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Introduction: The Great Bitcoin Scaling Debate 
  
 Bitcoin was conceived with the vision of one day usurping major credit card networks 
such as Visa in capacity and scalability. Pseudonymous creator of Bitcoin, Satoshi Nakamoto, 
himself explained in April of 2009, “the existing Visa credit card network processes about 15 
million Internet purchases per day worldwide. Bitcoin can already scale much larger than that 
with existing hardware for a fraction of the cost” (BitcoinTalk.com). Still, an even nine years 
later, bitcoin transaction levels remain orders of magnitudes short of that target, processing on 
average just over 200,000 transactions per 24 hour period year to date as of 2018, or ~140 
transactions per second (Blockchain.info).  In this paper, the underlying causes behind scalability 
bottlenecks are introduced and a variety of compelling solutions are discussed and assessed.  
  
Origins of Bitcoin’s Scaling Dilemma 
  
Abridged Bitcoin Context 
  

Bitcoin’s blockchain is simply a decentralized append-only ledger in which 1MB 
“blocks” of transactions are added every 10 minutes on average (Nakamoto 2009). The blocks 
are “chained” in the sense that each block has within its metadata a hash of the previous block. 
The ecosystem of participants is tricameral: users, miners, and nodes. Nodes maintains their own 
version of the blockchain, working to constantly update their version of transaction history as 
new blocks are propagated through the network. Users are those who broadcast transactions to 
the ledger to transfer value in the form of bitcoins (BTC). Any given transaction receives BTC 
by accessing unspent transactions that still have “unclaimed” BTC as inputs and then sending 
that BTC to new unspent transactions as outputs. To access these unspent transactions, a user 
“proves” ownership of the BTC in the transaction by digitally signing the transaction to prove 
that he or she is the intended recipient of the transaction. Miners take on the role of validating 
blocks of transactions via the mechanism described below.  
  
Proof-of-Work Consensus Mechanism 
  

A driving innovation of Nakamoto’s Bitcoin protocol is its proof-of-work (PoW) 
consensus mechanism. Nakamoto did not invent the notion of PoW; however, its existence in 
academic literature is documented at least twice before the publishing of Nakamoto’s whitepaper 
in 2009.  First origins of PoW date to 1992, during which Dwork and Naor proposed the 
mechanism as a means of mitigating spam (Dwork & Naor 1992) . In particular, forcing email 
senders to compute a brute-force solution to a computationally intensive “puzzle” limits the 
extent of emails a theoretical spammer could send. The second academic mention of PoW relates 
to Adam Back’s Hashcash algorithm in 1997, which, incidentally, was similarly used to combat 
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Denial-of-Service (DoS) attacks also with a focus on spam prevention (Back 1997) . In this 
system, the particular computational exercise is to find a SHA-1 hash of a header that includes 
the proposed email recipient’s email address as well as the current date ( Back 1997). The 
exercise is completed by appending random nonces in the hopes of finding the pre-image that 
corresponds to the following constraint: having at least 20 leading zeros in its 160 bit output. 
  

Bitcoin’s PoW takes Back’s Hashcash a step further in two key ways. First, Bitcoin uses 
the SHA-256 algorithm via use of two successive SHA-2 hashes. Second, Bitcoin’s PoW enables 
the difficulty of its hashing puzzle to be varied via different choice of constraints. In particular, 
valid hashes are mandated to have a value below an arbitrary but particular integer t (Bano 
2017) . Therefore, the difficulty is inversely proportional to t. That is, the lower value is chosen 
for t, the more challenging it is to produce a valid hash. This t value is adjusted every 2016 
blocks to account for variance in the net hash power working to append a valid block so that a 
block is appended approximately every 10 minutes (Nakamoto 2009). For instance, in periods 
when hash power increases, t is lowered to increase mining difficulty and vice-versa. 
Empirically, t has, with a few exceptions, been mostly monotonically increasing given the near 
exponential growth in hash power from 2016 to present (Blockchain.info). In particular, 
aggregate Bitcoin hash power as of April 2018 hovers just below 30 million TH/s 
(Blockchain.info).  
  

Nodes willing to generate hashes are the so called miners  in the system. Said miners 
calculate potential hashes of proposed blocks to be added and should they find a valid hash, are 
rewarded under the following scheme: 
  

The first miner is to receive 50 bitcoins for appending a block (and its associated 
transactions) to the chain. Every 210,000 blocks, or approximately ~4 years taking into 
account that the aforementioned t is varied such that a block is produced every 10 
minutes, the “block reward” is halved (Bedford Taylor & Taylor, 2013) . 

  
The first halving occurred on September 28, 2012 (Donnelly 2016). Following was the second on 
July 9, 2016 (Donnelly 2016).  As of April 2018, the current block reward is 12.5 bitcoin. The 
next halving is projected to occur on May 31, 2020 (Halvening). The net effect of the block 
reward halving is that the number of bitcoin in circulation asymptotically converge to just under 
21 million coins in circulation. Bitcoin is then provably scarce as the block reward will 
asymptotically approach zero, meaning there will exist no further way to increase the number of 
bitcoin in circulation. Further, said result implies that miners will at some point need to be 
incentivized by transaction fee once the block reward approaches 0.  
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In the case that there exist multiple blocks referencing the same parent block, typically referred 
to as a fork, the consensus mechanism dictates that the “longest chain” is selected because this 
chain has provably executed the most computational work (Nakamoto 2009).  
 
Implications of Proof of Work 
  
 As is, one can see that the Bitcoin protocol has set a rigid parameter for block frequency 
and block size. Namely, block frequency is every 10 minutes and block size is capped at 1MB. 
This parameter sets a tight constraint on the number of transactions that can be processed per 
second. Because a block is on average confirmed only every ten minutes, the protocol is 
constrained to handling in expectation a small fraction (1/36,000) of a block per second. As a 
result, the question of scalability is in many ways compressed into some variation of how to fit as 
many transactions in a block as possible. Different flavors of solutions have emerged to answer 
this question, as described later, from increasing the block size of a transaction to lowering the 
average size of a transaction in bytes in a variety of ways.Other solutions are second-layer, 
building on top of the existing protocol. Still others are more deeply architectural, re-establishing 
mechanisms and parameters with scalability specifically in mind.  
  
Classes of Bitcoin Scalability Solutions 
  
 For years, Bitcoin developers have brought forth a number of solutions to make Bitcoin’s 
blockchain scale. Most have been described in a July 2017 update to the Bitcoin “Scaling 
Roadmap” that focuses on improving bitcoin along two key dimensions: capacity, as measured 
by theoretical transactions per second (tps), and scalability, the ease with which capacity tps can 
be reached (Sztorc 2017 ) . Beyond Bitcoin developers, various entrepreneurs have developed 
alternative protocols that emphasize scalability from the “ground-up.” Academics, too, have put 
forth a variety of compelling protocols that in different ways minimize the number of 
transactions that happen “on-chain.” Still, the Lightning Network is the solution that stands out, 
having the estimated potential to increase scalability by orders of magnitude more than any other 
solution while being fully compatible with Bitcoin’s protocol after a series of enabling 
improvements were made to the protocol. 
 
Solution Class #1: Compressing the Transaction 
 

Bitcoin developers have focused their attention on a number of ways to compress the 
metadata in a given transaction. Below are three leading ways that developers have managed to 
shrink the bytes required for a transaction.  
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Serialization 
  

First, notable bitcoin developer Gregory Maxwell made the observation that the 
serialization of Bitcoin transactions is an area of redundancy. While the unit impact of shrinking 
the byte stream representation of a transaction by a few bytes seems small, given the number of 
transactions that have the potential to take place per day, even this small change can drive 
scalability increases of between 20 and 30%. One example of a serialization improvement is in 
handling of the default value of “Use (N-th) prior value” of a number of fields (Maxwell 2016). 
In particular, one of the metadata fields in a given transaction allows users to save a few bytes by 
toggling that a particular field, say the value of the transaction, can simply be set as the 
immediately prior value. Maxwell proposes that this state persists on a global level, beyond just 
the transaction. In this way, one does not need to continually request each incremental 
transaction to use the prior value. Instead, once this flag is set, that state will persist until another 
transaction specifically designates a value. Therefore, bytes for using the N-th prior value don’t 
need to be allocated on a per-transaction basis and can be used less frequently, saving space in th 
memory. 
  
Schnorr Signature Aggregation 
  

A second key scaling innovation is the notion of Schnorr Signature Aggregation. Schnorr 
signatures leverage the idea that many transactions can ultimately share a signature, leading to 
compression in the space required for a broad range of transactions (bitcoincore.org). This 
improvement is particularly beneficial because signatures comprise a non-trivial number of bytes 
of size to a bitcoin transaction. Consider that the current maximum size of a block in the Bitcoin 
blockchain is 1 MB. Charts from Blockchain.com indicate that the average number of 
transactions per block range generally range from 1500 to 2500 transactions per block in the past 
year (Blockchain.info). Therefore, the average transaction requires roughly 400 to 700 bytes per 
transaction. Further, Bitcoin’s digital signature algorithm makes it such that transaction signature 
space requirements are lower bounded at 64 bytes per input to the transaction, not inclusive of 
several header bytes (BitcoinWiki). Therefore, digital signatures can comprise a large proportion 
of transaction size, especially in the case of multi-signature transactions or those with many 
inputs. 
  

 Take the example of multi-signature transactions. By supporting multi-signature 
transactions natively, Schnorr signatures can seamlessly aggregate all the requisite signatures in 
a multi-sig transactions into a single valid one combining the balances of all the inputs and 
consuming the amount of space as just one signature (bitcoincore.org). As a result, an arbitrarily 
large n-of-n multi-signature transaction can be signed by a signature that takes up the same space 
as a transaction with a single signer. 
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Segregated Witness 
  
 Segregated Witness is the third key transaction compression improvement. SegWit’s key 
idea is to reorganize the way metadata is stored in transactions by separating the signature from 
key transaction characteristics such as the inputs, outputs, and value of the balance to sent 
(bitcoincore.org). Consequently, a given transaction ID is set in advance of it being signed, 
making the ID itself immutable in a way that it previously was not. By doing so, SegWit made a 
previously concerning class of attacks infeasible. These attacks focused on taking advantage of 
the malleability of Bitcoin transactions. Because prior to SegWit signature information was 
embedded in the transaction ID, bad agents could have chosen to broadcast a transaction 
identical to a legitimate one in all ways but a nominal change in signature and hope that their 
transaction was the one that broadcasted first and then take advantage of the resulting confusion 
in a variety of ways. This vulnerability will be discussed at length later in the paper. 
  

SegWit is projected to improve capacity by up to 2.2 times pre-SegWit levels (Sztorc 
2017) . From a scalability perspective, SegWit most crucially makes signature operations move 
from quadratically increasing with respect to the number of parties involved in a transaction to 
linearly (Sztorc 2017). A case in which this innovation is particularly relevant occurs when a 
Bitcoin transaction collects inputs from many or sends an input to many outputs. A real-world 
example might be a transaction that crowdfunds from twenty different individuals to collectively 
fund one project. 
  
Solution Class #2: Splitting the Transaction Load with Separate Chains 
  
Drivechains 
  
 Drivechains operate on the premise that Bitcoin’s current blockchain should not be the 
only “chain” that can leverage the maximal 21,000,000 BTC that will be in circulation 
(Drivechain.info). Instead of a mono-chain approach, advocates of this approach focus on the 
potential for alternative “sidechains” to offload certain transaction activity off of the main 
Bitcoin blockchain such that capacity increases without any underlying changes to Bitcoin’s 
protocol. Such an approach allows for new protocols that support a broader range of transaction 
types to emerge or prioritize differently on trade-offs between say auditability and security while 
still being compatible with Bitcoin’s blockchain.  
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Solution Class #3: Reparametrization of Protocol Parameters 
  

When Satoshi Nakamoto conceived Bitcoin in his seminal 2009 paper, he did so with 
several default values for key Bitcoin parameters in mind. Examples of such parameters include 
block size and block frequency. Nakamato set the former to 1 MB and the latter to 10 minutes 
for reasons left unstated. An alternative class of solutions focuses on optimization of these and 
other parameters to increase maximal number of transactions per second while keeping 
transaction latency in check. Indeed, even with efficient reparametrization of the block size and 
block frequency parameters, there is less than an order of magnitude improvement in transaction 
throughput. For instance, recent academic literature shows that changing the block size to an 
optimal 4MB, and the block frequency to no lower than 12 seconds results in throughput of 27 
transactions per second (Croman et al., 2016) . 
  
Aside - Bitcoin Cash 
  

Interestingly, on mainly the basis of this reparametrization observation, Bitcoin Cash 
“forked” from Bitcoin on August 1, 2017 (Wikipedia). After a block #478558, Bitcoin Cash 
began to maintain its own decentralized ledger, entirely separate from that of Bitcoin’s 
(Wikipedia). The principal reason for the fork revolves around increasing Bitcoin’s block size to 
8MB such that transaction throughput could increase and consequently transaction fees for 
confirming a block could begin to decrease as it became easier to confirm a unit transaction 
given more transactions could now fit in a block. But while varying the parameters in Bitcoin’s 
protocol is a source of improvement, reparametrization does not drive scalability enough to 
support global wide-spread use of Bitcoin. 
 
Solution Class #4: Alternative Protocols Prioritizing Scalability 
  

Another class of solutions has emerged in the response to scaling decentralized 
blockchains.  These solutions focus on the development of new protocols with consensus 
mechanisms that, in the trade-off between scalability and security, prioritize scalability more 
than bitcoin does. In general, the below approaches have in common a lack of a computationally 
intensive mining process like the one that Bitcoin employs. Instead, these consensus mechanisms 
emphasize securing their underlying ledgers via primarily economic incentives by working to 
make the cost of deviating from expected behavior exceed its benefit. Three mechanisms will be 
summarized below: Proof-of-Stake (PoS), Delegated Proof-of-Stake (DPoS), and Practical 
Byzantine Fault Tolerance (PBFT). 
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Proof-of-Stake (PoS) Protocols 
  

Instead of hash rate determining the likelihood of a particular miner finding a valid hash 
and correspondingly collecting the “block reward,” PoS’s analogous metric is the percentage of 
coins in circulation owned. Therefore, stakeholders with significant “stake” in the network via a 
significant ownership in tokens outstanding are more likely to earn the right to add the next block 
and in turn receive the associated reward. To be clear, simply owning coins does not give a 
“stakeholder” the chance to create the next block. The stakeholder must typically set these coins 
aside for staking to be held for that purpose for at least the short to medium term. In other words, 
one cannot trade coins that are being used to stake.  
  

Proponents of PoS consensus mechanisms note that any stakeholder owning a non-trivial 
quantity of coins in circulation is never incentivized to act outside of the interest in the network. 
The only case in which such bad action might be incentivized is when the benefit to the 
individual exceeds the overall cost to the network. Second, the cost of attack increases with time 
if the supposed crypto-asset is appreciating in price as the cost of securing the majority of coins 
grows linearly with the price.  

 
Delegated Proof of Stake (DPoS) Protocols 
  

DPoS shares underlying principles with PoS but differs in a few key ways. Small 
stakeholders in the network have little incentive to stake their assets. Due to the probabilistic 
election of winning stakeholder in proportion to tokens owned, most small stakeholders will 
undergo many periods without earning a transaction fee but still have to face storage and 
bandwidth costs associated with staking their coins. In response to this lack of incentive, DPoS 
proposes that stakeholders use their holdings to proportionally vote for a witness, the party 
elected to validate a block. In DPoS, The first witness to receive a 50% vote of tokens 
outstanding verifies the proposed transaction and all are free to vote for more than one witness 
(Bano 2017). 
  

Said witnesses are unlikely to deviate from expected behavior because the first instance 
of bad behavior will lead to a loss of votes beyond the 50% threshold and therefore a loss of 
value associated with future transaction fees. Second, the difficulty associated with becoming a 
witness increases in lockstep with the value of the network. If one assumes that a specific 
crypto-asset’s value is proportional to the network value, then the more value the network 
accrues, the more profitable it becomes to become a witness as the “rewards” become valuable if 
if the reward is simply more of the token.  Therefore, more and more tokenholders will 
accumulate tokens in order to attempt become a potential witness going forward to earn a share 
of these rewards.  
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Practical Byzantine Fault Tolerance (PBFT) Protocols 
  

The PBFT consensus algorithm delegates a fraction of available nodes as “generals” to 
manage the consensus process.  A state machine replication technique, the PBFT typically 
algorithm adds two additional constraints: that all generals’ operations are deterministic and that 
all generals begin in the same state (Castro & Liskov, n.d.) . Now, consider a hypothetical 
message (corresponding to a block) to be added to the ledger. Said message is broadcasted to all 
generals. All generals then run a computation using the inputs of the message as well as their 
current state. As soon as the strict majority of generals agree on the result of the computation, 
consensus on the validity of the message is reached. 
  
 PBFT centralizes consensus more than aforementioned alternatives as the sole 
determinants of consensus are the generals. Since election of generals is often carried out by 
some central agent, said agent, often the core of developers maintaining the protocol, has a 
higher influence on the state of the network than in alternative mechanisms (Castro & Liskov, 
n.d.) . Therefore, relative to the other methods, PBFT is also less fault-tolerant as an attack vector 
targeting a general would pose a large risk to network reliability and availability. As a result, 
networks designed with BFT consensus algorithms are particularly prone to Sybil attacks as a 
result of the value associated with becoming a general -- typically, generals, are the nodes that 
accrue transaction fees and other block rewards if relevant. 
  
Solution Class #5: The Killer Solution - Lightning Network 
  

While compelling, the aforementioned solutions even if all successfully implemented in 
aggregate leave Bitcoin magnitudes behind the throughput that Satoshi once dreamed it could 
support. In the race to make Bitcoin scalable enough for wide-spread global adoption, one 
solution has very much differentiated itself, the Lightning Network. On the metrics of capacity 
and scalability, the Lightning Network has the potential to improve “both capacity and scalability 
[of Bitcoin] by a factor of ~1000” (Sztorc 2017). That is, taking 2018 year-to-date transaction 
levels per day of roughly 200,000 to 300,000, the Lightning Network could enable 200 to 300 
million transactions a day, competing very favorably with any payment giant world-wide 
(Blockchain.info).  
  
Overview 
  
 Recognizing that broadcasting all transactions to all nodes places an undue number of 
transactions on the ledger, Poon and Dryja propose a new solution: the Lightning Network (LN) 
(Poon and Dryja 2016). The LN leverages payment channels and time-locks to move most 
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transactions off-chain, appending to the ledger only net settlement or conflict transactions where 
parties disagree on the current state. By result, only in adversarial conditions does throughput 
drop to on-chain levels. The significance of the LN is in its ability to theoretically scale Bitcoin 
transaction throughput to any level with a latency of near instant payments while also 
maintaining the provable security that on-chain transactions can provide. Using two-way 
payment channels secured by time-locked contracts, the LN enables instant-time peer-to-peer 
payments, even when two users lack a direct channel between them. Further, the LN does so 
without a need for a trusted intermediary. Interestingly, the LN also enables cross-chain 
payments, so that any given payment could be routed through chains beyond just bitcoin’s, 
assuming these other chains also use bitcoin’s SHA-256 hashing algorithm and offer the 
functionality to lock payments for a period of time (Poon and Dryja 2016). The reason the other 
chains would need to use the SHA-256 hashing algorithm is because the pre-image and hash 
used in generating hash-time locked contracts need to be computed in an identical manner to 
validate that the HTLC is being executed according to protocol.  
  
Transaction Kinds 
  
 In the LN, there are four different kinds of transactions: Funding, Commitment, 
Revocable Delivery, and Breach Remedy Transactions. Funding transactions are those that 
“fund” the balance of the channel between two parties. Commitment transactions capture a 
snapshot of the state of the channel and correspondingly, each party’s balance. Revocable 
delivery transactions are the mechanism through which channels can be maintained trustlessly. 
These transactions offer each party security and return of the funds he or she committed to the 
channel in the case of the counterparty deviating from protocol. Finally, breach remedy 
transactions are the means through which old commitment transactions are invalidated so that 
channel state can continue to be updated without either party needing to worry about an “old 
state” of balances being broadcasted. Each will be discussed in more detail in the section to 
follow via a working example.  
  
Introduction of Working Example: Direct Channel Payments 
 
Funding Transaction:  
  

Consider a hypothetical Alice and Bob who would like to route payments directly 
between each other -- that is, without using a series of intermediary people through which to 
route the payment on the way to its end destination. Funding transactions open the channel: Alice 
and Bob create a 2-of-2 multi-signature transaction that both parties sign, committing some 
quantity of bitcoins to be exchanged. This funding transaction is then posted to the ledger and 
begins the formation of a “channel” between Alice and Bob. These channels are designed to be 
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opened indefinitely, with two key exceptions. First is in the case that there is collective 
agreement from each party in the channel to close the transaction. Second is in the instance that 
parties disagree on the current state of balances within the channel. Both scenarios will be 
discussed. For reference, what differentiates a multi-signature transaction from a standard 
transaction on the Bitcoin network is the need for multiple parties to sign the proposed 
transaction. 

 
Commitment Transaction: 
  

Next, a commitment transaction is created, but not immediately broadcasted, in tandem 
with a revocable delivery transaction. Pairing the two enables the LN to automatically enforce 
trustless penalties associated with deviating from expected behavior (Poon and Dryja 2016). 
Stated in other words, the commitment transaction serves the purpose of ascribing blame. The 
commitment transaction can do so because for any proposed state update, two parallel 
half-signed commitment transactions are created. For instance, in the example discussed earlier, 
Alice would have her version of a commitment transaction, say CT Alice that is signed by Bob and 
only she can broadcast. Bob too would have an analogous commitment transaction, CT Bob. Of 
course, only one of these two transactions can be broadcasted, since they both spend from the 
same output. Therefore, on the basis of the party that broadcasted an incorrect commitment 
transaction, blame can be saliently ascribed. Now that the party to be blamed has been identified, 
the revocable delivery transaction automatically punishes the errant party, as will be shown 
below. 
  
Revocable Delivery Transaction: 
 

The revocable delivery transaction is introduced first as one of the outputs in the 
commitment transaction, the other being the counterparty in the channel. In specific, in the 
commitment transaction, the balance of the funding transaction is the input that is sent to two 
outputs: a revocable delivery transaction address and the intended recipient of the payment. For 
instance, say Alice and Bob began with 5 BTC each that was then sent to to the funding 
transaction address. Assume Alice and Bob desire the current state to reflect Alice having a 
balance of 4 BTC and Bob the remaining 6 BTC. Then, the resultant commitment transaction 
would pledge 4 BTC to the revocable delivery address and 6 BTC to Bob. Similarly, a parallel 
transaction would be created for Bob that sends 4 BTC to Alice and 6 BTC to the revocable 
delivery address.  
  

Now, the revocable delivery transaction is to be created. One differentiating characteristic 
of the revocable delivery transaction is the incorporation of a lock-time, be it absolute or relative. 
That is, even with all requisite signatures, revocable delivery transactions must wait until some 
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designated number of blocks before being broadcast (relative) or until an absolute block height 
on the bitcoin ledger (absolute).  Further, these transactions are also 2-of-2 multi-sig transactions. 
Continuing with the previous example, after the proposed commitment transactions have been 
created, Alice creates a revocable delivery transaction that returns its entire balance (4 BTC) to 
Alice after some time-lock expires. Bob does the same with the balance of BTC (6 BTC) 
earmarked for the revocable delivery transaction. 

 
Scenario 1: Mutual Agreement to Close Channel 
  

At this point, two different scenarios can occur. First is that Alice or Bob broadcasts the 
correct commitment transaction, correctly updating the state and consequently “closing” the 
channel as a result. One caveat worth mentioning is that the party that broadcasts the transactions 
suffers from a lock-up of his or her funds for the duration of the time-step. For instance, if Bob 
were to broadcast his version of the commitment transaction mentioned above, Alice would 
immediately receive 6 BTC. Bob, on the other hand, would have to wait for however many 
blocks the time lock mandates to broadcast the revocable delivery transaction and collect his 4 
BTC. While not ideal, in some ways this lock-up is the price Bob pays for being able to protect 
himself from errant action by Alice without relying on a centralized intermediary.  

 
Of course, the protection applies symmetrically to Alice.  In this case, one can say the 

channel has been closed because the funding transaction, the basis of the channel, has been fully 
depleted of funds. That is, before Alice and Bob could create another pair of commitment 
transactions, they would first have to issue a new funding transaction, effectively “opening” a 
new channel. It is worth mentioning that one benefit of requiring a 2-of-2 multisignature 
commitment transaction is that Alice can only act errantly in one and only way: broadcasting an 
old commitment transaction. Alice cannot broadcast a transaction that is not parallel to Bob’s 
(such as one where she receives more BTC), because Bob would refuse to sign said transaction. 

 
Scenario 2: Channel Continuation 
  

The second scenario is that Alice and Bob continue their channel, a scenario in which 
breach remedy transactions are introduced. There still exist two half-signed commitment 
transactions associated with the transaction mentioned prior, but neither of them are valid 
because they remain half-signed. In this scenario, Alice and Bob both may desire to update their 
balances, say to reflect both of them now having 5 BTC each. Here, Alice and Bob again issue a 
pair of half-signed commitment transactions as mentioned before, with one output being a 
revocable delivery transaction with a timelock and the other being the counterparty’s address. In 
this example, we can see that in this new state update, Bob is strictly worse off as his balance 
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moves from 6 BTC to 5 BTC. As such, he is incentivized to broadcast the old commitment 
transaction that has already been half-signed. 
 
Breach Remedy Transactions: 
  

To deter this action, breach remedy transactions are introduced as a mechanism to punish 
the broadcasting of old commitment transactions. In particular, Bob and Alice both create a pair 
of 2-of-2 multisig half-signed breach remedy transactions in response to Alice and Bob creating 
a second set of commitment transactions. At a high level, this transaction will provide 
“insurance” against Bob and Alice trying to maliciously broadcast the old commitment 
transaction now that they would both like to reflect the new updated state implied by the second 
commitment transaction. The breach remedy transaction is a spend from the commitment 
transaction that supersedes the revocable delivery transaction (Poon and Dryja 2016). As such, 
Bob is maximally punished for broadcasting an old transaction since the entirety of funds in the 
channel are sent to Alice. Any BTC that would have been spent by a revocable delivery 
transaction is instead superseded by the breach remedy transaction that Alice can immediately 
spend from. Consequently, on the broadcast an old commitment transaction by Bob, Alice is 
immediately privy to the entire channel balance. However, if Alice does not spend from the 
breach remedy transaction within the locktime, then it is possible for Bob to broadcast his 
revocable delivery transaction and claim its balance (Poon and Dryja 2016). Therefore, Alice is 
mandated to act accordingly with the locktime and must be actively monitoring the channel to 
check that at any instant an old transaction has not been broadcast. 

 
If both parties act in line with protocol, then the breach remedy transactions are never 

broadcasted. Then, the process can repeat itself with a second set of breach remedy transactions 
and a third set of commitment transactions if Alice and Bob would like to again update balances. 
And so the process can continue indefinitely, until Alice and Bob disagree, in which transactions 
move on-chain and the channel closes or until Alice and Bob agree to broadcast the current 
commitment transaction, settle the balance, and close out the channel.  

 
Non-Direct Payments: Multi-Hop Paths 
  

Thus far, we have only considered the scenario in which Alice and Bob have a direct 
channel. Alice, though, could very well desire to route a payment to someone whom she does not 
share a direct channel. Fortunately, the Lightning Network has the capability to handle 
transactions of this form as well. 
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Hashed Timelock Contracts (HTLC) 
  

The LN is able to offer trustless multi-hop payments on the basis of using hashed 
timelock contracts (Poon and Dryja 2016). The core idea of the HTLC is to eliminate the need 
for custodial trust in multi-hop payments by allowing payments to cascade down a path only 
after the prior entity in the path has sent the payment to the following entity. That is, in a 
hypothetical 2-hop transaction from Alice to Bob to Charlie, Bob is not asked to send funds to 
Charlie until he has received the corresponding funds from Alice. Poon and Dryja describe a 
hypothetical HTLC between Alice and Bob below: 
  

0. Alice chooses some arbitrary value (the pre-image) and hashes it, producing a hash 
value H.  
1. If Bob can produce to Alice an unknown 20-byte random input data R  (the pre-image) 
from hash H, within D days, then Alice will settle the contract by paying Bob N  BTC. 
2. If D days have elapsed, then the above clause is null and void and the clearing process 
is invalidated, both parties must not attempt to settle and claim payment after three days. 
3. Either party may (and should) pay out according to the terms of this contract in any 
method of the participants choosing and close out this contract early so long as both 
participants in this contract agree. 
4. Violation of the above terms will incur a maximum penalty of the funds locked up in 
this contract, to be paid to the non-violating counterparty as a fidelity bond. 

  
Looking at the above definition, the validity of the contract is entirely predicated on knowing 
pre-image R given a hash H. It follows that Bob producing R is “proof” that payment has 
occurred. However, if Bob is not able to produce R within D days, there is effectively no proof 
of payment and Alice can retrieve her funds from the HTLC. Therefore, there are two execution 
paths for an HTLC: “delivery” or “timeout.” The former scenario, providing R within D days, is 
an example of the delivery execution path and the latter of Alice retrieving funds is an example 
of timeout. 
 
Implementation of the Lightning Network 
  

Now that the core functionality has been described, discussion moves to implementation 
at scale. It is quickly apparent that establishing a channel between every possible pairing of 
potential nodes can be infeasible as the network scales. Such a naive solution would involve 
O(n2) channels for n network participants. Therefore, one key implementation challenge around 
the Lightning Network is the choice of routing or “path” algorithm from one arbitrary node to 
another. 
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Overview of Potential Routing Algorithms 
  

A number of potential routing solutions have been proposed in response to the 
aforementioned scalability concerns around the Lightning Network. At a high level, two 
topologies have been proposed. 
  
Hub-and-Spoke Topology 
 

 First, is a traditional hub-and-spoke model, analogous to the approach used by many 
leading airlines such as Delta or United Airlines [Towns]. This approach, as traditionally 
proposed, faces a number of challenges, From an incentive standpoint, creating dual classes of 
nodes, one for “hubs” and one for non-hub is particularly problematic. Non-hub nodes have little 
incentive to constantly run a node given that any transaction fees generated from a particular 
payment will accrue to the hub node. In particular, given a transaction originating from node A 
through hub H and terminating at node B, if node B’s wallet were to be offline, the hub would be 
forced to hold the funds in custody until node B returned online, increasing time associated with 
the payment. Problematically, such an approach makes it implausible to upper bound any 
transaction as no guarantee can be made on how long a delinquent node such as node B may 
remain offline. 
  

Hypothetically, one could modify the previous approach as follows: so long as a non-hub 
node is online and there is sufficient transaction fee volume to support it, each non-hub node 
could receive a pro-rata distribution of transaction fees every period (say each 24 hours) high 
enough to cover the costs of running said node as well as a few percentage point premium 
offered to incentivize the running of a node. Of course, this approach is not pareto-optimal -- 
leaving hub nodes strictly worse off. Also problematic: this approach is at odds with the ethos of 
decentralization. With only a few hubs, power in the network, as measured by volume of 
transactions processed at the node, is heavily concentrated. In a similar vein, the hub-and-spoke 
method has little fault-tolerance. Should one of the major hubs go offline for any reason, the 
network would be heavily compromised. 
 
Organic Topologies 
  
Global Beacons 
 
 Alternatively, a system of global beacons was proposed (Russell). Of the set of nodes, a 
pseudorandom subset are to be selected on a periodic basis. All other nodes attempt to find paths 
to these beacons and said paths are the ones used to route payments in the network. A salient 
concern with this approach is the risk of a bad actor engaging in a Sybil attack (Prihodko et al. 
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2016). Recognizing that global beacon nodes generate most of the transaction fees in a given 
period, a bad actor could subvert the network. By creating a number of fake nodes, these actors 
can increase their odds of becoming a global beacon node. The Lightning Network is particularly 
at risk due to the ease of generating new nodes. In fact, generating a new node simply requires 
syncing the latest Bitcoin blockchain and then spinning up a Lightning node. Additionally, 
computational requirements of serving as a global beacon could very well exceed the capacity of 
the typical modern computer, constraining the candidate pool for global beacons and 
inadvertently promoting centralization. Finally, the global beacon approach results in the 
creation of more channels than an unconstrained approach. 
  

By forcing all transactions to route through the global beacon in each period, there 
become a number of unused channels. In particular, consider the following example. In period 0, 
a set S of nodes are selected as global beacons and are payments are routed through nodes in S. 
By period 1, a new set S’ that shares no element with S, is selected as the class of global 
beacons. All channels from period 0 are now without use and must be closed. However, this 
approach broadcasts transactions to the ledger with a higher frequency than alternative 
approaches. Consider that each channel opening is marked by a funding transaction that must be 
published to the ledger. In the above example, all channels opened in period 0 but not used in 
period 1. In fact, given that the number of global beacon nodes will likely be an order of 
magnitude lower than the number of total nodes (to minimize repetition of global beacon nodes), 
the proposed scenario wherein no beacon nodes are shared in two successive periods is quite 
likely. 
  
Local Beacons 
  

Another proposed routing solution involves local beacons (Bairn). In this concept, each 
node has a list of beacons through which it must route all of its payments. Smoothing distribution 
of traffic across the network, this approach both gives every node a higher probability of being a 
beacon for another node and as a result provides potentially stronger incentive for a node to 
remain online in order to continue to reap transaction fees. 
  
Other Routing Solutions 
  

Inspiration for other solutions to routing transactions on the Lightning Network come 
from analogy (Prihodko et al. 2016). One analogy is to mobile ad-hoc networks (MANET). 
Indeed, the Lightning Network shares a number of commonalities with a MANET. As in a 
MANET, capacity in LN is varying: nodes new and old can appear and disappear on a whim 
since LN nodes have no bound on opening or closing a channel [Prihodko]. Two caveats are that 
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the incremental “hop” in a given transaction path increases the transaction fee paid by the sender 
and that transactions must originate from a specific source. 
  
Proactive Protocols 
  
 A look at MANET algorithms reveals two broad classes of routing protocols: proactive 
(table-driven) and reactive (on-demand). Proactive protocols rely on routing tables. More 
specifically, these protocols distribute all knowledge necessary to build a routing table even 
before any traffic is transmitted. A representative proactive algorithm is the Optimized Link 
State Routing Protocol (OLSR) (Clausen, Jacquet, & Viennot, n.d.) .  Appendix A walks through 
the OLSR algorithm.  
  
Reactive Protocols 
  

On the other hand, reactive protocols find a path if and only if that path is requested. Two 
relevant examples of reactive routing algorithms are Ad hoc On Demand Distance Vector 
(AODV) and Dynamic Source Routing (DSR) (Prihodko 2016).  
  
Implications of MANET Routing Algorithms 
  

There is an inherent trade-off at play in proactive and reactive protocols. Proactive 
protocols face significant overhead requirements due to the routing table needing to be stored in 
advance of any path finding but trade memory inefficiency for reliability in the form of low 
variance in time to find a path. On the other hand, reactive protocols trade reliability for 
overhead as these protocols defer all path-finding to the request of a specific path. Therefore 
reactive protocols appear to scale better (due to lower overhead requirements). In the context of 
the LN, however, reliability is a key attribute as many applications of LN revolve around 
payments and in the context of payments, reliability is a core attribute for both parties in a given 
transaction. Therefore, a hybrid routing solution is far more appropriate (Prihodko et al. 2016).  
  
“Real World” Routing Approach 
  
 At least three organizations have worked on implementations of the Lightning Network: 
Blockstream (lightning-d), Lightning Labs (lnd - Lightning Network Daemon), and ACINQ 
(Eclair) (Wikipedia). Only the Lightning Labs implementation explains in its documentation its 
process for node and channel discovery. Below is an analysis of the Lightning Labs routing 
approach. 
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Lightning Labs - Lightning Network Daemon (lnd) 
  

Lightning Labs specifies that its lnd closely follows a list of 11 “Basic of Lightning 
Technologies” (Github.com). BOLT 7 reveals the approach to routing and peer-to-peer channel 
discovery. To be clear, routing and peer-to-peer channel discovery is only necessary for 
multi-hop payments. If Alice and Bob have a direct channel, there is no need to evaluate possible 
paths. As alluded to above, the lnd implementation takes inspiration from both the proactive and 
reactive routing algorithms discussed above. For instance, the lnd routing algorithm is proactive 
in the sense that it maintains a local view of the channel topology in order to facilitate route 
finding, very similar to the routing tables used in proactive MANET routing algorithms. In other 
ways, the routing algorithm is reactive. For instance, given an availability of several paths from a 
hypothetical Alice to Bob, the lnd routing algorithm differentiates the paths on the basis of two 
key fields: cltv_expiry_delta  and  fee_base_msat. The former field refers to the worst-case 
bound on how long funds would be “locked up” in the case of a timeout HTLC execution. The 
latter field refers of course to the base fee rate per milli-satoshi (1/10 -11 units of BTC). Here, the 
routing algorithm chooses in real-time between several available paths attempting first to 
minimize the sum of cltv_expiry_delta values across the path and then the fees associated. 
 
Lightning Network Enabling Technologies: 
  
 A series of technical improvements needed to be made to Bitcoin’s protocol for the 
Lightning Network to be possible. Improvements to Bitcoin’s protocol are made formally 
through Bitcoin Improvement Proposals (BIPs) and Github pull requests by Bitcoin core 
developers. Anyone can draft a BIP, after which it is iterated on and then made active and, if 
relevant, voted on.  Below, the BIPs that solved the largest issue in implementing the Lightning 
Network will be discussed. 
  
Key Issue: Transaction Malleability 
  

Transaction malleability has been a critical flaw in Bitcoin’s protocol that has taken at 
least 3 BIPs to resolve, as will be discussed. In short, transaction malleability attacks occur when 
a malicious agent broadcasts a transaction that is identical to a legitimate transaction in all ways 
but the transaction ID. The bad agent modifies the transaction ID in a very nominal way (usually 
through an equivalent change in his or her signature) in the hopes that his or her transaction is 
confirmed in advance of the legitimate transaction (Bitcoincore.org). If this is the case, the 
broadcaster of the legitimate transaction may find that his or her transaction never posted to the 
ledger because it was invalidated by the aforementioned transaction. As a result, he or she may 
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make the mistake of re-sending the transaction and as a result double-spend. Alternatively, the 
bad agent could continue to broadcast transactions using his or her transaction hash as the 
previous hash and invalidate transactions the other party has broadcasted. Below, two examples 
of malleability vulnerabilities and the corresponding BIPs developed as a result are discussed. 
  
BIP66 
 

The first malleability vulnerability brings to light the Bitcoin protocol’s willingness to 
consider padding characters as differentiating enough to merit a different transaction ID (Klitzke 
2017). In particular, the metadata of a Bitcoin transaction are bundled into a Distinguished 
Encoding Rules (DER) Abstract Syntax Notion 1 (ASN.1). ASN.1 is a notation for describing 
abstract types and values and DER adds the constraint that each ASN.1 value has a unique 
encoding (Kaliski Jr. 1993). Further, historically Bitcoin used OpenSSL to validate the ASN.1 
data of transactions proposed to be added to its ledger (Klitzke 2017). Problematic was 
OpenSSL’s willingness to ignore padding type characters in the transaction hash. In other words, 
useless characters such as whitespace could be added to modify a transaction hash.  Bad agents 
used this vulnerability to carry about an attack in the template described above. As a result, 
BIP66 was developed in order to specify more rigorously how ASN.1 data is to be encoded so 
that padded transactions, for example, would be swiftly rejected (Wuille 2015).  

 
Github Pull Request #6769 
  

The second vulnerability exposes the protocol’s mishap of counting equivalent signatures 
as unique signatures (Klitzke 2017). More specifically, this flaw originates from the scheme 
Bitcoin uses to sign transactions: ECDSA. In particular, an ECDSA signature has two parts: (r, 
s). Attackers found that if ( r , s ) was a valid signature, then so too was ( r , - s  mod n). As a result, 
these individuals could generate an equivalent signature knowing r and s without knowing the 
underlying private keys that went into the making of r and s. This vulnerability was promptly 
fixed by a Github pull request, specifically request #6769, in which a unique signature was 
forced by election of the lower value signature (Maxwell 2015).  
  
BIP141  
 

Finally, the BIP of much interest and controversy, BIP141: Segregated Witness, 
approaches transaction malleability from a different perspective. SegWit introduces the notion of 
separating core transaction data such as input, output, and value from signature metadata, a 
proposal that brings with it a number of benefits (bitcoincore.org). More granularly, SegWit 
introduces a new field into transaction metadata: wtxid, in which a transaction id is generated 
without using any ECDSA signature information (Lombrozo et al. 2015). Not only does the BIP 
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lower the number of bytes required per transaction (as ECDSA signatures occupy a significant 
share of bytes allocated for a transaction), but it also further prevents any transaction malleability 
attacks known to date. Given the wtxid is generated solely from a combination of inputs, outputs, 
and other immutable fields, wtxids cannot be retroactively modified (bitcoincore.org) 

  
Now, with BIP141 (and related prior BIPs), the Lightning Network is able to be deployed 

because transactions meant to offer security such as the breach remedy transaction or the 
revocable delivery transaction can no longer be retroactively modified and so channel 
participants can rest assured that their provisioned funds are safe. 

 
Challenges Associated with the Lightning Network 
  

With the introduction of a second-layer protocol inevitably comes new risks and 
concerns. In particular, we will focus on risks of two key parties in the Lightning Network: 
miners and users.  Most attacks on the Lightning Network arise as a result of collusion or Denial 
of Service (DoS) attacks. 
  
Miner-induced risks 
  
 In the case that a channel counterparty broadcasts an old commitment transaction, the 
other party in the channel has the right to broadcast a breach remedy transaction that enables him 
or her to claim the full balance of funds in the channel. However, an adversarial miner might 
exclude these breach remedy transactions from their mempool of unconfirmed transactions. If 
the breach remedy transaction goes long enough without being broadcast, particularly beyond its 
locktime, then the malicious counterparty can successfully reap the benefits of broadcasting an 
old commitment transaction. 
  
User-induced risks 
  
Forced Expiration Spam 
  
 Poon and Dryja note the risk of forced expiration spam in their proposal. The attack is a 
Denial of Service (DoS) attack that seeks to overwhelm the blockchain with useless transactions 
so that valid transactions are delayed beyond their respective timelocks. As a result, malicious 
counterparties can broadcast old states and earn BTC to which they are not entitled. Such an 
attack might be carried out by an adversarial user creating many spam channels with trivial 
balances that all simultaneously expire, potentially overwhelming the capacity of the next few 
blocks.  
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The “Fraud Template” 
 

 
Figure 1:  Prototypical Example of Fraud Scenario  (Piatkivskyi, Axelsson, & Nowostawski, 

2017) 
 

 One of the key vulnerabilities of the Lightning Network is that it equates knowledge of 
the pre-image R to proof of payment. As a result, the Lightning Network assumes it is never in a 
participant’s interest to share R outside of when the protocol might dictate to do so. However, 
there do exist cases where this paradigm does not hold. Researchers demonstrate a vulnerability 
in the following example: Alice routes a payment to Dave through Bob and Charlie via 
cascading HTLCs introduced in the Lightning Network (Piatkivskyi, Axelsson, & Nowostawski, 
2017) . That is, Alice contracts with Bob, Bob contracts with Charlie, and Charlie contracts with 
Dave with HTLCs that have decreasing n-Locktimes. 
  

As per the protocol, Dave generates an arbitrary pre-image R and finds its hash. He then 
distributes the hash to all other parties to use as the basis of the HTLC. Dave then deviates from 
the protocol by sharing R with Bob. Now, Alice has reason to believe that Bob has already paid 
Charlie. Because the protocol dictates that Bob could have only received the pre-image from 
Charlie if he had paid Charlie, Alice has no reason to suspect foul play. As such, she executes 
her HTLC and sends him the corresponding payment. Now, Dave claims rightfully that he never 
received payment. Further, Alice has no way of knowing ex-post that Bob and Dave had 
colluded. Bob then disappears with the funds, never in fact sending them to Charlie. 
  
Key Example: Money Laundering 
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 Leveraging the above vulnerability, a group of bad agents can launder money with 
plausible deniability (Piatkivskyi, Axelsson, & Nowostawski, 2017) . Continuing with the above 
example, assume that Alice, Bob and Dave are now colluding. In particular, the intent is to 
launder money to Bob in an untraceable manner. Here, Alice claims that her funds were never 
sent to the intended recipient and so requests her funds to be returned. Dave, being complicit in 
the laundering, returns the funds to Alice. Bob then disappears with the funds. Now, Dave was 
able to “pay” Bob with plausible deniability since he “graciously” returned funds that were sent 
but never received by him. 
  
Deanonymization of Intermediate Node’s Position in a Routing Path 
  
 Given that a hypothetical Alice would like to route a payment to Bob through a set of 
intermediaries, it can become possible for the intermediary to identify its relative position along 
the path to final payment, at least in the way that the Lightning Network is implemented in lnd 
by Lightning Labs as a result of two factors (Github.com). First is the availability of the 
cltv_expiry_delta  field for the HTLC; second is the public availability of the topology of the 
network. Given the two, an intermediate node can approximate how far along the path toward the 
final recipient that he or she is situated by comparing the difference between the current block 
height and expiry block height of the HTLC relative to his or her cltv_expiry_delta value. One 
solution to this issue is simply to add a “shadow route extension” or simply an arbitrary 
additional quantity of blocks before the HTLC expires so that “guessing” one’s position along a 
payment route becomes more difficult. 
 
Solution Class #6: Serious Bitcoin Protocol Modification 
  
Teechan 
  
 Observing that the Lightning Network would require several material changes to the 
underlying Bitcoin protocol, in 2016, researchers put forth a proposal called Teechan involving 
the use of payment channels in trusted execution environments (TEEs) (Lind et al. 2016). 
Notably, Teechan was found to achieve “2,480 transactions per second” with “sub-millisecond 
latencies” on the Bitcoin test network  (Lind et al. 2016). Teechan achieves these throughput 
levels by moving most transactions off-chain using two-way payment channels where transfers 
of value are orchestrated by TEEs on behalf of channel participants. 
  
 Three stages of the protocol exist: channel establishment, channel operation, and channel 
settlement  (Lind et al. 2016). In the channel establishment stage, a set-up and refund transaction 
are established, much like the funding and revocable delivery transactions in the Lightning 
Network. Unlike the Lightning Network, Teechan’s protocol asks that channel parties share their 
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private keys with their respective TEE’s in this step, making the solution not truly “trustless.” 
After a secure communication channel is established between the TEEs, one party, without loss 
of generality, broadcasts the setup transaction and so begins the channel. Both parties have the 
ability to broadcast the refund transaction and have their original balances refunded to them at 
any point after the some locktime-designated number of blocks have passed. 
  
 Next, in the channel operation stage, either party can simply request that the TEE send 
some quantity of BTC. After the TEE verifies the balance, it updates its internal balance state 
and relays the size of the payment to the other party’s TEE so that it too updates its state. Finally, 
channel settlement can occur in two ways. First, if either party sends a “terminate request” to its 
TEE then it sends a settlement transaction reflecting the net balances in the channel to the party, 
destroys all its memory, and halts  (Lind et al. 2016). Alternatively, once the locktime has 
passed, channel participants can choose to broadcast the refund transaction or use the 
aforementioned settlement transaction. In either case, the channel has been closed. 
  
 One appealing aspect of Teechan’s protocol is that the entire process of transacting with a 
counterparty via a channel requires only two transactions: one to establish the channel and one to 
terminate the channel and offer settlement of the balance. Also, while the Lightning Network 
requires broadcast of four transactions in case of disagreement, Teechan only broadcasts two 
(Lind et al. 2016). 
 

Moreover, during the lifetime of a channel, it can be used an infinite number of times, 
just as the Lightning Network can. Further, payments are instant-time (sub-millisecond) once a 
channel is opened. Additionally, there is no risk of the channel counterparty misappropriating 
funds that do not belong to him or her; a payment can only be claimed only if a counterparty 
issues one. Further, Teechan offers “peace of mind” in the sense that channel nodes have no need 
to monitor the blockchain for the entire duration of the channel for malicious action, as a channel 
participant would have to in the Lightning Network if a counterparty broadcasted an old 
commitment transaction. This guarantee is provided by the TEE, as secure enclave environments 
that TEEs operate can detect roll-backs or the equivalent of broadcasting old state information 
(Lind et al. 2016). 

 
Analysis of Teechan 
  
 Of course, the largest risk factor around Teechan revolves around the TEE. Any party 
wishing to open a channel is obligated to share his or her private key with the TEE. Still, by 
using Intel SGX as the TEE of choice in their implementation, the authors are able to offer a 
secure enclave wherein attackers even with physical access to the machine including memory 
access are still prevented from accessing the enclave and so the private keys are fairly protected 
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(Lind et al. 2016). Another risk factor is around the TEE failing. If this is the case, then a viable 
solution is simply to persist the state of one TEE onto secondary storage and let the party that 
faced the failed TEE continue state updates from this secondary storage source  (Lind et al. 
2016). This solution is feasible because the states of any pair of TEEs will be consistent with one 
another. Because payments can only be claimed and not requested, if one TEE is inconsistent 
with another TEE, it can only be because it failed to claim a payment, leaving it worse off. 
Therefore, TEEs will always be in the same state. A final challenge around Teechan is its 
inability to offer multi-hop payments. Note that Teechan can only offer payments between 
parties in a channel, whereas the Lightning Network can route payments between any two parties 
in which a path can be drawn using existing channels, if sufficient channel balances exist along 
the path. 
  

Overall, Teechan is a promising solution to the problem of scalability in Bitcoin. On the 
other hand, it performs worse on the metrics of throughput than the Lightning Network. 
Fortunately, the Lightning Network is compatible with Teechan  (Lind et al. 2016). No proposals 
have been put forth to date integrating the two, but, taken together, the two solutions could offer 
a very compelling solution to blockchain scalability. 
  
Thunderella 
  

Another proposal, Thunderella, emphasizes a different off-chain approach to scalability. 
The Thunderella paradigm aims to have instant transaction confirmation time in the majority of 
transactions, but via elected committees as opposed to via payment channels. In particular, a 
designated leader or “accelerator” serializes ands batches transactions and sends them to a 
committee (Pass & Shi 2017). Of course, selection of the committee is a key step in the process 
as these committee members in aggregate have the ability to instantly confirm any transaction. 
The most promising solution to committee selection is to use the miners of the most recent 
blocks (Pass & Shi 2017). Then, the committee members approve or deny the validity of a given 
transaction, signing the transaction to indicate approval. If the majority of the members agree on 
a transaction, it is instantly confirmed, subject to any delays in propagating the transaction 
information to the network of nodes. On the other hand, Thunderella proposes moving on-chain 
for transactions where the majority fails to “notarize” a transaction (Pass & Shi 2017). In 
parallel, the committee waits until the problematic transactions have been broadcasted to 
continue notarizing future transactions so that the ordering of transactions is still in tact. 

 
Analysis of Thunderella 
  

The principal challenge around the Thunderella approach is more economic than 
theoretical. In particular, introducing a “leader’ and a “committee” into the protocol system 
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magnifies governance and incentive-design challenges by a non-trivial extent. Bitcoin’s protocol 
is as much a cryptographic breakthrough as it is is in market design, governance and economic 
incentives. Turning a previously tricameral system of miners, users, and nodes into a 
five-pronged system is likely to introduce a whole host of unforeseen second-order interaction 
effects. Moreover, uncertainty abounds over how the size the rewards associated with being a 
leader or a committee member, especially as the roles relate to vulnerability to a potential Sybil 
attack. Further work also has to be done to determine the length that a particular entity serves in 
these roles. Therefore, while Thunderella introduces a solution that is provably scalable, it comes 
with a host of incentive and ecosystem challenges. The elegance of the Lightning Network is in 
its ability to “plug-in” to the existing Bitcoin ecosystem nearly trustlessly, therefore mitigating 
(though not eliminating) the need to consider incentives in off-chain payments. 
  
Concluding Thoughts 
  

Bitcoin’s future is unbundled with uncertainty. Whether the crypto-asset is ever able to 
find the demand to reach Satoshi’s vision of Visa level transaction output will be the result of the 
confluence of a number of factors both technical and market-driven. Still, the lessons learned 
from solving Bitcoin scalability can be extended to the protocols that may end up setting the 
dominant design in the blockchain protocol space -- even if Bitcoin does not end up being the 
proverbial answer. The collective extent and rate of innovation in blockchain scalability is 
simply remarkable. From first-layer solutions ranging from Schnorr Signature Aggregation to 
SegWit to second-layer proposals such as the Lightning Network or Thunderella, the continued 
range and quality of proposals suggest that, it is not a matter of if, but when the right solution is 
found. Alternatively, perhaps the answer lies in a recombinant approach marrying currently 
compatible approaches such as the Lightning Network with Teechan.  
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Appendix A: OLSR Algorithm (Maccari) 
 
Time to live (TTL): an 8-bit field that stipulates how long data is to last in a network, 
traditionally used to improve caching (Meteoswiss) 
N: the number of nodes in the network 
ni: the set of neighbors of an arbitrary node i 
ni2: the set of neighbors two edges away from node i 
mi: the set of multipoint relay nodes chosen by node i 
mi: the minimal subset of ni wherein all nodes in n i2 share an edge with a node in m i  
 
  

 First, each node sends out a “HELLO” message wherein TTL is set to value 1 regularly. 
Within this message, each node broadcasts each of its neighbors with two additional bits: one for 
noting if the neighbor is symmetric or not (as in a two way directed edge versus one way directed 
edge) and another for designating if the minimum cardinality MPR includes the particular 
neighbor. One can find the minimum MPR using a known minimum spanning tree algorithm. 

  
Second, for each node i, its corresponding m i broadcasts a Topology Control (TC) 

message with a longer TTL value to relay information about nodes and their corresponding 
edges. This TC message broadcasted by a node in m i also will include the node i that selected it. 
Using the information from the TC messages, every node is able to either build an adjacency list 
or matrix to represent its edges and can therefore construct a routing table. 
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