a nice interpretation in the sense that the mixture of

latent variables across segments manifests as another regression term

that varies across individuals, and thus the whole framework can be

seen as a unified regression.

• A more extreme restriction will be to allow each variable to appear in

only one regression each: At each step of the variable selection algo-

rithm we have to choose between which of the segments the variable

belongs to. While this approach may result in models that are ex-

tremely far from the optimal regression models that can be achieved,

it may provide insight into determining which variables are the most

significant for which segments, and may be an appropriate choice if the

number of variables being considered is incredibly large.

6 Economic and Business Analysis

6.1 Direct Marketing and Customer Centricity

Statistical modeling to analyze and predict customer behavior has been used

in some shape or form since Ehrenberg’s NBD model in 1959. In particular,

such models go hand and hand with direct marketing, a form of advertising
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that engages specific, targeted consumers directly through personal media

such as phones, emails, and website cookies. Being able to isolate and predict

a specific customer’s behavior from previous purchases allows companies to

act upon their future behavior via advertising.

Over time, the ability to measure customer lifetime value or CLV has

improved drastically through having both bigger data sets to analyze and

more sophisticated models to forecast with. This had made it possible for

businesses to adopt a “customer-centric” approach, as opposed to a product-

centric one. In a customer-centric business model, customers serve as the

beginning and the end of the business’ value, with the business determining

which customers will provide them the best value today and in the future and

tailoring their entire business model around these customers. A key aspect of

any customer-centric strategy is to be able to accurately forecast customer

behavior in the future, and thus the use of data collection and statistical

modeling is crucial for a customer-centric business to succeed.

Although BTYD-style approaches have been used since Schmittlein et al.

in 1987, such approaches have yet to be commonly used in industry. Cur-

rently, most techniques to estimate CLV in industry rely on linear models

or machine learning approaches, which are suitable for big data but do not

provide similarly rich customer insights. These circumstances point to the

opportunity for any customer-facing company to adopt BTYD models to

gain a quick and immediate analytical advantage over their competitors, as

virtually no company has yet to do this, at least publicly.

By extending the BTYD model class to work for larger data sets, busi-

nesses can now utilize more information to gain incredibly specific insights

about each customer more effectively than ever before. On one hand, these

developments will help make the BTYD model more usable in high-tech, big

data companies with possibly millions of customers. Instead of seeing cus-

tomers grouped into segments based on their CLV, each customer gets an

exact CLV estimate. This can be used to determine how much to spend on

acquisition and retention for each customer and enact specific direct market-

ing strategies based on their exact value. At the same time, companies which

are already using BTYD models in their internal data analyses will now be

able to use additional data to get more exact estimates of the value of each

of their customers, whether internal or external.
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6.2 Use Cases

Companies which can benefit from a big-data BTYD model come in two

groups. The first consists of customer-centric companies that have internal

data science capabilities, and the second consists of third-party data aggrega-

tors or consultancies which provide analytics services for companies without

internal data science activities.

6.2.1 Big Data BTYD for Internal Use

In this case, the company is offering a product to customers who they want to

analyze and track over time. While they may have limited or even nonexistent

data analytics capabilities, what they do have is a steady stream of private

data that they can collect about their customers through their interactions

with the company whether at point-of-sale or beyond.

Although the company will definitely want to leverage their pool of data

using various analytical methods, the BTYD framework best serves as the

fundamental building block for these analyses since it directly answers the

questions most companies directly care about. It directly answers the ques-

tions of what customers will do in the future, and how much they are worth.

Thus, it makes a lot of sense for companies to treat such models as the main

building block for their analytics capabilities, as it helps center the data

collection and analysis into answering the core questions above.

6.2.2 Big Data BTYD as a Service

A company can offer BTYD modeling as a service in two ways. First, the

company can center their services exclusively on BTYD models. This was the

approach taken by Zodiac, a company founded by the principal researchers

of the BTYD models, prior to their acquisition by Nike. Since such models

are relatively unknown in industry, being one of only a handful of companies

capable of providing analytics and consulting to other companies will provide

a great deal of benefit and advantage, especially if a portion of the core team

for such a company also do research in new models.

On the other hand, a company can use BTYD models as one offering

that is part of a larger customer analytics framework. Here, BTYD mod-
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eling specifically makes up a smaller part of a company’s business, being

one of many services that they can offer. Nevertheless, since many other

models usually used in analytics provides only a tenuous connection between

data and decision-making, BTYD-style models will help provide a solution

that is more straightforward, interpretable, and accurate than other models

companies have in their 3rd party analytics toolkit.

Regardless if a company chooses to offer general or specific analytics ser-

vices, such companies will find that BTYD modeling can be easily packaged

into standard business models. One approach which may be effective for

companies with high technical capabilities will be to package the models

in a Software-as-a-Service business model. In this model, customers pay

a licensing fee to be able to utilize special analytics software that either

replaces or complements their existing customer relationship management

software. This business model has been successfully used for similar business-

to-business analytics services before, and can serve as a suitable vehicle for

adopting BTYD models. For companies which rely more on soft capabilities,

a standard consulting model can be used in tandem with other services. This

business model is best suited if BTYD modeling is only one out of several

capabilities a company can offer, since said company can leverage their hu-

man expertise in determining the best course of action when consulting for

a given client.

7 Conclusions and Recommendations

In this paper, we explored the development of the BTYD class of models and

developed a general framework to include regression coefficients into such

models. We also looked at a set of variable selection techniques and explored

possible ways to adopt them into the BTYD framework. Together, both

topics serve as a prospectus for ways to adopt the BTYD framework, tradi-

tionally estimated on small data sets, to better handle cases where there are

many possible variables that may be included in the regression model. Other

learning techniques that can be generalized to this regression framework, such

as pre-model feature engineering and the use of alternative specifications for

latent variables, should definitely be looked at in future work.

While there have already been models that deal with incorporating inde-
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pendent variables in BTYD models one way or another, the framework pre-

sented in Section 3 should be suitable enough to eventually derive a model

specification that can serve as a standard for the BTYD framework with vari-

ables. Of note is the consideration that the continuous mixture assumption

can be relaxed in order to simplify the model to an extent where additional

variables are feasible. While this is so far an approach that isn’t taken by

other BTYD models, we feel that such a relaxation can allow for observed

data to play a larger role in the modeling process.

After a proper model specification, we think that an important direction

for future work is to be able to empirically test these hypotheses on large data

sets. Although large data sets that describe customer behavior on an incred-

ibly granular level are undoubtedly used for machine learning algorithms at

large companies, such data sets are generally unavailable for academic use.

Furthermore, most of the canonical data sets being analyzed in the BTYD

community do not have enough size and dimensionality to warrant a more

“big-data” approach to customer behavior analysis. All-in-all, empirical per-

formance of BTYD models (statistical as well as computational) should be

studied under a wide range of possible inputs, varying in both population

and variable size.
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