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1 INTRODUCTION

Against the backdrop of incessant societal advancement, few of humanity’s collective
projects have truly been regarded as speculative while entailing astronomical amounts of
resources in nature — the only historical examples being the pursuit of divinity, the thirst
for profit, and war [8]. Space exploration currently stands to be written into history as

one such momentous project characteristic of our generation.

Space exploration while teeming with grandeur for the meaning it can bring to humanity,
be it finding resources for a new way of life or a fundamental quest for knowledge,
nevertheless has been fraught with challenges. Conventional human-supervised or
manned space missions are simply too risky and costly [1] to be conducted at scale. Put
into perspective, every astronaut sent to Mars would require the delivery of 500,000 tons
of cargo costing several hundred billion dollars [5], along with the severe risk to human

life should a mission go awry.

Autonomous space exploration thus surfaces as a unifying solution that will rebalance
the disproportionate costs and risks attributable to space missions [1], seeking to accord
machines the role of executing high-stake tasks, and the autonomy to decide task should
be conducted [6].

The challenges presented by autonomous space exploration spans notable facets including
software, hardware, engineering capabilities, as well as overarching economic conditions
to make funding of such projects viable. The scope of this paper will be restricted to
aspects pertaining to computer science that enable and enhance computer autonomy in

space exploration.

Section 2 will discuss the history of how autonomous space exploration systems was
spurred. Section 3 will examine key technological aspects of such systems. Section 4 will
delve into economic aspects of autonomous space projects. Section 5 will discuss the

trajectory and catalysts. Section 6 will provide ending remarks for this paper.



2 PURSUIT OF AUTONOMY

2.1 History and Precursor

The Deep Space One (DS-1) spacecraft was perhaps the most instrumental project that
paved the way for development into autonomous space exploration. As part of NASA’s
New Millennium Program that was launched in 1998, the DS-1 was intended to test new
technologies at that point in time [2], of which autonomous operation and navigation

stood as one of the most remarkable in the domain of artificial intelligence.

The key advanced technologies comprised propulsion and energy systems, autonomous
systems, measurement systems, telecommunications and microelectronics; the arm of
autonomous systems comprised autonomous navigation (AutoNav), a remote agent, and
a beacon monitor [10]. While the DS-1 flight accomplished numerous feats in space
exploration, the success of the AutoNav system remained as a reliable precursor to how
spacecrafts could be designed to make decisions with limited to no human intervention,
spurring the development of modern autonomous spacecrafts capable of venturing into

new frontiers in space.

2.2 Motivation

The project holds instrumental value as autonomous space exploration currently stands
as one of the most viable solutions for accomplishing space missions that present steep
technical challenges. One of the fundamental goals for NASA in developing autonomous
systems that aid space exploration was how human intelligence would no longer be viable
in space operations, due to system and mission complexity, rapid reaction time needed,
time lags in communication from spacecraft to Earth or other base of operations, and

harsh environments [11].



3 TECHNOLOGY OF AUTONOMOUS SPACE EXPLORATION

3.1 Aspects of Autonomy in Space

Rational Agent

In a bid to formulate a framework in analyzing technological aspects of autonomous space
exploration, we have to consider how these systems, be it unmanned spacecrafts, rovers,
or simple vehicles, are in fact rational agents that operate or interact with some larger
environment. With respect to rational agents and environments, Russell and Norvig have
defined [13]:

— an agent is an entity that perceives a larger environment through sensors

— an agent is able to take action that either affects itself or the environment through
actuators

— an agent acts according to some defined agent function that maps a sequence of
percept vectors as perceived from its sensors, to some action in a defined in some

set of available actions
Task Environment

Furthermore, to contextualize the purpose of such rational agents that are meant for
autonomous space exploration, we can non-exhaustively define each component of the

agent’s task environment [13] as follows:

— Performance Measure: speed in executing a space mission, accuracy in
navigation, precision in carrying out mission objectives, prioritizing mission-
critical tasks dynamically, searching and analyzing objects of interest, resilience
and self-recovery

— Environment: space, planets, satellites (manmade or natural), asteroids,
atmospheres, terrain (water bodies, land, ice, sand, etc.), stars, gravitational fields

— Actuators: propulsion systems, land traversal systems, energy recovery systems,
communication arrays, mechanical actuators, parachutes and landing systems,
flashlight and signaling lights

— Sensors: cameras, positioning systems, gyroscopes, engine sensors, microphone,

antennas



Autonomous Space Exploration Agents

Autonomous space exploration systems comprise a variety of technologies, such as those
delineated below, it is prudent to note that while artificial intelligence accounts for a
high degree of autonomy in these systems, it is not the only concept responsible for what
makes a system truly autonomous [14]. Indeed, for autonomous systems to work as
designed, the task environment described above is pertinent to understand how the states
of various technologies are developing, and what uncovered grounds may arise. For
instance, in a typical autonomous spacecraft mission, the integrated system would need
to derive serializable or quantifiable data from its trajectory in space through its sensors,
before a preprogrammed agent function can process such data to arrive at an optimized
action to take. These actions could range from elementary adjustments in propulsion

vectors to correct its course, or act on some object of interest.

Autonomy in itself, according to Schroer, exists along a continuum which can be
conceptualized as a 10-level model where Level 1 denotes full human control with
delineated increasing levels of autonomy up to Level 10, in which computers are capable

of rationalizing if a given task should be executed if at all [6].

In fact, more specific for vehicles pertaining to space exploration, autonomy can also be
regarded as both of [12]:

— ability to satisfy a set of mission objectives in a predetermined timeframe without
external intervention, such as from humans
— capability to execute mission tasks or obtain deliverables, such as taking precise

measurements or recover objects of interest

To enable the autonomous space systems of tomorrow, autonomous space systems would
need to demonstrate the capability of achieving higher levels of autonomy in the model
described by Schroer, such that space missions can be executed in more challenging
environments where human intervention has limited viability. The technologies
delineated below also support the enhancement of either criteria of how these systems

can achieve a higher degree of autonomy.



3.2 Artificial Intelligence and Decision Processes

While systems capable of autonomous space exploration comprise several different
technologies, it is noteworthy that artificial intelligence is a significant catalyst that
propels the advancement our endeavors in this field. At least in the scope of decision
processes and onboard operations, artificial intelligence in decision processes accounts for

much of the optimizations available.
Curiosity and Novelty

For humans, curiosity for the unknown is a fundamental building block in our quest for
knowledge. This attribute that vary across people often shape the way we think, or
actions we take to achieve our goals. For non-autonomous space missions in the
yesteryears, manifesting such curiosity is arguably easier when astronauts can either be
placed onboard to assume direct control, or pass on sequences of instructions through

code to unmanned spacecrafts via some ground base of operations.

Extending such curiosity as a driving force for actions taken to autonomous space
exploration systems would require novel advancements in artificial intelligence models.
Graziano et al. posit a notion of interestingness in which the concept of artificial curiosity

machines can emulate would guide its course of actions [1].

interestingness

novelty

Wundt Curve [1]

They argue that while autonomous space exploration systems should seek to optimize

how it achieves mission goals or relay significant information back to Earth, the nature

8



of space exploration in itself teems with the unforeseeable such that building systems
based on a priori information would not render the system able to know what is
interesting relative to challenges presented in space [1]. The Wundt curve above shows
how Graziano et al. argue that there is a critical amount of novelty needed in some

observation for it to be deemed interesting, and repeated trivial observations would be

less interesting in time.
Simulating Curiosity

Indeed, this closely emulates how human agents perceive observations in our greater
environment. To model such curiosity for machines, Girdhar and Dudek employ realtime
online topic modeling (ROST) to compute a quantifiable measure of perplexity of features
observed in the environment by the autonomous system, which could range from terrain

types or lifeforms, to highlight topics of interest [15].
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Tllustrative Example of Recognizing Novel Objects Using ROST [15]

In their study, which was supplemented with real life images such as corals and various
2D datasets, an autonomous system placed in a hypothetical scenario with an abundance
of sand and rocks, along with some corals, would identify the fishes demarcated in the
red circle as the most novel observation as represented by its corresponding topic, and

attempt to change its exploration path in favor of these fishes [15].

This is due to the various observations the system has already made in its exploratory

path, where green fishes are underrepresented in the distribution of observations on the
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chart. As such, in a bid to simulate curiosity and obtain more information on less
encountered objects, the autonomous system would seek to optimize its course of action

to the green fishes.
Curiosity Reward

To further augment the course of action to take when encountering objects of interest,
we could accord some form of curiosity reward that can be used as a feedback signal such
that the autonomous system can optimize the ideal action to take given a set of
observations, as evidenced in projects like IM-CLEVER [1]. Thus, such technological
advancements enable autonomous space exploration agents to carry a more optimized
agent function, and engage in decision processes that take in input from its sensors, and

outputting a form of action through actuators.

3.3 Computer Vision and Navigation

For autonomous space exploration systems, besides making optimized actions to meet
mission requirements, recognizing and categorizing inputs from camera images are
significant aspects of the technology needed for autonomy to be successful. However, the
way humans and machines perceive visual data is vastly different. Autonomous systems
capture images in the form of pixels, and the challenges associated with identifying how
a region of pixels map to some known feature is a meaningful one that will be discussed

below.
Appearance and Pattern Elements

Elementary objects per se already present challenges for machine recognition. In space
where conditions are more dynamic and harsher, technology in machine vision will have

to be sharpened for accuracy in making correct associations.
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Variations in Appearances [15]

Major sources of appearance variations are highlighted above, and in the context of

autonomous space systems [13]:

— Foreshortening effects cause objects to be perceived as slanted, for instance from
some spacecraft approaching a target object from some altitude

— Aspect effects cause objects to look vastly different from different angles, for
instance when a rover camera is directed at the same object but from different
bearings to the object

— Occlusion effects entail some part of an object being covered, for instance when
a camera is directed at a meaningful object of interest, but some terrain feature
covers part of it

— Deformation effects entail change in degrees of freedom for a given object, in
the context of autonomous space systems that are not designed to interact with
relatively large sentient beings, this effect could arise more often if some external
condition on a planet for instance such as wind could cause a target object to

move

If such effects are not accounted for, this would lower the accuracy for machines to
recognize a given object or feature correctly, and possibly jeopardizing a given space

mission.

11



Convolutional Neural Networks

Fortunately, advances in artificial intelligence have yielded novel approaches in tackling
these challenges. Convolutional neural networks, as inspired by the work of Hubel and
Wiesel on the visual cortex [16], are able to use multiple convolution pooling layers to

discern features that can later be identified from some input image [17].

C2 feature

CI feature
maps maps

52 feature
S| feature maps
maps

u
Connection

Convolutions Convolutions

Subsampling Subsampling

Convolutions

Convolutional Neural Network Architecture with 2 Feature Mappings [18]

While a particular convolutional neural network (ConvNet) depends on implementation
and design, with popular tools such as PyTorch being readily available, the above
architecture shows how a typical ConvNet can be designed. In essence, given an input
image, repeated convolution and subsampling stages can be applied on each color channel
of an image to yield feature maps that represent features obtained from regions in the
input image, and eventually arriving at some desired output classification for features in
the image [18].

Convolutions that can be applied may vary across implementations, but a respectable
architecture in the context of the ImageNet LSVRC-2010 contest, that involved sorting
1.2 million images into various classifications, entailed the use of overlapping pooling for
instance; the traditional concept of pooling summarizing a region of z x 2z pixels by a
meaningful average or maximum over pixel values spaced s pixels apart, was augmented
with setting the spacing value s to a value less than z, such that each region pooled

effectively overlaps with some previous region pooled [19].
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Thus, for optimizations in decision making on the part of autonomous space exploration
systems to be achieved, advances in computer vision are crucial for these systems to be
able to recognize features in space, and such technology could serve as the backbone for
ROST as described above to have accurate features already mapped before further

analysis on features to be explored can be made.
Feature Tracking and Visual Odometry

While the hardware in cameras is an important aspect for quality of computer vision in
order to correctly discern between objects and the larger environment an autonomous
space system is in, we will focus more on the software capabilities. Computer vision is
quintessential in identifying features for instance, and as covered above helps the system

track what features it has to navigate through or act on.

Superimposed Images of Opportunity Rover for Visual Odometry [4]

In planetary exploration rovers, the images collected by the rover are mostly taken in
multiple shots and superimposed as the system is moving. In the above image, we see
how Mars Exploration Rovers are able to track features across pairs of images. This is
enabled by the fact that feature detection is made possible first as described above, before
performing a correlation-based search to determine a rover’s position in space from just
2D images [4].

13



Augmented Navigation Data with Visual Odometry [4]

A more rudimentary method of navigating across terrain would simply be to use
revolutions in the wheels or belt of a rover for instance. However, visual odometry is
particularly useful as it yields more accurate data as terrain in space do not observe the
same traction as roads in modern day society, wheels could be slipping in sand, or the
rover could be traversing a slope in which case data from wheel encoders may not present
accurate 2D data, as seen in the image above. The Opportunity rover’s visual odometry
capabilities tracks terrain and is able to yield the accurate path in green, as compared to

what would have resulted from data gathered from wheel encoders in blue [4].
Disparity Matching

Other methods of enabling visual odometry are also possible, a notable one of which is
presented by Kostavelis et al. in the form of disparity matching, whose name implies
that the system seeks to find disparities in images from a pair of cameras placed close to

each other to obtain slightly different views, known as a stereo placement [3].
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Disparity Map from Stereo Image Pair [3]

AD(I, Yy, d) = }Ileﬂ'(x? y) - l'ight[(x - d)? y]| ’

ur

DSl(x, y,d)= Y Y gauss(i, j) AD(x + i,y + j.d),

i=—w j=—w

disp(x, y) = arg{min[DSI(x, y. d)]}.

FEquations for Computing Disparity Map [3]

Note that as the stereo cameras are always placed a fixed distance apart on a given
autonomous rover, analyzing stereo image pairs can help both with depth perception and
also forming accurate disparity maps to improve visual odometry. The above shows how
stereo-vision produces the disparity map by first taking the absolute difference AD across
intensity values I from the left and right images, d is the disparity value (note that the
left camera is the base image; a disparity space image matrix DSI is then initialized to
keep track of matching costs and disparity values, by considering fixed sized squares and
taking a Gaussian-weighted sum over the absolute differences; and finally finding the
disparity value for a given pixel (z, y) by finding the minimum value on the d-axis [3].
Such techniques then go on to improve the state of the art by yielding more accurate

feature tracking and ultimately navigation capabilities.
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3.4 Fleet Networks

While an individual autonomous space system might be able to accomplish specific
mission tasks efficiently as designed, there are other various other tasks in the context of
space missions like mining, transportation, repairing works, or construction, where having
scaling the number of autonomous systems proportionate to the time expected to

accomplish the aggregated task might prove more efficient [5].

Human Telesupervisor

Displays Controls Dashboards| Y Controls Telepresence | Y Controls
Task Planning Robot Telepresence and
and Monitoring Telemonitoring Teleoperation
Results * + Task Plans  Imagery and *Telemetry Data A
Telepresence Teleoperation
Robot Fleet Coordination e |(ComEls
Supervision
A ‘Workstation
Results Task
Hazard and Hazard and Hazard and
1 Assistance |= —{ Assistance [= 1 Assistance [=
Detection Detection Detection
() [} ()

—1 Robot i —| Robot e — Robot i
1 Controller |t L—1 Controller | | Controller |
() [} ()
Physical System | | Physical System Physical System
Robot 1 Robot 2 eee Robot n

Robot Supervision Architecture (RSA) with Human Supervision [5]

Podnar et al. presented how RSA helps a human controller supervise a fleet of
autonomous robots to accomplish some pooled larger task, by having each robot
autonomously do smaller pieces of the task in which a human controller would find
difficult to micromanage, but can a human controller can optimize the priority of tasks
and monitor how the fleet of robots is performing at any time through a supervision
interface, and reallocate resources as needed [5]. While it is prudent to note that the RSA
is not completely autonomous in that human intervention is needed for it to work, it

nevertheless is a significant advancement in enabling autonomous fleet development.
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While fully autonomous fleet systems have seen limited usage in space exploration,
possibly due to the risks and costs that will be discussed in later sections, the possibility
and needs for their adoption is nevertheless clear. Distributed Space Systems (DSS) that
are fully autonomous involve a fleet of autonomous space systems achieving a unified
mission, either cooperatively or uncooperatively depending on whichever is most efficient
at each given timestep as decided by how the entire system autonomously decides, and
could exist as micro-spacecrafts to spread out the cost of losing singular spacecrafts since

they each unit is cheaper to manufacture [20].
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4 ECONOMICS

In a bid to understand more about the economics pertaining to autonomous space
exploration systems, it is quintessential to analyze the scope of the industry, sources of

funding, unit economics of autonomous space systems or projects.

4.1 Industry Overview

Autonomous space exploration systems fall under a larger umbrella industry that includes
the manufacturing of space vehicles as well as missiles; while the overall industry revenue
is $28.6bn overall, only approximately 56.5% of the industry based on products and

services segmentation is accrued to non-missile systems [21].

Space Vehicle Industry Overview

25.0 390.0
380.0

90.0 370.0
360.0

150 350.0
340.0

330.0

10.0 4900
310.0

5.0 300.0
290.0

0.0 280.0

2018 2019 2020 2021 2022 2023

== Revenue ($bn)  ==TFederal Funding ($bn)

As we are concerned with only the space industry, in the chart above, I have accounted
for the segmentation of both industry revenue and federal funding by using the non-
missile segmentation proxy of 56.5% applied onto primary industry data for the umbrella

industry as provided [21].
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Additionally, from the chart in 2018, industry revenue is about $16.2bn and associated
federal funding is about $314.1bn. The space industry is a rather mature one, as the
barriers to entry into this industry are high due to the capital required and research
spending needed to build reliable space systems, as such this could explain how the whole
industry is growing relatively slowly annually at 3.8% for the next 5 years; federal funding

presented a downward trend entering 2018, but is expected to grow through 2023 [21].

4.2 Notable Stakeholders

Various stakeholders play an integral role in enabling the development of autonomous
space exploration technologies [21]. Such stakeholders contribute to the state of the art
through various channels, such as through funding, or development of related research
or technologies that directly or indirectly contribute towards autonomous space
exploration systems. Also note that these stakeholders span the spectrum of being public
government entities, or commercial companies, some of the most notable are outlined

below.
Publicly Affiliated

— U.S. Department of Defense (DoD)

— Defense Advanced Research Projects Agency (DARPA), an agency of the
DoD that invests in breakthrough technologies for national security, of which
space exploration forms a pillar of their projects of interest [22]

— National Aeronautics and Space Administration (NASA)

— U.S. Air Force (USAF)

— U.S. Space Force (USSF), proposed to Congress, a full-time military service

aimed to position itself towards national interests in space [24]
Commercially Affiliated

— SpaceX, private aerospace manufacturer
— Boeing, integrated aircraft and aerospace manufacturer
— Northrop Grumman, integrated aerospace manufacturer

— Lockheed Martin, integrated aerospace manufacturer

19



4.3 Space Project Costs

To put the scale of costs related to space missions into perspective, a typical project to
send a shuttle into space costs around $450m [24]. Clearly, with such a cost associated
with each mission, absent of further costs pertaining to autonomous technologies, space
missions can be deemed as prohibitively costly to be done repeatedly, even though private
players like SpaceX have in recent years pushed for reusable spacecrafts aimed to reduce
the cost of space missions, as mission costs can be expected to decrease if part of

spacecraft can be reused for some successive mission [25].
Need for Autonomous Space Exploration

The argument for autonomous space exploration is clear in the modern-day context when
the potential for technology has reached higher bounds that was impossible in yesteryears.
As we set our sights into newer frontiers in space, sending the first ever astronaut to
Mars in the 2030s has been humanity’s new ambition [27]. However, even a mission to
explore a neighboring planet poses prohibitive costs. Every astronaut sent to Mars would
require the delivery of 500,000 tons of cargo costing several hundred billion dollars [5].
Clearly, such space missions simply cannot be replicated at scale as they pose severe cost
constraints such that not even the U.S. with one of the highest expenditures in the world

for space exploration [21] can sustainably fund such projects.

Moreover, while this cost is largely monetary, the cost associated to the risk of human
life simply cannot be quantified. One need not look further than the Space Shuttle
Challenger Disaster in 1986, in which Shuttle Challenger broke apart only 73 seconds
into its flight and killing all seven of its crew [28], to grasp the gravity of the

disproportionate risks associated with sending humans into space.

Thus, more than ever, the need for autonomous space exploration technologies has

become increasingly dire, both from a financial and moral standpoint.
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Cost Breakdown
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Hypothetical Cost Breakdown of a Space Mission [26]

The exact cost breakdown of a space mission varies based on mission complexity and
requirements, for instance complex missions requiring the need to perform extremely
accurate measurements or conduct intricate operations on a given space environment
would arguably be capital intensive for the hardware capabilities required as well as labor
hours needed to develop software to drive the overall system. However, a cost breakdown
of a typical space mission is provided above. Expectedly, launch vehicle and instruments

costs account for the most due to the precision in engineering capabilities required [26].
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With the rising need for autonomous technologies in space, costs associated to
autonomous software design, associated systems and hardware, integration and testing
would likely increase. Thus, in order for autonomous space technologies to be developed,

associated spending has to increase.

4.4 Autonomous Space Exploration Spending

NASA Spending Projections

As NASA is one of the leading drivers for autonomous space exploration development, it

is worthwhile to study how autonomous technology spending is accounted for in their
budget [29].

Exploration Research and Technology Budget ($m)

1050.0
1000.0
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900.0
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700.0
FY2017 FY2018 FY2019 FY2020 FY2021 FY2022 FY2023

Autonomous operations are parked under the Exploration Research and Technology
budget of NASA, and has been projected to increase in FY2019 to $1002.7m, and tapering
off to $912.7m in future years possibly due to uncertainty of whether the state of

autonomy can reach designated goals. Furthermore, NASA also reinstated that
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autonomous capabilities would be pursued in Airspace Operations and Safety Program
($90.8m), which leads research into autonomous aviation systems including Unmanned
Aircraft Systems; as well as Space and Flight Support ($903.7m), which also delves in
autonomous navigation for near Earth and deep space operations [29]. Such efforts

demonstrate NASA’s commitment into developing autonomous space technologies.

4.5 Cost Benefit Analysis

While there is no publicly available information on the exact cost wise component for
each autonomous space exploration part, we can still perform a cost benefit analysis to

see how compelling switching from manned mission to autonomous space missions would

be.

Cost Benefit Analysis (NPV)

Rate (%) Benefit ($m)
40 45 50 55 60
3% 1.3 24.2 47.1 70 92.5
4% -3.8 18.4 40.7 63 85.2
5% -8.7 12.9 34.6 56.2 77.9
6% -13.4 7.7 28.7 49.8 70.8
7% -17.9 2.6 23.1 43.6 04.1

I performed a cost benefit analysis as above, using NPV as a metric to measure the
outcomes. This analysis is highly conservative even in the base case. I used the cost going
into Year 0 of the investment of switching into autonomous space systems as an increased
spending of $181.9m based on NASA’s financial projections [29], assuming 100% of this
difference went into only autonomous development which is unrealistically conservative

but nevertheless prudent as I do not want to overstate benefits.
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Next, there are various benefits that could be considered. The most direct of forms would
be how the autonomous system contributes to mission success, for instance in measurable
accuracy of data collected, or some quantifiable benefit such as exploitatively mining
resources from planets or asteroids [26, 31]. While I believe these benefits are very clear,
they are either hard to quantify due to lack of data, or have too narrow a scope to extend
to all autonomous space missions as a whole, respectively. Thus, I ultimately chose the
most direct factor to use as a form of benefit, which is the cost savings that can be
accrued to having one less astronaut on board a space mission, using the training cost of

$50m per astronaut as a proxy [30].

In reality, certainly more than one astronaut can be spared from switching away manned
missions to unmanned missions, but again note that this analysis is extremely
conservative. We note that from the sensitivity table above, at a modest discount rate
of 5% for NASA or space manufacturing companies in general existing in a mature
company, we see that the marginal benefit is compelling even under these conservative
estimates, as these NPV values are a realistic lower bound as to how much positive

incremental NPV developing autonomous space exploration technologies can bring.
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5 TRAJECTORY

5.1 Public Developments

Federal Funding

The future trajectory of autonomous space exploration will be highly sensitive to
government spending, as the US government is one of the largest players in the market
and any funding decisions for space exploration in general will have spillover effects to
various government agencies such as DARPA or NASA, which are key drivers in the

research and development of such autonomous capabilities in space [21].
Government Agencies

Fortunately, as established above that federal funding will increase over the next few
years, we can expect this to serve as a viable catalyst for autonomous goals to be met,
propelling the technology to higher levels under Schroer’s model [6]. While there is a
distinction in the scope of DARPA and NASA in the field of aerospace development, it
is worthwhile to note that at least in developing autonomous systems, they have both

established plans in place.

DARPA funding is more correlated with defense spending [21], and recently initiated the
Fast-Lightweight Autonomy (FLA) program that seeks to enable new technologies for
high-speed navigation across dense environments [32]. NASA with its long history of
delving in autonomous space exploration systems since the DS-1 [2], have recently
considered even integrating blockchain technology into new generation autonomous
systems with improved processing capability [33]. All such initiatives could not have been
possible without public funding, and would have an instrumental impact in shaping the

state of autonomous space exploration in the years to come.
USSF Inception

Lastly, the inception of the USSF could also serve as a catalyst with an initial budget
request of $72.4m, before rolling over to $500m annually upon full establishment, as
reported in the USSF factsheet, and potentially nudges the state of autonomous
technology upwards [23].
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5.2 Commercial Development

While more constrained by resources, commercial companies in the space vehicle
manufacturing industry are nevertheless key players that can effect change in the state
of autonomous space exploration technology. This is because while there is less of a focus
on national security or scientific exploration which is in stark contrast relative to players
like DARPA and NASA, such companies are involved in sectors such as space tourism,
or even have affiliations with NASA for instance, such that developing autonomous

capabilities from a part of their keystone strategy to succeed moving ahead [23].

One of the most notable advances is the autonomous precision landing of rockets as
exhibited by SpaceX Falcon 9, in which computations to calculate the descent trajectory
for the rocket has to be done quickly and accurately all through its autonomous software,
such that the landing achieves 99% accuracy, thereby allowing the rocket to be reused

for successive missions [34].
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6 CONCLUSION

In conclusion, we see that the need for development in autonomous space exploration is
compelling, as it would circumvent limitations of costs and risks associated with having
repeated manned missions to space. Especially in the context of today’s world where
technological advancements happen at scale, the rolling out of a new generation of

autonomous space exploration systems is well within reach.

Notably, we see that the infrastructure in terms of technology is well established, and
further developments are relatively incremental, in which paradigm changes are less likely.
While there could always be even more novel ways of implementing how autonomous
systems make optimized decisions in space, or have better software capabilities in

computer vision, newer implementations will likely be founded upon the same principles.

In contrast, the state of technology might be more correlated or even possible dependent
on the economics as discussed earlier on, as funding on the part of government accounts
for much of the resources available in the first place. On the commercial aspect, while
the players might have less resources, their profit-maximizing motives still enable to stay
as relevant as players in this market as they will seek to develop autonomous technologies
that either serve a direct economic purpose for themselves, or could even be sold to other

buyers in the market who demand state of the art technology.

Ultimately, with potential catalysts spurring the promising trajectory of autonomous
space exploration technology, the future teems with grander frontiers in space that we

have yet to explore, and ours is the generation that will see this paradigm change.
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