

Vulnerability Scoring Systems, Remediation Strategies and

Taxonomies

by

Jacob Friedman

jacobfri@seas.upenn.edu

Advisor: Sebastian Angel

EAS499 Senior Capstone Thesis

School of Engineering and Applied Science

Department of Computer and Information Science

University of Pennsylvania

May 1, 2019

1

Abstract

This thesis focuses on vulnerability scoring systems, remediation strategies and classification

systems, with the goal of improving organizational security and improving security awareness.

Section 1 will function as an introduction to the cybersecurity space, with a particular focus on

business applications and introducing a number of necessary frameworks for developing

security awareness. This section will also include vulnerability trend research on the largest

vendors in the space and their contribution to the security problem.

Section 2 addresses cybersecurity vulnerability scoring systems and remediation strategies.

There are models to detect threats and deter them, a number of them discussed in this thesis.

The reality of the cybersecurity question for companies is that vulnerabilities need to be

recognized, understood and fixed. To best fix vulnerabilities in a system, we first need to

identify the vulnerabilities to fix and how to fix them.

Section 3 of this thesis focuses on Vulnerability Classifications and Taxonomies, strengthening

understanding of threats against a system and weaknesses within a system.

Section 4 focuses on all primary topics being discussed through a different lens, as viewed by

two executives in the security industry: Mike Shema, the Head of Product Security at Square,

and Joe Sechman, the Head of Penetration Testing Delivery at Cobalt.

In Section 5, the thesis will conclude with insights into the disparities between industries with

respect to vulnerability remediation levels and speeds, in addition to conclusions on the

primary topics of the thesis. These conclusions focus on the effectiveness of scoring systems to

properly capture the severity of a vulnerability and the ability of classification systems to

increase security awareness. This section also offers a set of questions for future research related

to the work in this thesis.

2

Table of Contents

1. Cybersecurity: Industry Analysis and Trends 4

1.1 Introduction to Cybersecurity 4

1.2 Cybersecurity in Business 5
1.2.1 Security Controls & the SANS Top 20 5
1.2.2 Vulnerability detection and remediation as an NP-Hard Problem 6

1.3 Vulnerability Trend Research 7

1.4 Case Study: Cobalt Vulnerability Analysis 8
1.4.1 Uncategorized Vulnerabilities & Classification 9
1.4.2 Pen Testing Trend Analysis & Scoring 9

2. Vulnerability Scoring Systems 13

2.1 Existing Vulnerability Scoring Systems 13
2.1.1 Why do we score vulnerabilities? 13
2.1.2 CVSS Base Score 13
2.1.3 Limitations of CVSS 16
2.1.4 Bugcrowd Vulnerability Rating Taxonomy (VRT) 16
2.1.5 Cobalt Labs 17
2.1.6 Kenna Security 18

2.2 Vulnerability Remediation Strategies 19
2.2.2 CVSS Base Score 20
2.2.3 Product and Vendor Data 21
2.2.4 Category Reference Lists (on CVE ID) 22
2.2.5 Keywords and Phrases (on CVE Descriptions) 22

2.3 Employee Entity Scoring Systems 22

2.4 Conclusions: Vulnerability Scoring and Prioritization Methods 24

3. Vulnerability Classifications and Taxonomies 26

3.1 Vulnerabilities, Exploits, Threats and Taxonomy Types 26
3.1.1 Why Categorize Vulnerabilities, Threats and Exploits? 26
3.1.2 Vulnerabilities vs. Exploits 26
3.1.3 Threat Taxonomies 27

3.2 Classification Standards & Sources 29
3.2.1 Common Weakness Enumeration (CWE) 29
3.2.2 Common Vulnerabilities and Exposures (CVE) 31
3.2.3 National Vulnerability Database (NVD) 33
3.2.4 OWASP Top 10 34
3.2.5 VulnCat 35

3.3 Benefits of Classification Systems vs. Databases & Enumerations 37

4. Views from CISOs and Security Experts 38

3

4.1 Introduction of Mike Shema 38

4.2 Introduction of Joe Sechman 38

4.3 Vulnerability Scoring 38

4.4 Taxonomies and Classifications 39

5. Business Ramifications and Conclusions 41

5.1 Industry Verticals & Remediation in Practice 41

5.2 Surprising Findings and Conclusions 42
5.2.1 Do security teams know how to remediate? 42
5.2.2 Conclusions – Vulnerability Scoring and Classification 43

5.3 Questions for Future Investigation 44

4

1. Cybersecurity: Industry Analysis and Trends

1.1 Introduction to Cybersecurity

With security breaches increasing in frequency and significance, companies must see

cybersecurity attacks as serious threats to their bottom line and public reputation.

Simultaneously, consumers have become more concerned about the protection of their data and

demand higher security standards from companies. Because of these two forces, effective

vulnerability remediation is a growing priority in all firms.

From Target to JPMorgan Chase to Facebook, firms across all industries are feeling the

repercussions of insufficient security management within their organization. Over 66% of all

cybersecurity attacks against web applications are directed toward the United States, costing the

average US organization over $21 million/year, with firms like Facebook losing $13 billion in

valuation from a singular data breach [1, 12]. By 2022, the security industry is projected to

exceed $230 billion, with companies feeling pressure to dedicate multiple billions more to

additional security measures. Few companies publish these budgets, but recently JP Morgan

Chase announce an increase of its annual cybersecurity budget from $250 million to nearly $500

million [1].

 Businesses’ infrastructure tends to be “a compelling target for attacks, often having

elevated potential for sensitive data leaks, deliberate service outages and other damage” [2].

There are a number of productive models for businesses to detect threats and deter them. Many

are discussed in this thesis, but the reality of the cybersecurity question for companies is that

vulnerabilities need to be recognized, understood and fixed. To best fix vulnerabilities in a

system, we first need to identify the vulnerabilities to fix and how to fix them. Section 2 of this

thesis, Vulnerability Scoring and Remediation, addresses these concerns.

 Section 3 of this thesis focuses on Vulnerability Classifications and Taxonomies,

attempting to strengthen understanding of threats against a system and weaknesses within a

system. Most cybersecurity attacks emphasize the importance of humans as the critical

linchpins in the cyberattack chain [3]. Phishing, malware and ransomware attacks make up a

large portion of all successful security breaches, primarily targeted towards human actors.

Improving employee understanding of security threats and different entry-points for malicious

hackers can improve security awareness and limit successful human-targeted attacks. The goal

of section 3 of this thesis is to analyze vulnerability classification systems and relate them to

better security awareness for organizations.

 Section 4 of the thesis will bring outside perspective to the primary topics being

discussed. This section will focus on security scoring systems, vulnerability taxonomies and

weakness identification within an organization, as viewed by two executives in the industry:

5

Mike Shema, the Head of Product Security at Square, and Joe Sechman, the Head of Penetration

Testing Delivery at Cobalt.

The thesis will conclude in Section 5, with a focus on the business ramifications of

cybersecurity, its relationship with remediation strategies, vulnerability identification and

classification. This section summarizes the takeaways from vulnerability scoring systems,

remediation strategies, and classification systems with questions for future research.

The remaining portion of Section 1 functions as an introduction to the cybersecurity

space, starting with a particular focus on business applications and introducing a number of

necessary frameworks for developing security awareness. Focus then shifts to a more granular

analysis of cybersecurity: an in-depth analysis of vulnerability trends over the last 12 months.

This vulnerability trend research focuses on the largest vendors in the space and their

contribution to the security problem, but it also focuses on specific vulnerability datasets. These

datasets should help indicate trends in types of vulnerabilities found, types of vulnerabilities

exploited and where to best allocate time when it comes to improving and honing security

efforts.

1.2 Cybersecurity in Business

1.2.1 Security Controls & the SANS Top 20

The SANS Institute, a private company that specializes in information security, posts a

Top 20 list, focusing on security controls for effective defense. During an interview with Mike

Shema (see section 4), Mike identified the SANS Top 20 as one of the primary practical controls

of organizational security. All 20 of these security controls are detailed below [4]:

Figure 1: SANS Top 20 Security Controls [4]

6

The SANS Top 20 provides actionable and organizationally focused recommendations

for security systems. Functioning as a highly developed security checklist, the SANS Top 20

Security Controls recommends anti-malware scans, which can be easily installed and performed

by software services like Malwarebytes. Similarly, it recommends inventory of all devices, an

essential security measure that should be part of the minimum baseline for security control.

While it is not a highly-technical approach to understanding of cybersecurity defense, the SANS

Top 20 functions as an attempt at business-focused security.

 The goal of this thesis is not only to delve into vulnerability scoring systems,

remediation strategies, taxonomies and classifications, but also how to effectively implement

these concepts in an organization. This will remain a thread throughout the entire thesis, noting

the lean of specific models and systems towards the academic and the application of others to

business.

1.2.2 Vulnerability detection and remediation as an NP-Hard Problem

In a paper titled An effective computational technique for taxonomic position of security

vulnerability in software development, Srivasta and Kumar describe the necessity of a

comprehensive system where cybersecurity standards can be applied to business processes,

citing vulnerability detection as an NP-Hard problem [5]. On average, software engineers spend

70-80% of their time focused on the information security risk management phase of testing. This

type of work increases exponentially in time and complexity as the size and costs of a system

are increased. Srivasta and Kumar describe this security remediation process using the

following algorithm [5]:

1. Apply the test case for verification of software system

2. IF {security bugs identified during the testing by a test case} THEN

The presumption is that updation is required on predecessor phase but do not have

the potential position.

 IF {Predecessor phase is coding} THEN

 Update and repeat step 1.

 ELSE

 IF {Predecessor is not coding phase} THEN

 Update in respective phase work and repeat the successor phase of the current

phase.

3. ELSE Go for deployment.

It is difficult to standardize practices that may vary by organization, but this procedure is a

well-generalized process for deploying security bug-free code. However, this process clearly

solidifies itself as an increasingly complex problem that grows in complexity along with the

system itself. The primary analysis in this thesis takes this generalized algorithm and applies

effective vulnerability scoring systems and remediation strategies to minimize the compounded

complexities associated with deploying secure code.

7

1.3 Vulnerability Trend Research

Before delving into specifics, it is important to address a number of industry trends and

observations. These analyses primarily come from Kenna Security’s Prioritization to Prediction

Reports and a dataset of vulnerabilities procured from Cobalt Labs, a crowdsourced penetration

testing company [6, 8]. With a better understanding of industry trends and vulnerability trends,

this thesis can approach scoring systems, remediation strategies and types of classifications with

a stronger background.

 The security space is highly segmented, with few security provider types proven as

security “giants”. With penetration testing, vulnerability scanners, security consultancies,

firewall and anti-malware providers, the space is diverse and offers significant choice for

buyers. This is a productive way to maintain security, as sticking with any one provider for all

security needs can be inherently less secure than many providers. Despite this, there is massive

consolidation among vendors that provide software to most of the organizations in the world.

Companies like Microsoft, IBM, Adobe, Oracle and Red Hat offer a wide array of products that

are used nearly universally. Because of this, focusing on vulnerabilities found by specific

vendors is essential in maintaining security.

Oracle, Microsoft and Adobe are together responsible for 69.1% of all open vulnerabilities

observed by consumers, with 34.4%, 17.6% and 17.1% of all open vulnerabilities respectively [6].

For the sake of these statistics, Oracle encompasses all Sun Microsystems technologies and IBM

includes Red Hat. When we break this down a bit further into specific products, we can see

Figure 2: Proportion of open vulnerabilities by associated products [6]

8

significant discrepancies based on the offerings provided [6]. Clearly, Java has significantly

more open vulnerabilities than any product offered, but we see a number of other products

with large numbers of open, publicly disclosed vulnerabilities. The purpose of this section is not

to criticize organizations like Oracle and Microsoft for such large swaths of vulnerabilities, but

instead to indicate why these sets of vulnerabilities are so important.

 Only 15.6% of all open vulnerabilities have any sort of known exploit in the wild and

many organizations, particularly Microsoft, are incredibly fast at remediating these open,

exploitable vulnerabilities [6]. Microsoft specifically, on average, reaches 25% of all open

vulnerabilities in 14 days and 50% of all vulnerabilities in 37 days. The speed of this

remediation is impressive and is fueled primarily by their commitment to weekly patches.

However, an organization like IBM is one of the slowest with respect to remediation velocity

(25% reach in 225 days and 50% reach in 578 days) [7]. Here, we see a different strategy when

approaching vulnerabilities. Instead of focusing on speed, they focus on necessity of patches.

Even more complicating is that very few consumers even install or update security patches in a

timely manner. Microsoft has the strongest patch adoption speeds, but many organizations that

release patches see consumers installing or updating weeks and months after releases.

 It would seem intuitive that all vendors who offer products with publicly disclosed

security vulnerabilities have an obligation to release fixes and patches for these weaknesses.

However, this assertion is not quite correct. With such a low percentage of open vulnerabilities

with known exploits (15.6%), do consumers demand patches for only this set of vulnerabilities?

Or do we expect organizations like Oracle to spend years and years patching exploit-free open

vulnerabilities, slowing down progress of new products simply for 100% coverage? This

tradeoff is one that consumers and vendors need to consider when analyzing security concerns

and how to best spend remediation efforts.

1.4 Case Study: Cobalt Vulnerability Analysis

Cobalt Labs (“Cobalt” or “Cobalt.io”) is a crowdsourced penetration testing platform,

offering penetration testing for organizations looking for vulnerabilities in their applications.

Cobalt’s penetration testing system is built on teams of 3-5 white-hat hackers across the globe

that search for vulnerabilities and report them to clients who can remediate these vulnerabilities

before they are exploited in production. Cobalt and their vulnerability scoring system are

described in greater detail in section 2.1.5. This section will focus on analyzing two distinct

vulnerability datasets from Cobalt.

9

1.4.1 Uncategorized Vulnerabilities & Classification

The first dataset is comprised of reported vulnerabilities discovered by white-hat

hackers through the Cobalt application from July 2017 to June 2018 [8]. Cobalt identifies

vulnerabilities by categorizing them using a modified version of the most recent OWASP Top

10, but a meaningful portion of the vulnerabilities discovered are not categorized under one of

these primary buckets. These 10 buckets, published biennially by OWASP, attempt to focus the

security industry on the 10 most commonly found vulnerability types discovered in the

industry. The OWASP Top 10 is described in greater detail in section 3.2.3. During the time

frame of interest, over 450 vulnerabilities fell into this uncategorized bucket, or “Other”

vulnerabilities. This analysis is focused on these 450 “Other” vulnerabilities.

Taking these 450 vulnerabilities, the primary goal was to find a more comprehensive

categorization system to better organize these weaknesses. CWE, the Common Weakness

Enumeration, which is further discussed in Section 3.2.1, is a comprehensive list of all publicly

disclosed weaknesses and membership groups for them. Using CWE, the 450 vulnerabilities fell

into a whopping 86 unique CWE categories [8]. With the initial goal of trying to find

commonality in these vulnerabilities, this shows the surprising variability and uniqueness of

the dataset. Outside of the OWASP Top 10, the CWE mappings showed a far more diverse set of

weaknesses than expected.

Some miscellaneous findings from this analysis showed a significant number of

vulnerabilities classified under CWE-80 (Improper Neutralization of Script-Related HTML Tags

in a Web-Page), CWE-918 (Server-Side Request Forgery), and CWE-611 (Improper Restriction of

XML External Entity Reference). Three of these CWE IDs fall under SSRF, which indicates that

the modified OWASP Top 10 could benefit from a dedicated SSRF bucket, decreasing the

number of miscellaneously identified vulnerabilities [8].

CWE also offers “Member Of” classification of each CWE ID, from which we can find

relevant buckets for each weakness. Taking the current dataset, ironically 73 of the 450

vulnerabilities are subcategorized under the OWASP Top 10, indicating that white-hat hackers

may not have the strongest understanding of classification systems themselves. These types of

findings, where nearly 20% of all vulnerabilities are miscategorized or poorly bucketed, will

provide impetus for the analysis in Section 3.

1.4.2 Pen Testing Trend Analysis & Scoring

 Second is an analysis of a larger dataset of reported vulnerabilities through the Cobalt

application from January 2017 to June 2018 [9]. This dataset includes all vulnerabilities reported

during that time span, which totals to over 6000 vulnerabilities. This dataset is comprised of a

number of clients across a wide array of industries and offers an incredibly representative set of

security vulnerabilities found in the “wild” over a recent 18-month period.

10

 As described above, Cobalt categorizes these vulnerabilities with a modified version of

the OWASP Top 10, with a catch-all bucket for vulnerabilities that may not seem to fit any

bucket. Following the trends in the OWASP Top 10 buckets can act as a proxy for trends in

specific vulnerability types in the wild and changes in the severity of them. In Figure 3, we can

clearly see the growth of found vulnerabilities in each OWASP bucket, most notably finding a

significant number of vulnerabilities in the Misconfiguration categorization.

This graph was developed by downloading the entire 6000+ vulnerability dataset, provided by

Cobalt. The data was already anonymous and was manually cleaned and reformatted before

being plotted over time, with month zero as June 2018.

Figure 3: Number of Vulnerabilities by Type (Jan 2017 – June 2018)

11

Misconfiguration, or Security Misconfiguration, according to OWASP is “the most

commonly seen issue. This is commonly a result of insecure default configurations, incomplete

or ad hoc configurations, open cloud storage, misconfigured HTTP headers, and verbose error

messages containing sensitive information” [10]. Recognizing these vulnerabilities as the most

commonly found in the Cobalt dataset supports the claim from OWASP that Security

Misconfiguration, albeit a broad bucket, is undeniably one of the most concerning security

areas.

 Vulnerability scoring systems will be discussed in great detail in Section 2 but analyzing

the Cobalt dataset of over 6000 vulnerabilities will provide valuable background for this topic.

In particular, SQL Injection and Cross Site Scripting (XSS) vulnerabilities are consistently rated

as the most significant vulnerabilities found, with average criticality scores of 16.93 and 10.63

out of 25, respectively. SQL Injection is a Cobalt-narrowed version of OWASP’s Injection

category, while XSS stands alone in the OWASP Top 10, indicating the prevalence of these two

vulnerabilities in the security community.

 Focusing more specifically on the vulnerability criticality scores in this dataset, we can

see the normalized criticality scores by score bucket, ranging from 0 as the least critical

vulnerability to 25 as the most critical*:

To create the graph in Figure 4, the large dataset from Cobalt was analyzed and all criticality

scores were calculated. Scores were normalized per the footnote below and graphed in R and

* Note: As discussed in section 2.1.5, scores are calculated by multiplying an Impact score (0-5) by a Likelihood

score (0-5), both integers. This may explain why there are no vulnerabilities with the score of 11 and other numbers

seem more common. The graph normalizes for number of ways of a criticality score can be determined (ex. 9 can be

3x3, 5x4 and 4x5), but it cannot reflect the removal of scores like 11.

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 8 9 10 12 15 16 20 25

Criticality Score (0.0 - 25.0)

Number of Criticality Scores by Bucket (Normalized)

Figure 4: Criticality Scores by Bucket

12

Excel. The graph indicates low, medium and high criticality using the green, yellow, red color

scheme. The graph offers a number of takeaways regarding the perceived criticality of a large

set of vulnerabilities, some of which are a function of Cobalt as a penetration testing platform. If

a data set from the National Vulnerability Database was used instead, there would likely be a

much higher percentage of vulnerabilities at the lower end of the criticality scores, due to the

vast number of vulnerabilities publicly disclosed with no exploits. Since the goal of penetration

testing is to provide valuable feedback for effective remediation, there is a surprising skew

towards medium to high critical vulnerabilities. The entire dataset has an average criticality

score of 7.16 out of 25, with 25% of vulnerabilities with a criticality score above 9, which is

considered medium-high criticality.

 A few other miscellaneous findings focused primarily on the remediation levels of the

vulnerabilities found, or the perceived urgency and intention for fixing vulnerabilities. Of the

entire dataset of over 6000 vulnerabilities, only 518 vulnerabilities, or less than 9%, had been

labeled as “Not fix”. This indicates that 91% of all vulnerabilities have been prioritized for fixes

or have already been fixed, a whopping number considering that ~75% of the vulnerabilities are

considered “medium” criticality or lower. Whether this indicates that Cobalt white-hat hackers

are providing consistently strong findings or that companies err on the side of caution when it

comes to security fixes, it certainly shows a commitment to fixing all vulnerabilities, even those

that have low criticality scores. Later, industry averages for remediation are shown to be far

lower than indicated on the Cobalt platform.

13

2. Vulnerability Scoring Systems

2.1 Existing Vulnerability Scoring Systems

2.1.1 Why do we score vulnerabilities?

 In the United States, debugging and patching security vulnerabilities costs companies

over $50 billion/year in lost productivity [11], exclusively for vulnerabilities with no attempted

exploits. These patches may be tedious and expensive but patching a vulnerability that isn’t

attacked is far cheaper than the worst-case scenario, where the vulnerability is exploited in the

wild. For reference, Facebook lost over $13 billion in value in one day, after a data breach this

past year [12]. While these breaches can be catastrophic, inefficient patching of vulnerabilities

can be prohibitive for a company to grow.

 It is incredibly difficult to patch all vulnerabilities in a system – no organization attempts

to patch or fix every single vulnerability. In fact, less than 2% of all publicly published

vulnerabilities have observed exploits in the wild [13]. However, if an organization is going to

forgo patches on some vulnerabilities to mitigate losses in productivity, they need to know,

with high certainty, which vulnerabilities are the most important to fix. Prioritizing

vulnerabilities, or remediation, must be organized by some metric. This metric or score ties to a

specific vulnerability, attempting to classify its importance in a set of scores.

 Using the Exploit Prediction Model developed by Kenna Security, every decision to

remediate a vulnerability is also a prediction about the future [13]. For every vulnerability that

has not been exploited, the score associated with it, and consequently the prioritization of it in

the remediation stack, is a prediction about the importance of that vulnerability. There are

dozens of unique scoring systems, all with the same goal of creating a metric on which an

organization can prioritize remediation efforts. Some scoring systems are necessary for

compliance, such as Payment Card Industry Data Security Standards (PCI DSS), while others

are for internal prioritization. This section will investigate a number of unique vulnerability

scoring systems and recommend scoring systems that are most effective in remediation efforts.

2.1.2 CVSS Base Score

 A free and open vulnerability scoring system developed by the Forum of Incident and

Response Teams (FIRST), the Common Vulnerability Scoring System, or CVSS, is largely

considered the industry standard for determining severity scores for vulnerabilities [14]. The

CVSS scoring system provides a score on a 0.0 to 10.0 scale, where 0.0 is the least severe

vulnerability and 10.0 is the most severe vulnerability. The severity ranges fall as follows: None

(0.0), Low (0.1 – 3.9), Medium (4.0 – 6.9), High (7.0 – 8.9) and Critical (9.0 – 10.0) [14].

14

These scores are developed through a number of different factors, inferring the

likelihood of a vulnerability being exploited and the impact to the asset with the vulnerability if

it were exploited. CVSS has gone through 3 primary iterations and it can be assumed that all

references to CVSS in this thesis are CVSSv2.0, unless otherwise noted. CVSSv2.0 remains an

accepted industry standard for the National Vulnerability Database and Open Source

Vulnerability Database, among other security organizations. CVSSv3.0 follows similar logic as

v2.0, with one major exception, replacing the Environmental Metric with the Modified Base

Vector. Both v2.0 and v3.0 focus on different aspects of vulnerabilities, but for the sake of this

thesis, v2.0 will be the focus.

 CVSS assessment includes a Base Metric, a Temporal Metric and an Environmental

Metric, all of which attempt to distinguish different vectors relevant in understanding the

importance of a vulnerability. The CVSS Base Metric describes the vulnerability in a vacuum,

essentially determining the intrinsic risk associated with this vulnerability type. The CVSS Base

Metric returns a Base Score, developed from calculating the Exploitability and Impact of a

vulnerability. These calculations are done as follows [15]:

(1) 𝑬𝒙𝒑𝒍𝒐𝒊𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚 = 20 ∗ 𝐴𝑐𝑐𝑒𝑠𝑠𝑉𝑒𝑐𝑡𝑜𝑟 ∗ 𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ∗ 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛

(2) 𝑰𝒎𝒑𝒂𝒄𝒕 = 10.41 ∗ (1 − (1 − 𝐶𝑜𝑛𝑓𝐼𝑚𝑝𝑎𝑐𝑡) ∗ (1 − 𝐼𝑛𝑡𝑒𝑔𝐼𝑚𝑝𝑎𝑐𝑡) ∗ (1 − 𝐴𝑣𝑎𝑖𝑙𝐼𝑚𝑝𝑎𝑐𝑡))

(3) 𝒇(𝒊𝒎𝒑𝒂𝒄𝒕) = {
0 𝑖𝑓 𝐼𝑚𝑝𝑎𝑐𝑡 = 0

1.176 𝑖𝑓 𝐼𝑚𝑝𝑎𝑐𝑡 ≠ 0

(4) 𝑩𝒂𝒔𝒆𝑺𝒄𝒐𝒓𝒆 = 𝑟𝑜𝑢𝑛𝑑𝑇𝑜𝑂𝑛𝑒𝐷𝑒𝑐𝑖𝑚𝑎𝑙(((0.6 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡) + (0.4 ∗ 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) − 1.5) ∗

𝑓(𝐼𝑚𝑝𝑎𝑐𝑡))

To calculate the values necessary in resulting in a Base Score, the following standards are used

to identify the values of Access Vector, Access Complexity, and Authentication for Exploitability

and Confidentiality, Integrity, and Availability for Impact [14, 15].

• Access Vector – Access Vector can take the value of 0.395, 0.646 or 1.0, if the access is

Local, Adjacent Network, or Network, respectively. Descriptions of each of the three

access vector types can be found in Appendix A.1.

• Access Complexity – Access Complexity can take the value of 0.35, 0.61, or 0.71, if the

complexity is High, Medium, or Low, respectively. Descriptions of each of the three

access complexity levels can be found in Appendix A.2.

• Authentication – Access Complexity can take the value of 0.45, 0.56, or 0.704, if the

authentication system is Multiple Authentication, Single Authentication, or No

Authentication, respectively. Descriptions of each of the three authentication levels can

be found in Appendix A.3.

15

• Confidentiality – Confidentiality can take the value of 0.0, 0.275, or 0.660, if the attack has

No Impact, Partial Impact, or Complete Impact, respectively, on the confidentiality of

the system. Descriptions of each of the three confidentiality types can be found in

Appendix A.4.

• Integrity – Integrity can take the value of 0.0, 0.275, or 0.660, if the attack has No Impact,

Partial Impact, or Complete Impact, respectively, on the integrity of the system.

Description of each of the three integrity types can be found in Appendix A.5.

• Availability - Availability can take the value of 0.0, 0.275, or 0.660, if the attack has No

Impact, Partial Impact, or Complete Impact, respectively, on the integrity of the system.

Descriptions of each of the three availability types can be found in Appendix A.6.

The Temporal Metric as a part of CVSS describes the risks associated with the vulnerability,

directly associated with how the vulnerability will evolve over time [14, 15].

(5) 𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍𝑺𝒄𝒐𝒓𝒆 = 𝑟𝑜𝑢𝑛𝑑𝑇𝑜𝑂𝑛𝑒𝐷𝑒𝑐𝑖𝑚𝑎𝑙 (𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 ∗ 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗
𝑅𝑒𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑣𝑒𝑙 ∗ 𝑅𝑒𝑝𝑜𝑟𝑡𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)

To calculate the values necessary in resulting in a Temporal Score, the following standards are

used to identify the values of Exploitability, Remediation Level and Report Confidence [14, 15].

• Exploitability – Exploitability can take the value of 0.85, 0.9, 0.95, 1.0, or 1.0, if the attack

has an Unproven, Proof-of-Concept, Functional, High or Undefined exploit technique,

respectively

• Remediation Level – Remediation Level can take the value of 0.87, 0.90, 0.95, 1.0, or 1.0, if

the attack has an Official Fix, a Temporary Fix, a Workaround, Unavailable Fix, or

Undefined, respectively.

• Report Confidence – Report Confidence can take the value of 0.9, 0.95, 1.0, or 1.0, if the

vulnerability is Unconfirmed, Uncorroborated, Conformed or Undefined, respectively.

The final metric is the CVSS Environmental Metric, which attempts to integrate risks associated

with the vulnerability and how it is implemented or found in a specific asset or environment

[14, 15].

(6) 𝑨𝒅𝒋𝒖𝒔𝒕𝒆𝒅𝑰𝒎𝒑𝒂𝒄𝒕 = 𝑀𝐼𝑁(10, 10.41 ∗ (1 − (1 − 𝐶𝑜𝑛𝑓𝐼𝑚𝑝𝑎𝑐𝑡 ∗ 𝐶𝑜𝑛𝑓𝑅𝑒𝑞) ∗

(1 − 𝐼𝑛𝑡𝑒𝑔𝐼𝑚𝑝𝑎𝑐𝑡 ∗ 𝐼𝑛𝑡𝑒𝑔𝑅𝑒𝑞) ∗ (1 − 𝐴𝑣𝑎𝑖𝑙𝐼𝑚𝑝𝑎𝑐𝑡 ∗ 𝐴𝑣𝑎𝑖𝑙𝑅𝑒𝑞))

(7) 𝑨𝒅𝒋𝒖𝒔𝒕𝒆𝒅𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍 = 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑆𝑐𝑜𝑟𝑒,
𝑏𝑢𝑡 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑠 𝐼𝑚𝑝𝑎𝑐𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐼𝑚𝑝𝑎𝑐𝑡

16

(8) 𝑬𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒂𝒍𝑺𝒄𝒐𝒓𝒆 = 𝑟𝑜𝑢𝑛𝑑𝑇𝑜𝑂𝑛𝑒𝐷𝑒𝑐𝑖𝑚𝑎𝑙 ((𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 +
(10 − 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙) ∗ 𝐶𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝐷𝑎𝑚𝑎𝑔𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙) ∗ 𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

To calculate the values necessary in resulting in an Environmental Score, the following standards

are used to identify the values of Exploitability, Collateral Damage Potential and Target Distribution

[14, 15].

Collateral Damage Potential – Collateral Damage can take the value of 0.0, 0.1, 0.3, 0.4, 0.5,

or 0, if the potential loss is described as None, Low, Low-Medium, Medium-High, High,

or Not Defined, respectively.

Target Distribution - Target Distribution can take the value of 0.0, 0.25, 0.75, 1.0, or 1.0, if

the proportion of systems potentially affected loss is described as None, Low, Medium,

High, or Not Defined, respectively.

2.1.3 Limitations of CVSS

 Despite the seemingly comprehensive CVSS scoring system, there are significant

criticisms for this method of establishing a risk score for a vulnerability. CVSS is a generally

satisfactory rating system in a vacuum, to score the severity of a Cross Site Scripting (XSS)

vulnerability. However, most industry experts believe that the vectors intended to quantify

statistical relevance for environmental and temporal impact are not representative and it is

difficult to draw conclusions from them.

 Joe Sechman, the VP of Penetration Test Delivery at Cobalt, cites concerns with attack

chaining as the primary limitation of CVSS [32]. Attack chaining describes actions by a hacker

or malicious actor to expose additional vulnerabilities through outcomes of a previous

exploitation in the same system or other systems. For example, if a hacker is able to recover a

list of passwords through a SQL Injection attack, this information can create an entire new set of

vulnerabilities within that system and potentially new vulnerabilities for users in other systems.

The CVSS calculations will certainly establish this vulnerability as severe through high

Confidentiality, Collateral Damage Potential, and Target Distribution values. However, these

stagnant values cannot fully describe the proliferation of new vulnerabilities due to this attack,

as compared to another attack with the same score.

2.1.4 Bugcrowd Vulnerability Rating Taxonomy (VRT)

Bugcrowd is a crowdsourced cybersecurity platform focused on bug bounty programs

[16]. In a bug bounty, an organization posts a program where hackers can submit

vulnerabilities that they find and get paid by the hosting organization for finding them. To

facilitate this process, Bugcrowd released the Vulnerability Rating Taxonomy (VRT) in 2016,

specifically for its own cybersecurity platform. However, many industry experts, including

17

Mike Shema, the head of Product Security at Square, discuss VRT as one of the staples in bug

bounty vulnerability scoring systems.

Less complex than CVSS Base Scoring, VRT is primarily a resource for bug hunters,

focusing on vulnerabilities commonly found and accepted in bounty programs. VRT separates

vulnerabilities into five prioritization categories from P1 – P5, which indicates the severity score

of the vulnerability [16]. VRT clarifies that these scoring categories “do not equate to ‘industry

accepted impact’”, but instead are intended to show a base severity rating for that vulnerability

[16]. Mapping to the OWASP Top 10 (discussed in depth in 3.2), the VRT offers a clean and

simple system to prioritize vulnerabilities based on what the weakness or exploit is. A simple 1

– 5 score, the Bugcrowd Vulnerability Rating Taxonomy is not a comprehensive scoring system,

but it is an effective standard for the bug bounty industry.

2.1.5 Cobalt Labs

Cobalt is a crowdsourced penetration testing platform, offering penetration testing for

organizations looking for vulnerabilities in their applications. Cobalt’s penetration testing

system is built upon teams of 3-5 white-hat hackers across the globe that search for

vulnerabilities and report them to companies who can remediate these vulnerabilities before

they are exploited in production [17].

When reporting found vulnerabilities, Cobalt scores these vulnerabilities to provide

detailed information on remediation priorities and levels of concern for any potential exploits.

However, Cobalt uses a unique scoring system, related to CVSS but notably distinct, that offers

an alternative to how we think about vulnerabilities and the scoring of them.

Cobalt white-hat hackers are asked to rate each vulnerability on two metrics: impact and

likelihood. Impact describes the significance of an exploit of the vulnerability to the assets and

the larger organization. Likelihood describes the probability that the vulnerability with both be

found and exploited by a malicious actor. The scoring system requires a 0.0 – 5.0 score on each

of these metrics, with 0.0 being low likelihood or impact and 5.0 being high likelihood or

impact. The product of these two factors gives us a single criticality score for a given

vulnerability:

(1) 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 = 𝐼𝑚𝑝𝑎𝑐𝑡 ∗ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

Ranging from 0.0 to 25.0, the criticality score attempts to convey the holistic significance

of a found vulnerability by a Cobalt hacker. The two factors embedded in criticality, impact and

likelihood, are commonly found in attempts to quantify the significance of a vulnerability. Far

simpler than the CVSS Base Scoring system, Cobalt’s vulnerability scoring relies heavily on a

hacker’s ability to properly assess the vulnerability from an objective perspective.

18

There are significant positives associated with this simplified approach to scoring

vulnerabilities for a penetration testing platform. Unlike the bug bounty platforms like

Bugcrowd or HackerOne, which often result in a large set of predominantly irrelevant or

unimportant vulnerabilities, penetration testing tends to focus on fewer, but more significant

vulnerabilities. For a bug bounty company like Bugcrowd, a system like VRT that identifies

very specific vulnerabilities to report, or even a CVSS score, with a comprehensive set of inputs,

is essential because most organizations will not remediate many of the reported vulnerabilities.

With such a large set of vulnerabilities, a comprehensive system to prioritize vulnerability

remediation is essential. However, for a company like Cobalt, or even a typical security

consultancy, prioritizing remediations carries less weight.

This scoring system can be criticized for its lack of comprehensiveness in identifying

vulnerability criticality. It offers enough information for an informed security expert to use this

score as a base to determine whether remediation is necessary, and it avoids overcomplicating

the score like some argue CVSS does. It may be sufficient for a penetration testing environment,

but it should not be adopted as an industry standard or used to prioritize a large set of

vulnerabilities.

2.1.6 Kenna Security

Kenna Security is a risk-based vulnerability management system, focusing on predicting

future cyber-attacks and offering remediation recommendations to prevent them. Kenna’s

Exploit Prediction Model, referenced earlier, crystallizes the goal of Kenna’s prioritization

system. The model describes the decision to remediate a vulnerability as a prediction about the

future; Kenna’s classification system attempts to output predictions that can be used to

prioritize vulnerability remediation [18]. Kenna’s risk management approach is not described

by a pure score attached to a vulnerability, but an application of other vulnerability scoring

systems to a more comprehensive security strategy. CVSS scores capture the characteristics of a

vulnerability, but Kenna answers if (and when) those characteristics warrant a patch.

This security strategy is measured through two essential metrics: coverage and

efficiency. Coverage measures the completeness of a remediation process. Specifically, of all

vulnerabilities that need to be fixed, what percentage of them were correctly identified and

fixed? Efficiency measures the precision of a remediation process. Specifically, of all

vulnerabilities that are identified to be fixed, what percentage were actually necessary to fix:

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 % =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑢𝑙𝑛𝑠 𝐹𝑖𝑥𝑒𝑑 𝑡ℎ𝑎𝑡 𝑁𝑒𝑒𝑑𝑒𝑑 𝐹𝑖𝑥𝑒𝑠)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑢𝑙𝑛𝑠 𝑡ℎ𝑎𝑡 𝑁𝑒𝑒𝑑 𝐹𝑖𝑥𝑒𝑠)

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 % =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑢𝑙𝑛𝑠 𝐹𝑖𝑥𝑒𝑑 𝑡ℎ𝑎𝑡 𝑁𝑒𝑒𝑑𝑒𝑑 𝐹𝑖𝑥𝑒𝑠)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑢𝑙𝑛𝑠 𝐹𝑖𝑥𝑒𝑑)

These two metrics will be used to evaluate remediation strategies through Kenna’s platform.

19

Kenna’s vulnerability remediation strategy, which functions as an augmented version of a base

scoring system for vulnerabilities, is built upon a blend of those very base scoring systems.

Conveniently described as the “Everything” model, the prioritization system was trained on (i)

CVSS Base Vectors and computed scores, (ii) a list of Products and Vendor data, (iii) Category

References on CVEs and (iv) keywords and phrases found in CVE descriptions†.

Kenna opens an interesting discussion, shifting the focus from theoretical vulnerability

scores to the practical application of them. Instead of analyzing vulnerability scores alone, this

thesis will now apply those scores to vulnerability remediation strategies.

2.2 Vulnerability Remediation Strategies

The goal of a vulnerability remediation strategy (and the ultimate goal of a vulnerability

scoring system) is to fix vulnerabilities in “a cost-effective manner before they lead to security

incidents” [18]. To best focus remediation efforts, it is essential to understand the stages in the

lifecycle of a vulnerability. With the perspective of the entire vulnerability lifecycle, it is easier to

recognize trends in exploits and recommend optimal remediation strategies. Using Kenna’s

report titled Prioritization to Prediction: Volume 1 as a guide, we can follow the vulnerability

lifecycle through roughly six stages [18]:

• Vulnerability Created – When flawed code is written, or when defective code is released

into a system, a vulnerability has been created and exists. Vulnerabilities can and often

do exist without ever being discovered or exploited.

• Vulnerability Discovered – This stage is fairly obvious. When a human or a scanner finds a

vulnerability in a system, it is, by definition, discovered.

• Vulnerability Disclosure – After a vulnerability is discovered, it is often reported.

Occasionally these vulnerabilities will be exclusively reported within an organization, if

it is found by an employee or a proprietary penetration test. However, in many cases,

vulnerabilities are disclosed publicly and are reported to the CVE or another public

database. Once a vulnerability has been disclosed publicly, it is far more likely to be

exploited, but only 33% of all vulnerabilities in CVE have been observed in live

enterprise environments.

• Vulnerability Exploit Code – After a disclosure, there may be a working code exploit or

framework to exploit the published vulnerability. These exploits can be posted publicly

or developed privately, but only 2% of all published vulnerabilities have observed

exploits in the wild.

• Vulnerability Exploitation – When a vulnerability is exploited in the wild, the impact of

that exploit will vary based on the environment and vulnerability management systems

in place to limit the impact. Similar vulnerabilities are rarely exploited simultaneously,

so there is significant value in analyzing exploits of known vulnerabilities elsewhere to

your organization’s own system.

† Each of these four remediation strategies are described in Section 2.2 below in greater detail.

20

• Vulnerability Detection Signature – If a vulnerability is exploited in your system, it is

absolutely essential to recognize this failure quickly. However, most detection systems

need guidance for what to look for. If your remediation strategies are not effective, this

late stage in the vulnerability lifecycle is the final line of defense against compounding

issues from an exploit.

Not all vulnerabilities necessarily follow this lifecycle, but it offers a strong framework to

address remediation strategies. Prioritizing which vulnerabilities to fix is a task that starts

before vulnerabilities are even created and needs to continue throughout the existence of the

system. The following remediation strategies are analyzed on the metrics of efficiency and

coverage using the CVE as a database of vulnerabilities. These results are using the model

developed by Kenna Security and indicate average successes of each remediation method [18].

2.2.2 CVSS Base Score

 This is the most intuitive remediation strategy, as it takes a CVSS score and assumes the

risk of the less significant vulnerabilities, while focusing on fixing the most impactful

vulnerabilities. In fact, this remediation strategy is used by PCI, as discussed earlier. To reach

full compliance, PCI requires that all related vulnerabilities with a CVSS score above 4 be

remediated [31]. Deduced from Figure 5, this is an incredibly stringent and labor-intensive

remediation strategy that will offer impressive coverage of vulnerabilities. Since PCI-compliant

organizations deal with highly sensitive data and need compliance to operate, this high

coverage requirement makes sense. However, this incurs a number of unnecessary costs and

takes significant time to complete, with an efficiency level likely below 26%.

Figure 5: Prioritization strategies by CVSS Base Score [18]

21

 While a PCI-compliant strategy towards remediation seems comforting due to its

coverage of nearly all vulnerabilities, it is simply unrealistic to expect all organizations to

remediate at an ~80% coverage level. Moving up the table to lower coverage remediation

strategies, a clear drop is seen, which is simply the percentage of CVEs that are found at each

score level. The efficiency levels rise and actually peak at remediation at CVSS 7.0+ and then

begin to drop again. Based on these two metrics, the optimal CVSS Base Score remediation

strategy is to remediate all vulnerabilities with a CVSS score of 7.0 or higher.

2.2.3 Product and Vendor Data

 An alternative vulnerability remediation strategy is to fix vulnerabilities from specific

vendors and product offerings. While CVSS remediation strategies attempt to take a risk score

and use it to prioritize remediation based on risk, this strategy is ostensibly less thorough. A

small set of vendors does make up a disproportionately large set of CVEs, particularly

companies like Microsoft, Oracle, Adobe and IBM. These organizations also provide some of the

most commonly used, exploited and patched programs, which may be the primary

vulnerability points for organizations using these products [18].

Seen in Figure 6, no strategy that focuses on top vendors or products is particularly efficient or

encompassing. There are companies that will focus their remediation efforts on simply staying

up to date on patches with these major vendors. It is extremely ineffective and not even efficient

to do this. Even if we take the top 20 vendors, which will likely include a large portion of

systems in most companies, only 21.8% coverage is met. For any organization, this should be

inexcusably low coverage. Remediation by top vendors and products may not be effective, but

we will later look at its positive impact on coverage and efficiency in a multi-faceted

remediation system.

Figure 6: Prioritization strategies by top vendors [18]

22

2.2.4 Category Reference Lists (on CVE ID)

The third remediation strategy is directly tied to the CVE database (see section 3.2.2 for

more details on CVE), specifically the list of references cited on each ID. These references can

contain all kinds of information, often related to vendor acknowledgement, additional

published information, the initial disclosure of the vulnerability or a number of other things

[18]. This strategy is rarely used alone, but it offers valuable insight into which CVEs are

commonly tagged or recognized outside the CVE database. Commonly found tags are sectrack

(linked to https://securitytracker.com), ms (linked to Microsoft reference), fulldisc (linked to Full-

Disclosure mailing list), and bid (linked to Security Focus bugtraq ID), among others.

Based on the efficiency and coverage analysis done by Kenna, most of these strategies do

not offer above average coverage and efficiency balances, but are significantly better than

random remediation, which means that they could provide positive data for a blended

remediation method that includes these reference lists as additional data for prioritization.

2.2.5 Keywords and Phrases (on CVE Descriptions)

 This is not a bona-fide remediation strategy on its own, but much like the reference lists,

provides information that could be productive in a remediation strategy. All CVEs have

descriptions, some longer than others, written in free form text. Using keywords and phrases

from this free text may add additional information to a prioritization schedule [18]. The Kenna

Security model includes these keywords in their strategy, but it is unclear if this remediation

strategy is worth pursuing as anything more than a supplement.

2.3 Employee Entity Scoring Systems

 Briefly shifting focus away from typical security vulnerabilities, it is important to

recognize non-technical vulnerabilities within an organization. In a paper titled Human

Figure 7: Prioritization strategies by reference lists [18]

https://securitytracker.com/

23

Capability Evaluation Approach for Cyber Security in Critical Industrial Infrastructure, Ani, et al.

discuss the importance of viewing employees as possible vulnerabilities themselves [19].

According to a research report published by PricewaterhouseCoopers, 36% of all malicious

cyberattacks in 2013 were caused by of human errors [19]. Human entities are the most targeted

asset in cyberattacks by a significant margin.

According to the Verizon’s Data Breach Report from 2018, there were over 43,000

accesses using stolen credentials through phishing in the past year [20]. The importance of

security “awareness” has only grown since these statistics have been published. However,

notable data breaches and exploits continue to occur, despite increasing awareness of

cybersecurity threats. As discussed by Ani, et al., security “awareness” is meant to describe

thoughtfulness on security, which encourages employees to flag security concerns and respond

to them [19]. Increasing awareness of employees, particularly ones with elevated levels of access

to assets, is essential to improving system security. This section will summarize attempts to

quantify security awareness of human assets within an organization.

Labeled as Workforce Cybersecurity Capability (WCSC), the evaluation model for

human entity cyber awareness is a function of an employee’s knowledge and skill. Specifically,

knowledge is “the measure of information and theoretical understanding about…vulnerabilities…that a

user, employee or operator is working with.” Skill is “the ability to…spot or detect cyber-attack attempts,

patterns and techniques…and the degree, in which the user can respond timely with appropriate

countermeasures” [19]. Using both of these metrics, we can begin to estimate the cyber security

readiness of an organization and its employees.

To collect data on an employee, Ani, et al. recommends questionnaires, interviews,

general observations, attack simulations or penetration testing and gamification [19]. Of these

strategies, penetration testing is the most comprehensive and indicative of real-world actions by

employees, but also incurs the largest cost. A combination of these data collection methods is

recommended, but none are particularly quantitative enough to develop a relative scoring

system for the WCSC.

From here, the quantitative ranking of human security preparedness traits become less

mathematically relevant and would likely be ineffective in relative scoring of employee security

awareness. However, the concepts of knowledge and skill, with respect to the WCSC, are

important enough to be included in all employee onboarding processes. Similarly, discussing

security awareness as an organizational priority is essential to executing security procedures.

While the research on scoring systems for employee security awareness seems unproven, the

concepts discussed are necessary in understanding the human element in successful exploits

and breaches.

24

2.4 Conclusions: Vulnerability Scoring and Prioritization Methods

 The ultimate security goal of any organization is to minimize total impact from security

exploits. Organizations fix vulnerabilities to reach this goal. However, the key is ensuring that

the correct vulnerabilities are fixed to minimize impact of those exploits. To maximize the

likelihood of fixing the correct vulnerabilities, organizations prioritize remediation efforts by

scoring vulnerabilities relative to one another. At the most granular level, the focus of this

section is vulnerability scoring systems, the crux of minimizing security risk in an organization.

Simply put, organizations cannot from cybersecurity attacks without robust vulnerability

scoring systems to remediate most effectively.

Different organizations will have different standards and requirements for remediation,

but any systems with the potential to become vulnerable in the future must have a strategy.

Thus, it is difficult to offer any industry standard vulnerability remediation system. Similarly, it

is difficult to generalize any vulnerability scoring system. However, the Kenna Security model

provides metrics to quantitatively review remediation efforts and compare those efforts to other

strategies.

Taking a number of the remediation strategies discussed, Kenna developed an

“Everything” model, tested on CVSS base scoring, reference lists, vendors and products, and

keywords found in CVE descriptions. Each of these factors provides additional information

about past “performance” of vulnerabilities and can help maximize likelihood of effective

remediation based on it. Seen in the graph in Figure 8, this model offers a more robust

remediation strategy with respect to efficiency - coverage tradeoffs. If an organization is

looking for the most comprehensive remediation strategy, for all coverage levels up to 100%,

the “everything” model offers a more efficient route. Conversely, for all relevant efficiency

levels up to ~85%, the “everything” model maximizes the coverage of it. Organizations will

have internal valuations of coverage and efficiency, but the “everything” model is an efficient

remediation frontier for all of them.

 The model developed by Kenna is not the end-all-be-all of vulnerability remediation, but

there are a few notable takeaways from this graphical representation of coverage and efficiency.

Most interestingly, the CVSS scoring model is one of the least effective strategies, despite being

one of the most detailed and robust scoring systems. Noting this, is it fair to question whether

CVSS is properly estimating risk in its scoring system? Or does CVSS scoring and subsequent

prioritization limit the ability to efficiently remediate vulnerabilities? These are questions that

require a bit more investigation but will be discussed briefly in section 5.

25

 Concluding this section on scoring systems and remediation strategies, it is important to

keep a balance between academic value and practical implementation. Academic approaches to

scoring systems, like CVSS, can attempt to quantify risk of a vulnerability in a singular number,

but oftentimes are not aligned with organizational security needs. A base scoring system is

inherently difficult to tailor to specific business needs. Conversely, Bugcrowd’s VRT focuses on

a simple 1-5 categorization for bug bounties. This is an effective (and widely accepted) practical

use, but it does not comprehensively define the security impact of each vulnerability.

“Everything” prioritization systems, like the one developed by Kenna, can fit business

efficiency requirements, while maximizing security coverage.

Figure 8: Coverage/Efficiency tradeoffs for remediation models [17]

26

3. Vulnerability Classifications and Taxonomies

3.1 Vulnerabilities, Exploits, Threats and Taxonomy Types

3.1.1 Why Categorize Vulnerabilities, Threats and Exploits?

 After a weakness is found in a system, the first step to eliminate that weakness is

understanding what the weakness is. Classification systems, such as the Common Weakness

Enumeration (CWE), offers a reference guide to security researchers and software engineers

focused on patching these vulnerabilities. Categorization of vulnerabilities and exploits can

simultaneously facilitate security awareness within an organization and functionally support

the CISO’s efforts in minimizing total impact of security flaws.

 However, categorization is a very general term. Looking at large datasets of

vulnerabilities, such as the one analyzed from Cobalt in Section 1, there are plenty of effective

ways to separate security concerns into effective categories. There are defense-focused systems

like the SANS Top 20. There are massive vulnerability taxonomies like the CVE and NVD.

There are weakness enumerations like the CWE, which focuses more on classification. There

are threat taxonomies, focused on the types of approaches that deliver or execute exploits. And

there are representations of all these with bucketing systems like the OWASP Top 10.

Regardless of the way vulnerabilities and weaknesses are categorized, the goal of

categorization is to emphasize specific aspects about the vulnerabilities, in turn providing better

understanding for how to defend against them. This section of the thesis focuses on the pros

and cons of each type of vulnerability/weakness/threat/exploit categorization and reflects on the

most effective ones.

3.1.2 Vulnerabilities vs. Exploits

Before delving into specific classification standards, a distinction needs to be made

between a vulnerability and an exploit, as classification systems will deal with each of these

entities differently. This can be most easily described by an example from the Common

Weakness Enumeration (CWE is discussed in more detail in section 3.2.1).

Most vulnerabilities in the CWE have no associated or published exploit, so let us look at

CWE-611: Improper Restriction of XML External Entity Reference, or XXE [21]. This

vulnerability takes advantage of XML entity definitions, where an attacker can define a file path

that will lead an application to read the contents of a local file, potentially maliciously. The

vulnerable application will process the XML and may expose the contents of a file that may be

outside its sphere of control [21].

27

Here, the vulnerability is clear. The processing of the XML document contains the

vulnerability and impact of this weakness may be significant, with detrimental effects to

Confidentiality, Integrity and Availability of the system. The exploit may be slightly less clear.

As described on the CWE page, a URI in an XML file such as file:///etc/passwd designates the

password file in Unix-based systems. This is an example of an exploit. Using this example, it

should be evident that a vulnerability is a flaw in the system, regardless of its inception.

Vulnerability is generally used interchangeable with weakness, but in the case of CVE and

CWE, distinctions emerge. An exploit or attack is the act of attempting to take advantage of the

specific vulnerability and can be done in this example by providing a malicious XML file.

A vulnerability (or weakness) is the poorly guarded door and an exploit is the strategy

or path taken to gain access to that door to take advantage of its weakness. Some taxonomies

and categorization systems will focus on the vulnerability or weakness, while others will focus

on the exploit or threat. The most important takeaway is that a singular published exploit can

jeopardize the security of thousands of systems, through just one specific vulnerability.

3.1.3 Threat Taxonomies

 Threat taxonomies focus on the act that delivers or propagates an exploit. This is

distinctly different than defense-focused taxonomies (SANS Top 20), vulnerability

enumerations (CWE), and vulnerability classification buckets (OWASP Top 10). The primary

threat taxonomy is developed by ENISA, the European Union Agency for Network and

Information Security [22]. With the goal of classifying threats on their type, it focuses on the top

threats from over 100 classes of threats, based on the source of security issues and the

environments in which the issues appear.

 The ENISA threat taxonomy does not consider the type of attack or whether the

malicious threat is delivered as an XSS attack, but instead considers how that threat manifests.

For example, this would focus on the payload delivering the XSS attack, if it is a malicious

phishing email or downloaded malware. ENISA focuses on a top 15 set of threats each year,

with their Top 15 Threats from 2017 – 2018 detailed below [22].

Unsurprisingly, the most common threats faced remain fairly consistent, while the

development of new vulnerability exploitation methods emerge in the forms of botnets and

cryptojacking. Similar to the SANS Top 20, the ENISA threat taxonomy provides essential

support to organizations attempting to improve employee security awareness. Most of these

threats to systems target human entities as the initial contact for the exploit, so understanding

these avenues is essential to improving organizational security.

28

 Focusing less on the specific delivery mechanisms (phishing, malware, etc.) for exploits,

another emphasis for threat taxonomies is the asset under scrutiny. No systems in any

organization are exclusively code, they are often developed in a complex environment with

physical assets, hardware, human interaction and a number of other subsections that can be the

primary target for an exploit. This simplified taxonomy is shown below to describe types of

threats, when simplified and organized by asset [23]:

• Physical Security – Assets come in contact with a threat actor, potentially losing

integrity, availability or confidentiality of the system.

• Hardware Security – A potential loss of availability, hardware failures can focus on hard

disk drives, CPUs, routers, network printers, or other connected devices.

Figure 9: Figure 9: ENISA Threat landscape (2017, 2018) [22]

29

• Software Security – The most typical threat, where issues originate from code defects or

faulty code, making the system behave in a way that the organization did not intend.

• Crypto and Protocol Security – Failures can result in loss of confidentiality of the system

due to insecure use of cryptographic systems to protect data in rest, transit and use.

• Interoperability – Software updates that contain changes can break interoperability of

systems, which can cause loss of availability. When assets interact with one another in

the system, interoperability is essential to intra-system communication.

• Configuration Security – One of the vaguer threats modeled, this describes issues

associated with settings or prescribed behaviors of a system that leave it open to

exploits.

• Supply Chain Security – The use of vendor provided software, third party packages and

other hardware installations force organizations to rely on their supply chain partners’

security to maintain their own security.

• Human Error – As described numerous times before, human actions within a complex

system can result in negative outcomes that are not intended by anyone. This focuses

less on a malicious insider and more on human misuse or low security awareness

causing errors.

3.2 Classification Standards & Sources

3.2.1 Common Weakness Enumeration (CWE)

Developed and maintained by MITRE, the Common Weakness Enumeration (CWE) is

“a community-developed list of common software security weaknesses” [24]. With the goal of

being a baseline for weakness identification, CWE offers a comprehensive list of all publicly

disclosed software weaknesses. Each entity describes a specific type of weakness and is

assigned a CWE ID number. Each of these CWE IDs identifies a specific type of weakness with a

detailed description, membership classes, buckets and any known exploits or patches publicly

disclosed.

Each CWE ID offers the scope, potential impact, membership groupings and other

valuable information for the associated weakness. The goal of the CWE is to identify and

understand vulnerabilities and software flaws as they are found, to improve likelihood of

preventing these flaws. The CWE has over 600 unique IDs describing software weaknesses and

vulnerabilities, but the enumeration itself has over 1000 unique IDs describing things beyond

just weaknesses. For example, CWE-710 is described as Improper Adherence to Coding

Standards, an umbrella CWE with a number of specific weaknesses encompassed underneath it.

Combined with the specific weaknesses such as CWE-45, these category and bucket CWE IDs

make up the entirety of the enumeration.

30

The direct benefits of the Common Weakness Enumeration are significant. Most notable

and most relevant for this section is the common language it has develop for “discussing,

finding, and dealing with the causes of software security weaknesses as they are manifested in

code, design or architecture” [24]. In addition, the public display of these weaknesses allows for

organizations to offer clear and organized claims of security weaknesses that may exist in

products that they develop or curate. Not exclusively a taxonomy, CWE also offers code

examples and other instructional tools that can help educate users on the types of weaknesses

and how they may appear in code.

 The CWE offers tremendous value as vulnerability taxonomy and categorization system.

The CWE functions as a classification tool that should be able to properly describe any software

vulnerability found in a system or application. Having a one-to-one relationship from CWE to

security issue allows for bucketing of weaknesses and well-organized list of all known

weaknesses in a singular mapping. A weakness in a system that is found and cannot be mapped

to an existing CWE ID is fairly rare. To show the comprehensiveness of the CWE classification

system, this thesis developed a makeshift mapping from 2017 OWASP Top 10 Buckets to the

CWE. This can be seen in Figure 11, with a sample set of the most common CWEs and how the

CWE taxonomy is a wholly comprehensive one.

Figure 10: CWE-ID 45 from https://cwe.mitre.org/data/definitions/45.html [24]

31

Referring back to the dataset analysis in the first section, of the 450 vulnerabilities from Cobalt’s

platform that were not categorized into the modified-OWASP Top 10, all 450 were mapped

properly to specific CWE IDs. The comprehensiveness of the CWE is particularly valuable for

any vulnerability classification system and there are no weakness-specific taxonomies that can

as completely cover found vulnerabilities. The CWE includes a number of scoring systems in its

own right, but these systems, such as CWSS, offer very little distinction from the scoring

systems and remediation processes already discussed.

3.2.2 Common Vulnerabilities and Exposures (CVE)

The Common Vulnerabilities and Exposures (CVE) is a list of all publicly known

cybersecurity vulnerabilities [25]. Also developed and maintained by MITRE, the CVE is often

discussed in tandem with the CWE, but the distinction between the two entities is important.

CWE focuses on vulnerabilities, or the underlying flaw in code or within a system. CVE focuses

on vulnerabilities and the actual exposures of them -- the specific instances of the vulnerability

that are found within a product or asset. With over 115,000 entries in the CVE, it is a large and

diverse list of publicly disclosed vulnerabilities [25]. Each CVE can be directly mapped to an

associated CWE ID that will describe the weakness associated with the real-world exposure.

Each CVE entity is similarly described, with a description of the vulnerability, references to the

disclosure and any additional information attached to that specific exposure. An example of a

CVE entry from this past year is shown in Figure 12.

Figure 11: OWASP Top 10 to Cobalt Buckets to CWE Mapping

32

CVE is an incredibly useful and widely applied tool, focused less on categorization of

vulnerabilities and more on identification of them. The CVE IDs are commonly used to identify

a vulnerability found within a system and is used in the remediation model described by Kenna

Security in section 2.

 CVEs can be identified by MITRE themselves, with MITRE functioning as an editor of

sorts for the list of all exposures, but the most notable value comes from organizations that

assign CVE IDs for their own products. Large entities in the software space, particularly

companies like Microsoft, IBM, Oracle, etc.) will designate CVEs for flaws identified and

remediated within their own products. This may not be an immediate posting, but the ability to

maintain your own security by following CVE updates for products within your organization is

incredibly valuable. Since all CVEs are descriptors of weaknesses in products that have already

been released, any organization that uses external software or products relies on CVE as a tool

for staying current on weaknesses that may exist in their own systems.

 To develop a bit more context for the relationship between CVEs and CWEs, see Figure

13. On the left, the top products found in the CVE are shown, some of them self-reported by

large companies and public entities [26]. This reinforces the association between a large number

of vulnerabilities in the CVE with single products or systems. In the table on the right, there is

an association between CWE IDs and the number of CVEs found for each one. This indicates the

one-to-many relationship previously described between the CWE and the CVE. Buffer

Overflow, one of the older and less complex weaknesses in the enumeration, still has

manifested in over 530 vulnerabilities publicly disclosed in the CVE [26]. These tables offer

Figure 12: CVE2019-1721 from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1721 [25]

33

important context on these CVE/CWE relationships and valuable insight into which types of

weaknesses and products are most vulnerable. Tying another industry standard into the CVE,

the next section will focus on the National Vulnerability Database.

Figure 13: Left: Top software products by number of CVE IDs. Right: Top CWE weaknesses by number of CVE IDs [26]

3.2.3 National Vulnerability Database (NVD)

The National Vulnerability Database (NVD) is a repository of standards-based

vulnerability management data, curated and maintained by the US government. Specifically,

the NVD is curated by NIST, the National Institute of Standards and Technology, providing a

particularly valuable status as a database of record [27]. Linked to both the CVE and the CVSS,

NVD offers detailed information regarding found vulnerabilities from the CVE.

One area where the NVD differs from most from the other databases and classification

organizations is in its focus on industry verticals. As discussed in an interview with Joe

Sechman (see section 4), he indicated significant value in the focus on Healthcare and Financial

Sector vulnerabilities within the NVD and how these vertical identifications can improve

remediation strategies. For example, a simple search in the NVD for “Healthcare” offers 62

relevant vulnerabilities, all looking at healthcare tools or products that contain publicly

disclosed vulnerabilities. All of this information stored in a singular place functions as a source

of record for public vulnerabilities.

Each NVD entry is labeled with an associated CVE ID, description of the vulnerability

and a vast amount of information associated with it. Most notably, we find the Impact scores of

the vulnerability, CVSS v2.0 and CVSS v3.0. Section 2.1.2 of this thesis focuses more heavily on

CVSS v2.0, but as seen in the example NVD entry in Figure 14, both of the scores are included

here because a number of organizations still tend to use v2.0. Beneath the Impact scores and the

description, the NVD may reference to potential mitigants of the vulnerability, particularly

when it is a self-reported or diagnosed vulnerability by an organization themselves (Cisco in

this case). Less of a taxonomy than the other strategies discussed in this section, NVD still offers

incredible value as a resource for identifying and describing vulnerabilities in a searchable

manner.

34

3.2.4 OWASP Top 10

 The Open Web Application Security Project, or OWASP, is a non-profit foundation with

efforts focused on providing “unbiased, practical, cost-effective information about application

security” [28]. Referenced a number of times in this thesis already, OWASP’s primary

relationship to this discussion is its release of its OWASP Top Ten Project, a report focusing on

the ten most critical web application risks. Considered to be one of the primary categorization

systems, the OWASP Top 10 encompasses a large number of the most common and most severe

types of attacks against applications, and more specifically, web applications. The OWASP Top

10, most recently published in 2017, is detailed below [29]:

1. Injection – A broad categorization, injection covers standard SQL injections, but also

attacks such as NoSQL injections and OS injections. These types of attacks are

categorized by some untrusted data payload being sent within a command or query

maliciously, with the goal of executing unintended commands or revealing sensitive

data.

2. Broken Authentication – Primarily focusing on session management and user

authentication, this set of attacks discusses malicious actors attempting to collect

passwords, session tokens or other authentication mechanisms to assume a user or

administrator’s identity.

Figure 14: NVD CVE-2019-1721 from https://nvd.nist.gov/vuln/detail/CVE-2019-1721 [27]

35

3. Sensitive Data Exposure – Web applications and associated APIs offer access to certain

pieces of information, but attackers can take advantage of any sensitive information not

properly hidden. Valuable and potentially sensitive information can be taken by

attackers in transit.

4. XML External Entities (XXE) – Discussed earlier in this section, XXE attacks on legacy or

weak XML processing entities that can be used to reveal files, access ports on a system or

even remote code execution.

5. Broken Access Control – Somewhat related to OWASP #2, broken access control focuses

on restrictions on user accesses within a system. These types of attacks attempt to exploit

flaws in unauthorized access to other accounts, sensitive files or changing rights of other

users within a system.

6. Security Misconfiguration – The most common security issue found, security

misconfiguration describes a number of vulnerabilities. Most commonly, this is found

through insecure default configurations, poorly configured HTTP headers, overly

verbose error messages and other processes that may contain sensitive information or

allow for attacks against poorly configured systems.

7. Cross-Site Scripting (XSS) – XSS allows for attackers to execute scripts in a browser

window to redirect to malicious sites, imitate real websites or even hijack sessions

through poor validation systems. If applications allow untrusted data in a new

webpage, XSS attacks can occur.

8. Insecure Deserialization – A harbinger of remote code execution, insecure deserialization

can be exploited to perform injection and privilege escalation attacks.

9. Using Components with Known Vulnerabilities – Fairly self-explanatory, this describes a

large set of vulnerabilities created by systems using older components, libraries,

software modules and other vulnerable. If an external library has known vulnerabilities

and is implemented in the development of an organization’s system, it can leave that

organization vulnerable to attacks.

10. Insufficient Logging and Monitoring – These vulnerabilities often exacerbate other attacks,

allowing a malicious actor to take advantage of data or information collected due to

poor internal logging and monitoring by an organization. Insufficient logging and

monitoring vulnerabilities can be exacerbated by things like plaintext password logging

systems and other compounding weaknesses.

The OWASP Top 10 provides an understandable and effective system to classify security risks

and the attack mechanisms. As described in the above sections, the CWE can effectively be

classified underneath the OWASP Top 10, with a small section for other vulnerability and

weakness types. But the OWASP Top 10 is considered by many to be a viable industry standard

for efficiently and effectively bucketing vulnerabilities.

3.2.5 VulnCat

Developed by the Fortify Software Security Research Group at HP, VulnCat (or the

Fortify Taxonomy) is a categorization system for software security errors. VulnCat is organized

36

into 7 categories, or phyla, with an homage to the biological kingdoms, indicated in order of

importance: (i) Input Validation and Representation, (ii) API Abuse, (iii) Security Features, (iv)

Time and State, (v) Errors, (vi) Code Quality and (vii) Encapsulation [30]. The eighth phylum

describes security flaws found outside of code itself, or the (viii) Environment that the flaw

exists within [30]. This categorization is also briefly discussed in section 4.4.

VulnCat attempts to “organize sets of security rules that can be used to help software

developers understand the kinds of errors that have an impact on security” [30]. Primarily

developed as a teaching mechanism, VulnCat can be used to educate the software community

on the ways that they are unknowingly or unintentionally integrating security concerns into

their systems. Each kingdom contains a number of weaknesses. Each weakness is described and

provides a detailed explanation, with sample code to describe how it may manifest itself. An

example of Access Control Manipulation on AWS S3 buckets is shown in Figure 15. Each

weakness is associated with a number of references, all indicating mappings to necessary

standards. This weakness in particular is referenced by CWE ID-359 and 287, by the OWASP

Top 10, Sensitive Data Exposure, and the PCI DSS (Payment Card Industry Data Security

Standards) dating back to PCI v1.1. This type of classification system provides an effective

educational tool for software engineers, trying to better understand and solve problems that

researchers and practitioners face.

Figure 15: Fortify Taxonomy, ACL Manipulation from

https://vulncat.fortify.com/en/detail?id=desc.dataflow.java.access_control.acl_manipulation#Java%2fJSP [30]

37

3.3 Benefits of Classification Systems vs. Databases & Enumerations

 The CVE, CWE and NVD provide significant value for the security community. The

comprehensiveness and reliability of these three industry standards offer a taxonomy that is

significant in size and largely encompassing. Organizations like OWASP, HP’s Fortify and

ENISA all create and maintain frameworks for analyzing and conveying important security

information. Both framework and standard types offer varying levels of educational benefits,

industry analyses and business translations from the security industry.

 In particular, one of the goals of vulnerability and exploit classifications should be to

increase security awareness. For most organizations, a CISO will struggle to present the NVD to

employees with the hopes of improving security awareness and fostering stronger defenses

against malicious actors. Instead, security experts focus on the OWASP Top 10, VulnCat,

ENISA, the SANS Top 20 and other systems to consolidate and convey important information.

In the next section of the thesis, two security experts share their thoughts on these classifications

and other topics including scoring systems and remediation strategies.

38

4. Views from CISOs and Security Experts

 During the research phase of this thesis, two security executives were interviewed for

their opinions, recommendations and criticisms of scoring systems and particularly

vulnerability reporting taxonomies. Mike Shema, the Head of Product Security at Square, and

Joe Sechman, the Head of Penetration Test Delivery at Cobalt, both share their thoughts below.

4.1 Introduction of Mike Shema

 Currently the Head of Security at Square, Mike has been engrossed in the cybersecurity

industry for over 13 years, working on security teams at Qualys, Yahoo, Cobalt and now Square

[31]. With in-depth knowledge as CISO and significant experience with penetration testing and

organizational security, Mike brings a practical perspective to vulnerability classification,

remediation and scoring.

4.2 Introduction of Joe Sechman

 Now the VP of Security Operations and Penetration Test Delivery at Cobalt, Joe

Sechman also brings 13+ years of security experience. Previously working at Hewlett Packard

for their Fortify Products, Joe led the implementation of the first unified taxonomy for software

vulnerabilities with enterprise security products [32]. A speaker at RSA and former Head of

Security Engineering at Philips, Joe’s background is thoroughly tied to developing and

improving taxonomies for software vulnerabilities. Joe also has background as a security

consultant, which offered the opportunity for him to work with security flaws in multiple

industry verticals.

4.3 Vulnerability Scoring

 Both interviews opened with discussions of security scoring systems, with Joe focusing

on the business considerations. “The key is understanding how to prioritize, not to fix every

single vuln” [32]. Joe’s background in consultancy offered practical discussions, focusing on

prioritization and quantifying the possible money lost in a hack or conversely money saved by

patching properly. Both Mike and Joe offered cautious criticism towards CVSS (v2 and v3).

Mike admits that the wider security community realizes the full risk of a vulnerability cannot be

quantified and that a universal scoring may not be feasible. However, both Mike and Joe qualify

this, acknowledging that systems like CVSS offer relative value scoring, which has merit in its

own right.

 Independently, both praised Bugcrowd’s Vulnerability Rating Taxonomy as a valuable

frame of reference for both scoring systems and practical bucketing. Both agree it is not

comprehensive enough to be considered a taxonomy or even detailed enough for threat

modeling, but praise Bugcrowd’s frame of reference and practical approach to scoring. Joe

39

showed particular interest in Kenna’s security prioritization system, as it strongly aligned with

his initial points against any attempt to fix all vulnerabilities in a system.

 Mike offered an interesting perspective on scoring systems, focusing more on the factors

necessitating these systems and why they are so complex. One of the most demanding sectors in

the security space, with direct influence on remediation requirements, is cyberinsurance. Mike

briefly described the complexities of this field, focused on actuarial analysis of protecting

against any damages that may result from an attack or breach in an organization’s system.

These entities attempt to insure companies in the event of a massive breach or attack on their

system. To properly price this insurance, a strong understanding of the company’s remediation

strategies is required. This is where industry standards like CVSS and other well-formed base

scoring systems can add significant value, as a cyberinsurance organization can use these

relative values to best acquire a risk score for an entire organization. Not the focus of this paper,

cyberinsurance is highly complex, but fundamentally tied to things like vulnerability scoring

systems and remediation strategies.

4.4 Taxonomies and Classifications

 Both interviews also touched upon topics outside of remediation and scoring, most

significantly related to vulnerability taxonomies. Joe, with a background in creating and

developing VulnCat (https://vulncat.fortify.com/en), HP Fortify’s taxonomy of software security

errors, was keen on this topic. The goal of developing VulnCat was to ensure accurate and

consistent representation of risks, which necessitates a comprehensive taxonomy of errors that

create these risks. The system focuses on categories or phyla, the first seven of which focus on

security flaws within code: (i) Input Validation and Representation, (ii) API Abuse, (iii) Security

Features, (iv) Time and State, (v) Errors, (vi) Code Quality and (vii) Encapsulation. The eighth

phylum describes security flaws found outside of code itself, or the (viii) Environment that the

flaw exists within. Briefly discussed above in section 3.2.5, VulnCat is a valuable approach to

security error classification.

 Shifting away from academic taxonomies, Mike focused on practical classifications and

categorizations, citing the Australian Cyber Security Centre (ACSC) and their Top 4 Strategies

to Mitigate Cyber Security Incidents [33]. A practical approach, these 4 strategies offer an

incredibly relevant framework for organizations to mitigate possible security incidents and

remediate concerns as effectively as possible. The list focuses on Mitigation Strategies to (i)

prevent malware delivery and execution, (ii) limit the extent of cyber security incidents, (iii)

detect cyber security incidents and respond, and (iv) recover data and system availability. An

impressively comprehensive system, Mike cites the ACSC threat model as place that many

CISOs refer back to when attempting to mitigate security concerns.

The four strategies in ACSC are coupled with a fifth: mitigation strategies specific to

preventing malicious insiders. This concept relates back to section 2.3: employee entity scoring

systems. The ACSC focuses on personnel management and the necessity of organizations to

https://vulncat.fortify.com/en

40

monitor “malicious intent, development of malicious intent, or carrying out malicious

intentions undiscovered until after damage has been done” [33]. The concept of an insider

threat is not a quantitative one; it is fundamentally difficult to find a scoring system or

taxonomy to easily define it, but from the perspective of Mike and Joe, this is the key to

managing security inside their organizations. These concerns are often drivers against

outsourcing work or ensuring that outsourced workers are managed properly. Mike draws

from his experience at Square, where he describes a hypothetical password recovery scenario. If

password management were to be organized through an outsourced customer service

department, an entity that is not part of Square, Mike would not be able to fully control the

actions of that password reset anymore. Instead, he has to rely on the outsourced employee to

exercise discretion when handling sensitive information, which adds layers of insecurity to their

entire system. From the perspective of a CISO, performing security screenings of new

employees and promptly disabling access for those who leave are essential steps in maintaining

a secure organization.

41

5. Business Ramifications and Conclusions

5.1 Industry Verticals & Remediation in Practice

 This section focuses on how businesses and organizations approach cybersecurity and

concerns identified in implementation of these concepts. With respect to remediation strategies,

organizations consistently accept sizable sets of unfixed vulnerabilities. As discussed in section

2, this is expected and recognized as acceptable risk, but under the assumption that the unfixed

vulnerabilities are those with the lowest severity.

The findings from the Cobalt dataset in section 1 showed only 9% of all vulnerabilities

labeled as “not fix”, but industry-wide remediation levels are much lower than 91%. If we look

at the averages across industry verticals, we can see the probability of vulnerability remediation

after identification of the vulnerability is low and incredibly slow. Figure 16, provided by Kenna

Security, represents these trends graphically [7].

Figure 16: Remediation velocity levels by Industry over time [7]

Focusing on the far-right endpoints of the graph, no industry, save Transportation, reaches 90%

remediation likelihood after an entire year. It should be particularly concerning that the

probability of a vulnerability fix for the Healthcare sector only occurs with 65% likelihood

during the same timeframe. This begs the question: why are so many vulnerabilities not being

fixed and why does it take so long to fix them? This thesis has attempted to resolve portions of

this question, with efficiency and coverage tradeoffs, but delving a bit deeper into these

42

statistics indicates that remediation efforts may be worse than initially predicted and the

strongest systems we have for vulnerability scoring may not represent the severity of

vulnerabilities effectively.

5.2 Surprising Findings and Conclusions

5.2.1 Do security teams know how to remediate?

Figure 17, also from Kenna Security, focuses on remediation velocity by CVSS value. Of

all the conclusions from the Kenna reports, this one sticks out as the most notable. A large

majority of vulnerabilities remain unfixed after 12 months, similar to the proportions seen in

Figure 16. Acknowledging partial coverage as a reality is appropriate, but only if remediation is

effective. Figure 17 indicates that organizations’ remediations may not be particularly effective.

Figure 17: Remediation velocity levels by CVSS over time [7]

What Figure 17 depicts is concerning. Instead of remediating the vulnerabilities identified to be

the most severe or critical (CVSS 9.0-10.0), organizations most commonly remediate

vulnerabilities that are the least severe (CVSS 0.0-3.0). Why would an organization fix the least

important vulnerabilities the most often? There are a number of hypotheses to rationalize this

trend: (i) CVSS dos not reflect severity, (ii) organizations cannot effectively prioritize

remediation efforts, (iii) security teams do not know how to remediate more severe

vulnerabilities.

43

(i) The first conclusion is that CVSS does not properly reflect the severity of

vulnerabilities. If this is the case, organizations are superior at identifying the most

significant weaknesses in their systems as compared to CVSS. After identifying these

weaknesses, they remediate them fairly quickly, with little regard for the CVSS

severity value or what other academic descriptions of the vulnerability may be. This

would support some concerns previously discussed surrounding CVSS but is a

significant deviation from the current posture in the security space.

(ii) The second conclusion is that organizations do not know how to properly prioritize

remediation efforts and are unable to implement the processes described in section 2

of this thesis. The inverse of the first conclusion, this assumes that security teams in

organizations struggle to properly identify the most severe vulnerabilities and the

CVSS values offer a stronger estimate for the severity of a vulnerability. This would

explain why Figure 17 shows so many vulnerabilities with the least severe ratings

being fixed at higher and faster rates than those with more severe ratings.

(iii) The final conclusion assumes that CVSS properly reflects severity of vulnerabilities

and that organizations can properly prioritize vulnerabilities. This implies that

security teams may identify more severe vulnerabilities, but do not know how to

remediate them. This seems to be the most realistic of the three hypotheses, with the

assumption that most security teams fix typical, less severe vulnerabilities because

they are easily approachable and give teams clear and small victories. This allows

more serious weaknesses to fester and increases the likelihood of serious security

breaches.

 The findings here may indicate that practical remediation and scoring pursuits are less

effective than anticipated and difficult to realistically implement. Systems like CVSS, VRT and

other remediation bases are undeniably beneficial, but these findings support significant

opportunity for improvement in vulnerability scoring and remediation. These hypotheses offer

intriguing questions to consider for future research, identified in section 5.3.

5.2.2 Conclusions – Vulnerability Scoring and Classification

 While section 5.2.1 may paint the current security climate as bleak, the security systems

and taxonomies described in this thesis offer cause for optimism for the future. Unified

taxonomies like CVE, CWE and NVD provide comprehensive frameworks for improving

universal security, while classification systems like the OWASP Top 10 assist in improving

security awareness in organizations. The current state of classification systems in the security

space (threat taxonomies, defense-focused systems, vulnerability/weakness enumerations,

bucketing systems) is robust and can be effective in assisting the mitigation of hacks and

breaches in the future.

44

Vulnerabilities and weaknesses will never cease to exist in software-based systems. As

organizations continue to develop new software, new vulnerabilities and new exploits will

emerge. Due to this cycle, refining and reassessing remediation strategies and vulnerability

scoring systems will always be a priority for security teams. The systems described in this thesis

show promise in identifying vulnerabilities that need remediation, but the value of these

processes still lies in the ability of software engineers to make the necessary patches. The focus

of the security industry will be faster, more effective patches and increasing global security

awareness, with scoring systems and taxonomies as the respective foundations.

5.3 Questions for Future Investigation

 Throughout this thesis, there are a number of noted topics not discussed in detail that

could be interesting topics for future research. An interesting investigation could focus on the

vulnerability scoring systems provided by Bugcrowd and Cobalt, focusing on how hackers tend

to report severity scores and optimal strategies to request self-reported weaknesses from them.

Elaborating on the importance of security awareness, future research could include a

quantitative study on security awareness levels in major companies, focusing on the ability of

vulnerability taxonomies to improve awareness. Further topics could include a study into the

effectiveness of CVSS and why organizations fail to remediate the seemingly most severe

vulnerabilities.

45

Appendix A [34]

1 CVSS Access Vector Values

2 CVSS Access Complexity Values

3 CVSS Authentication Values

4 CVSS Confidentiality Values

46

5 CVSS Integrity Values

6 CVSS Availability Values

47

1 “Cybersecurity Industry Overview.” Prime Indexes, Prime Indexes, www.primeindexes.com/indexes/prime-

cyberindex.html.

2 Hannula, Tero. “A Framework for Securing Internal Business-Critical Infrastructure Services.” Institute of

Information Technology, Degree Programme in Cyber Security,2018.

3 Houser, Adam Michael. “Mental Models for Cybersecurity: A Formal Methods Approach.” University at Buffalo,

State University of New York, University at Buffalo, State University of New York, 2018.

4 “Addressing the SANS Top 20 Critical Security Controls for Effective Cyber Defense.” Trend Micro, Feb. 2016,

resources.trendmicro.com/rs/945-CXD-062/images/sans_top20_csc_trendmicro2016.pdf.

5 Srivastava, Amit Kumar, and Shishir Kumar. “An Effective Computational Technique for Taxonomic Position of

Security Vulnerability in Software Development.” Journal of Computational Science, vol. 25, Mar. 2018, pp. 388–
396., doi:10.1016/j.jocs.2017.08.003.

6 “Prioritization to Prediction, Volume 2 - Getting Real About Remediation.” Prioritization to Prediction, Volume 2

| Kenna Security, Kenna Security, 22 Jan. 2019, resources.kennasecurity.com/research-reports/prioritization-to-

prediction-getting-real-about-remediation.

7 “Prioritization to Prediction, Volume 3 - Winning the Remediation Race.” Prioritization to Prediction, Volume 3 |

Kenna Security, Kenna Security, 12 Mar. 2019, resources.kennasecurity.com/research-reports-3/prioritization-to-

prediction-winning-the-remediation-race-2.

8 SecOps Vulnerability Memorandum: Vulnerability Taxonomy, Reporting and Analysis.

9 SecOps Vulnerability Memorandum: Vulnerability Reporting and Analysis.

10 “OWASP Top 10 - 2017.” OWASP.org, OWASP, 2017, www.owasp.org/images/7/72/OWASP_Top_10-

2017_%28en%29.pdf.pdf.

11 Srivastava, Amit Kumar, and Shishir Kumar. “An Effective Computational Technique for Taxonomic Position of

Security Vulnerability in Software Development.” Journal of Computational Science, vol. 25, Mar. 2018, pp. 388–

396., doi:10.1016/j.jocs.2017.08.003.

12 Kelleher, Kevin. “Facebook Loses Around $13 Billion in Value After Data Breach Affects 50 Million of Its

Users.” Fortune, 28 Sept. 2018, fortune.com/2018/09/28/facebook-stock-falls-after-security-breach/.

13 “Prioritization to Prediction Report, Volume 1.” Prioritization to Prediction Report | Kenna Security, Kenna

Security, 24 Aug. 2018, resources.kennasecurity.com/research-reports/prioritization-to-prediction.

14 Mell, Peter, et al. “CVSS v2 Complete Documentation.” FIRST, www.first.org/cvss/v2/guide.

15 Poonia, Ajeet Singh, et al. “Vulnerability Identification and Misuse Case Classification Framework.” Advances in

Intelligent Systems and Computing Soft Computing: Theories and Applications, 25 Nov. 2017, pp. 659–666.,

doi:10.1007/978-981-10-5699-4_62.

16 “Bugcrowd's Vulnerability Rating Taxonomy.” Bugcrowd, 13 Mar. 2019, bugcrowd.com/vulnerability-rating-

taxonomy.

17 “Cobalt Application Security Platform.” Cobalt, 2019, cobalt.io/how.

48

18 “Prioritization to Prediction Report, Volume 1.” Prioritization to Prediction Report | Kenna Security, Kenna

Security, 24 Aug. 2018, resources.kennasecurity.com/research-reports/prioritization-to-prediction.

19 Ani, Uchenna P. Daniel, et al. “Human Capability Evaluation Approach for Cyber Security in Critical Industrial

Infrastructure.” Advances in Intelligent Systems and Computing Advances in Human Factors in Cybersecurity, vol.

501, 10 July 2016, pp. 169–182., doi:10.1007/978-3-319-41932-9_14.

20 “2018 Data Breach Investigations Report 11th Edition.” Verizon.com, Verizon, 2018,

enterprise.verizon.com/resources/reports/2018/DBIR_2018_Report.pdf.

21 “Common Weakness Enumeration - CWE-611.” CWE, 3 Jan. 2019, cwe.mitre.org/data/definitions/611.html.

22 “ENISA Threat Landscape Report 2018.” ENISA, 15 Feb. 2019, www.enisa.europa.eu/publications/enisa-threat-

landscape-report-2018.

23 Hannula, Tero. “A Framework for Securing Internal Business-Critical Infrastructure Services.” Institute of

Information Technology, Degree Programme in Cyber Security,2018.

24 “Common Weakness Enumeration.” CWE, cwe.mitre.org/about/index.html.

25 “Common Vulnerabilities and Exposures (CVE).” CVE, cve.mitre.org/.

26 Li, Frank, and Vern Paxson. “A Large-Scale Empirical Study of Security Patches.”

Http://People.eecs.berkeley.edu, University of California, Berkeley and International Computer Science Institute,

people.eecs.berkeley.edu/~frankli/papers/li-ccs2017.pdf.

27 “National Vulnerability Database.” NVD, NIST, nvd.nist.gov/.

28 “Category:OWASP Application Security Verification Standard Project.” OWASP,

www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project.

29 “OWASP Top 10 - 2017.” OWASP.org, OWASP, 2017, www.owasp.org/images/7/72/OWASP_Top_10-

2017_%28en%29.pdf.pdf.

30 “Fortify Taxonomy: Software Security Errors.” A Taxonomy of Coding Errors That Affect Security, MicroFocus,

2019, vulncat.fortify.com/en.

31 Friedman, Jacob. “Interview with Mike Shema (Head of Product Security at Square).” 5 Apr. 2019.

32 Friedman, Jacob. “Interview with Joe Sechman (VP of Pen Test Delivery at Cobalt.io).” 11 Feb. 2019.

33 “Strategies to Mitigate Cyber Security Incidents – Mitigation Details.” Australian Signals Directorate, Australian

Cyber Security Centre, Feb. 2017, www.cyber.gov.au/sites/default/files/2019-

03/Mitigation_Strategies_2017_Details_0.pdf.

34 Khan, Shakila A. “Analysis of Cybersecurity Vulnerability Trends and Forecast Modeling.” George Washington

University, ProQuest, 2018.

http://www.cyber.gov.au/sites/default/files/2019-03/Mitigation_Strategies_2017_Details_0.pdf
http://www.cyber.gov.au/sites/default/files/2019-03/Mitigation_Strategies_2017_Details_0.pdf

	1. Cybersecurity: Industry Analysis and Trends
	1.1 Introduction to Cybersecurity
	1.2 Cybersecurity in Business
	1.2.1 Security Controls & the SANS Top 20
	1.2.2 Vulnerability detection and remediation as an NP-Hard Problem

	1.3 Vulnerability Trend Research
	1.4 Case Study: Cobalt Vulnerability Analysis
	1.4.1 Uncategorized Vulnerabilities & Classification
	1.4.2 Pen Testing Trend Analysis & Scoring

	2. Vulnerability Scoring Systems
	2.1 Existing Vulnerability Scoring Systems
	2.1.1 Why do we score vulnerabilities?
	2.1.2 CVSS Base Score
	2.1.3 Limitations of CVSS
	2.1.4 Bugcrowd Vulnerability Rating Taxonomy (VRT)
	2.1.5 Cobalt Labs
	2.1.6 Kenna Security

	2.2 Vulnerability Remediation Strategies
	2.2.2 CVSS Base Score
	2.2.3 Product and Vendor Data
	2.2.4 Category Reference Lists (on CVE ID)
	2.2.5 Keywords and Phrases (on CVE Descriptions)

	2.3 Employee Entity Scoring Systems
	2.4 Conclusions: Vulnerability Scoring and Prioritization Methods

	3. Vulnerability Classifications and Taxonomies
	3.1 Vulnerabilities, Exploits, Threats and Taxonomy Types
	3.1.1 Why Categorize Vulnerabilities, Threats and Exploits?
	3.1.2 Vulnerabilities vs. Exploits
	3.1.3 Threat Taxonomies

	3.2 Classification Standards & Sources
	3.2.1 Common Weakness Enumeration (CWE)
	3.2.2 Common Vulnerabilities and Exposures (CVE)
	3.2.3 National Vulnerability Database (NVD)
	3.2.4 OWASP Top 10
	3.2.5 VulnCat

	3.3 Benefits of Classification Systems vs. Databases & Enumerations

	4. Views from CISOs and Security Experts
	4.1 Introduction of Mike Shema
	4.2 Introduction of Joe Sechman
	4.3 Vulnerability Scoring
	4.4 Taxonomies and Classifications

	5. Business Ramifications and Conclusions
	5.1 Industry Verticals & Remediation in Practice
	5.2 Surprising Findings and Conclusions
	5.2.1 Do security teams know how to remediate?
	5.2.2 Conclusions – Vulnerability Scoring and Classification

	5.3 Questions for Future Investigation

