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Abstract

In this paper, a non-parametric approach to Buy-’Til-You-Die (BTYD)
models, which are a class of probability models used to capture the
purchasing habits of customers, is investigated. The theory behind
BTYD models and Dirichlet processes as the method of non-parameterization
is discussed, and model specifications and results are given thereafter.
A reflection on the managerial applications of this work follows.

1 Introduction

Since the time the Pareto/NBD framework was proposed as a method of
describing repeat-buying behavior, in which customer purchasing habits are
modeled where the number of transactions at the customer-level is Poisson
distributed (with heterogeneity in transaction rate) and each customer has
an exponentially-distributed unobserved lifetime (with heterogeneity also in
the dropout rates), various extensions and variations have been proposed
over the years, all of which have come to comprise the class of models
known as Buy-’Til-You-Die. One such model is the Beta-Geometric/Beta-
Binomial (BG/BB) model, which can be thought of as a discrete version of
the Pareto/NBD model, where customers have the opportunity to purchase
in discrete intervals (e.g. at the end of every month), and the opportunity
for “death” happens right after. Another such example is the periodic-death
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opportunity (PDO) model, where the continuous nature of transactions from
the Pareto/NBD remains the same but the opportunity for death occurs at
discrete intervals across the calendar year (i.e. not tied to transaction times).
One of the enduring features of all the models in this class, however, is the
presence of parameterization - that is, the modeling of heterogeneity for both
transaction rates and dropout rates is done according to a fixed distribution
(e.g. gamma distributions in the Pareto/NBD case) that produces point es-
timates and with no prior. While this has allowed for an intuitive and easily
communicable motivation, the downside is that there is a loss of flexibility
in the shapes that the distributions can take on.

This paper examines the consequences of removing this limitation, which
is accomplished by assuming Dirichlet process priors and applying this to
the three aforementioned models. In particular, the application of this non-
parametric approach to the Pareto/NBD model will be based on the work
done in an unpublished paper by Quintana and Marshall, such that the
section will serve as a validation of their results.

Section 2 discusses the theory behind the BTYD framework. Section
3 gives a brief introduction to Dirichlet processes and the stick-breaking
representation explicitly used in the model specifications. Section 4 details
the non-parameterized models themselves, with comparisons to results from
the original papers. Section 5 discusses the managerial implications of this
work with potential use cases. Finally, section 6 ends with an overview of
the paper and potential avenues for further inquiry.

2 BTYD Models

The Buy-’Til-You-Die class is used to model the purchasing characteristics
and habits of customers, which is then used to predict customer lifetime
value. The baseline story across the different variations has two primary
components:

• Customers, while ”alive,” have some propensity for repeating the action
in question (e.g. purchasing, donating, etc.), and there is heterogeneity
in the extent to which customers repeat this action

• Customers churn, or ”die,” at some point in time, and there is hetero-
geneity in how long it takes for customers to churn
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Evaluating customer lifetime value involves the computation of metrics
such as the probability of a customer being alive and the expected number
of future transactions for a given customer.

The most widely used BTYD model is the Pareto/NBD model, introduced
in Schmittlein et al. (1987), which is discussed further in detail in below.
However, others have been introduced that are based on different underlying
stories/assumptions about customer behavior. The PDO and BG/BB models
discussed below are two such variants, and others include the BG/NBD and
SBB-G/B models.

2.1 Pareto/NBD

The Pareto/NBD model applies to non-contractual settings where purchases
are continuous. As such, purchases can happen at any time and it is unknown
when exactly customers churn. The model is based on several assumptions:

• Customers are ”alive” for some lifetime after which they ”die” and
become permanently inactive

• While alive, a customer’s transactions are modeled by a Poisson process
with transaction rate λ:

P (X(t) = x|λ) =
(λt)xe−λt

x!
, x = 0, 1, 2...

• There is heterogeneity in transaction rates across customers, which is
modeled with a gamma distribution with shape r and scale α:

g(λ|r, α) =
αrλr−1e−λα

Γ(r)

• Each customer has an unobserved lifetime of length τ that is exponen-
tially distributed with dropout rate µ:

f(τ |µ) = µe−µτ

• There is heterogeneity in dropout rates across customers, which is mod-
eled with a gamma distribution with shape s and scale β:

g(λ|s, β) =
βsµs−1e−µβ

Γ(s)
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• The transaction and dropout rates vary independently across customers

An NBD model for the distribution of the number of transactions results
from the second and third assumptions, whereas a Pareto-II model for the
distribution of lifetimes results from the fourth and fifth assumptions. Taken
together, the model’s likelihood function for the latent parameters λ and µ
can be written as:

L(λ, µ|x, tx, T ) = L(λ|x, tx, τT )P (τ > T |µ)

+

∫ T

tx

L(λ|x, T, inactive atτ ∈ (tx, T ])f(τ |µ)dτ

=
λ

λ+ µ
(µe−(λ+µ)tx + λe−(λ+µ)T )

where x is the number of repeat transactions, tx is the time of the most
recent transaction, and T is the last time in the observation period.

However, because λ and µ are not explicitly known for each customer, the
distributions for λ and µ are used to take the expectation over L(λ, µ|x, tx, T ):

L(r, α, s, β|x, tx, T ) =

∫ ∞
0

∫ ∞
0

L(λ, µ|x, tx, T )g(λ|r, α)g(µ|s, β)dλdµ

=
Γ(r + x)αrβs

Γ(r)
{ 1

(α + T )r+x(β + T )s
+ (

s

r + s+ x
)A0}

where, if α ≥ β:

A0 =
F2 1 (r + s+ x, s+ 1; r + s+ x+ 1; α−β

α+tx
)

(α + tx)r+s+x
−

F2 1 (r + s+ x, s+ 1; r + s+ x+ 1; α−β
α+T

)

(α + T )r+s+x

and if α ≤ β:

A0 =
F2 1 (r + s+ x, r + x; r + s+ x+ 1; β−α

β+tx
)

(β + tx)r+s+x
−

F2 1 (r + s+ x, r + x; r + s+ x+ 1; β−α
β+T

)

(β + T )r+s+x

2.2 PDO

The periodic death opportunity, or PDO, model follows a similar story to that
of the Pareto/NBD but with a key difference in the customer churn/death
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process. Namely, rather than modeling the death opportunities as occurring
in continuous time, the PDO model models them as occurring at fixed, dis-
crete intervals (for example, customers have the opportunity to churn every 3
days). Thus, while the first three assumptions from the Pareto/NBD remain
the same, the fourth and fifth assumptions change as follows:

• The random variable Ω represents the (unobserved) time at which a
customer dies, such that every τ units of time, the customer dies with
probability θ. The probability a customer has died by time t is:

P (Ω ≤ t|θ, τ) = 1− (1− θ)bt/τc

• There is heterogeneity in churn probability θ across customers, which
is modeled with a beta distribution:

f(θ|a, b) =
θa−1(1− θ)b−1

B(a, b)

As before, the transaction rates and dropout probabilities vary indepen-
dently across customers.

One interesting aspect of the PDO model is that, as τ approaches zero,
it collapses into the Pareto/NBD model, as this essentially means that the
customer can die at any moment. As such, the Pareto/NBD model serves as
a subset of the PDO model.

From the above assumptions, the model’s likelihood function for the latent
parameters λ and θ is as follows:

L(λ, θ, τ |x, tx, T ) = λxe−λT (1− θ)bT/τc + δbT/τc>btx/τc

·
bT/τc−btx/τc∑

j=1

λxe−λ(btx/τc+j)τθ(1− θ)btx/τc+j−1

where x is the number of repeat transactions, tx is the time of the most
recent transaction, and T is the last time in the observation period.

Since each customer’s λ and θ are not explicitly known, the distributions
for λ and θ are used to take the expectation over L(λ, θ, τ |x, tx, T ), which
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results in the following likelihood function:

L(r, α, a, b, τ |x, tx, T ) =

∫ 1

0

∫ ∞
0

L(λ, θ, τ |x, tx, T )f(λ|r, α)f(θ|a, b)dλdθ

=
Γ(r + x)αr

Γ(r)
[(

1

α + T
)r+x

B(a, b+ bT/τc
B(a, b)

+ δbT/τc>btx/τc

·
bT/τc−btx/τc∑

j=1

{( 1

α + (btx/τc+ j)τ
)r+x

· B(a+ 1, b+ btx/τc+ j − 1

B(a, b)
}]

2.3 BG/BB

Whereas the Pareto/NBD and PDO models focused on transactions that can
happen at any point in time, regardless of the nature of the death process, the
philosophy of the beta-geometric/beta-Bernoulli, or BG/BB, model focuses
on discrete transactions in a non-contractual setting. Thus, the majority of
the assumptions differ from those presented thus far, though one can see how
they are discrete analogs:

• While alive, a customer’s transactions are modeled by a Bernoulli dis-
tribution with probability p:

P (Yt = 1|p, alive at t) = p, 0 ≤ p ≤ 1

• There is heterogeneity in purchase probabilities across customers, which
is modeled with a beta distribution:

f(p|α, β) =
pα−1(1− p)β−1

B(α, β)

• At the beginning of every transaction opportunity, a customer dies with
probability θ

• There is heterogeneity in death probabilities across customers, which
is modeled with a beta distribution:

f(θ|γ, δ) =
θγ−1(1− θ)δ−1

B(γ, δ)

6



Similar to before, the transaction and death probabilities are independent
across customers.

From the above assumptions, the model’s likelihood function for the latent
parameters p and θ is:

L(p, θ|x, tx, n) = px(1− p)n−x(1− θ)n

+
n−tx−1∑
i=0

px(1− p)tx−x+iθ(1− θ)tx+i

where x is the number of repeat transactions, tx is the time of the most
recent transaction, and n is the number of transaction opportunities.

Because each customer’s latent parameters p and θ are unknown, the
distributions for p and θ are used to take the expectation over L(p, θ|x, tx, n),
which results in the following likelihood function:

L(α, β, γ, δ|x, tx, n) =

∫ 1

0

∫ 1

0

L(p, θ|x, tx, n)f(p|α, β)f(θ|γ, δ)dpdθ

=
B(α + x, β + n− x)

B(α, β)

B(γ, δ + n)

B(γ, δ)

+
n−tx−1∑
i=0

B(α + x, β + tx − x+ i)

B(α, β)

· B(γ + 1, δ + tx + i)

B(γ, δ)

3 Dirichlet Processes

3.1 Introduction

The Dirichlet process (DP) is a stochastic process that produces a distribu-
tion over distributions, whereby each draw from the process creates a dis-
tribution. In the following explanation of DPs, the treatment given by Teh
(2017) is extensively referred to.

The DP is essentially an infinite-dimensional generalization of Dirichlet
distributions. To demonstrate, assume a mixture model with K components:

π|α ∼ Dir( α
K
, ..., α

K
) θ∗k|H ∼ H

zi|π ∼ Mult(π) xi|zi, {θ∗k} ∼ F (θ∗k)
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Here, π represents the mixing proportion, α is the Dirichlet prior hyperpa-
rameter, and H is the base prior distribution over the component parameters
θ∗K , which parameterizes F (θ). This construction leads to an infinite mixture
model as K → ∞, from which the DP ultimately is derived. Notably, with
an infinite mixture model, the number of components does not need to be
predefined.

3.2 Definition

A random distribution G has a DP prior if all its marginal distributions
are Dirichlet distributed. With a base distribution H over the parameter
space Θ and the hyperparameter α (known as the concentration parameter),
G ∼ DP(α,H) if:

(G(A1), ...G(Ar)) ∼ Dir(αH(A1), ..., αH(Ar))

where A1, ..., Ar is any finite measurable partition over Θ.

3.3 Stick-Breaking Construction

The stick-breaking construction is one common way to understand and rep-
resent DPs, and it is the method that is explicitly used as the prior for the
models discussed later in this paper. With this, G ∼ DP(α,H) means that:

βk ∼ Beta(1, α) θ∗k ∼ H

πk = βk

k−1∏
l=1

(1− βk) G =
∞∑
k=1

πkδθ∗k

Here, G can be understood as a weighted sum of point masses, where
the weights πk are constructed as follows. Consider a stick of length 1, and
assign to π1 the stick length that is broken off at β1. From the remaining
part, break the stick at β2 and assign to π2 the length of this broken portion.
Continue recursively until all πk values are assigned in this manner.
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4 Empirical Analysis

In the Pareto/NBD and PDO models below and their subsequent analyses,
the CDNOW dataset was used since it was also used by Quintana and Mar-
shall (for the Pareto/NBD model) and Fader et. al. (for the PDO model),
thus maintaining consistency. For the implementation and analysis of the
BG/BB model, the donations dataset used in the original paper is used here.
Finally, STAN software was used to perform MCMC sampling.

4.1 Pareto/NBD

As mentioned previously, the development for the non-parametric Pareto/NBD
model is done as a validation to the unpublished work presented in Quintana
and Marshall (2014), which is henceforth referred to as QM. However, the
methodology used in this paper (both for this model and the subsequent two
models) contains changes that were made to their approach, so an overview
of their methodology will be presented first, followed by a description of the
changes.

4.1.1 QM Model Specification

Let (xi, txi , Ti), for i = 1, ..., n, represent the fully relevant transaction history
for each customer, where xi is the number of transactions done by customer
i, txi is the time of the last transaction, and Ti is the time at which the
observation period ends (such that txi ≤ Ti). Note that xi = 0 implies that
txi = 0.

The central assumptions of the Pareto/NBD model (i.e. λi and µi are
gamma-distributed, etc.) remain, so the likelihood for the ith customer given
his/her λi and µi is:

p(xi, txi , Ti|λi, µi) =
λ
xi
i µi

λi+µi
e−(λi+µi)txi +

λ
xi+1
i

λi+µi
e−(λi+µi)Ti

Note that in the case that xi = txi = 0, the above likelihood collapses to:

p(xi = 0, txi = 0, Ti|λi, µi) = µi+λie
−(λi+µi)Ti

λi+µi

In this case, whenever λi > 0 and Ti > 0, the likelihood is maximized for
µi =∞. As a result, QM introduce an explicit π parameter such that, with
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probability π, a given customer may a priori churn immediately after time
t = 0. Their complete model specification is thus as follows:

Let θi = (λi, µi). A hierarchical model is defined such that the probability
defined above is at the top level, and the parameters θ1, ...θn are defined by
the following mixture:

θ1, ...θn|π, F ∼ πδ(0,c)(·) + (1− π)F (·)

where, a priori, π ∼ Beta(a, b) is independent of F ∼ DP(M,F0(ω)).
Here, in the zero-inflated case, λi = 0 and µi is an arbitrarily large con-

stant c to still allow for the possibility that a customer in this group will make
a transaction at some later time. F0(ω) is defined as the four-dimensional
distribution:

F0(ω) = Unif(r|r0, r1)× Unif(α|α0, α1)× Unif(s|s0, s1)× Unif(β|β0, β1)

QM also implemented least-square clustering, which estimates the cluster-
ing of observations based on realizations from the posterior clustering distri-
bution. This allows for the number of clusters to be produced as a side effect
of the process rather than requiring the number to be pre-defined. In their
analysis, QM fit the model using Markov chain Monte Carlo (MCMC) sam-
pling with the following values: a = b = 1 to produce a uniform prior on π be-
tween 0 and 1; M = 1; r0 = α0 = s0 = β0 = 0.5; r1 = α1 = s1 = β1 = 10000,
which allows for generally unconstrained support; and c = 10000 for the
zero-cluster (which implies µ = 10000). In addition, in constructing the DP,
truncation is applied such that only approximately k = 25 values are imputed
(see section 3.3).

4.1.2 Changes Made

The specification implemented by QM remains generally the same in the
applied ideas for the modeling in this paper but with a few key changes.
They are as follows:

• Rather than using the least-squares clustering method separate from
the model, the clustering methodology here is built in to the model
itself. This is achieved by representing r, α, s, and β as vectors instead
of scalar values, whose size is equal to the level of truncation in the DP
(k in section 3.3). Since the truncation level is a user-defined parameter,

10



this approach is similar to pre-defining the number of clusters as one
might do with the k-means algorithm. However, the key difference is
that, with the DP, an arbitrarily large k can be chosen (to mimic the
weighted sum whose limit goes to infinity), and the resulting πk values
can be used to determine the relative size and importance of the k
clusters that are produced.

With this approach, the MCMC sampling produces a n-by-k matrix
of mean λ and µ values for each customer and each cluster (n cus-
tomers and k clusters), from which customers are ad-hoc assigned to
clusters based on which corresponding λ and µ values maximize the
log-likelihood function.

In the actual application of this method, the value k was forced to be
kept to a small value due to computational reasons. To exemplify, when
applied to the PDO model that is discussed later, a value of k = 5 led
to a total run-time of almost 70 hours. However, although it seems
that such a small value would not well approximate the DP in its limit
of infinity, it turns out such truncations are arbitrarily accurate and
still work in practice (see Campbell et al. (2019)). Note that the limits
of the uniform priors in the definition of F0 remain the same.

• The second main change made in the current model is that a π param-
eter is not used to directly model a zero-cluster. Instead, it is assumed
that the previously explained re-parameterization of r, α, s, and β will
subsume such a cluster and preclude the necessity for an explicit defi-
nition. As a result of this, the modeling of λi and µi changes as well.
Namely, rather than being a weighted mixture based on π, they are
instead gamma-distributed at the cluster-level.

Although not a change between the current and QM models, one thing to
note is that the log-likelihood for the Pareto/NBD model was constructed on
given λi and µi values as opposed to the four gamma-distribution parameters.
The main reason for this was that implementing the hypergeometric function
as one of the subroutines led to issues with gradient calculation.

4.1.3 Results

Figure 1 presents the distributions of the cluster-level parameters, figure 2
shows the predicted posterior distributions of the latent variables λ and µ,
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figure 3 shows the distribution of customers in the various clusters, and table
1 presents the summary statistics for the key parameters of the model.

As can be seen, the posterior distribution for λ has a form similar to that
of a gamma distribution, whereas the distribution of µ is much more spread
out and somewhat bi-modal. Overall, however, the results are surprising
since they not only defy the form of the gamma distribution (specifically for
µ) but they are also somewhat inconsistent from the results produced by
QM, which can be seen in figure 4. One explanation for this, however, is the
aforementioned choice to not model an explicit zero-cluster and to instead
let the Dirichlet process prior account for that. Additionally, the parameters
themselves across the clusters are fairly divergent from the point estimates
attained in Pareto/NBD model.

Table 2 presents several goodness of fit statistics to compare the current
model with that of QM and the original Pareto/NBD models. Across the
given metrics, with correlation, mean absolute error (MAE), and root mean
squared error (RMSE) representing out-of-sample fit, the current model out-
performs both QM and the original Pareto/NBD models. It is also worth
noting that, despite the relative increase in 16 parameters (from modeling 5
clusters) from QM to the current model, a likelihood-ratio test produces a
p-value of virtually zero, which indicates significance.

One major pitfall of this non-parametric approach, is that it is unable
to predict well for a randomly chosen customer with no prior information.
This occurs because the cluster-level parameters are unable to be weighted
well enough (specifically, according to the weights given by the DP prior) to
produce accurate single point estimates. In this case, it is better to use the
point estimates computed from the maximum-likelihood estimation given by
the base Pareto/NBD model. However, one potential solution around this
would be to a posteriori fit a gamma distribution to λ and µ (e.g. using
MLE) to back out the parameter values, though such a method leads to a
lower log-likelihood than the aforementioned ”base” method.

4.2 PDO

The PDO model was constructed based on the work presented in Jerath
et al. (2011) and was generally in line with the theory laid out in section 2.2.
The main change is that, similar to the Pareto/NBD model, r, α, a, and b
are implemented as vectors with length equal to the size of the truncated
DP. This size is also the desired upper bound on the number of clusters.
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As in the original paper, only one τ value is imputed, rather than modeling
different values for each cluster. The primary reason for this was computa-
tional - as mentioned above, it had already taken approximately 70 hours
to complete MCMC sampling without doing so. In addition, in contrast to
the Pareto/NBD above, the log-likelihood function here was constructed on
the underlying distributions’ parameters, as opposed to the latent variables,
since the aforementioned gradient computation error was not encountered.

4.2.1 Results

Table 3 presents the summary statistics for the key parameters of the model,
figure 5 presents the distributions of the cluster-level parameters, figure 6
shows the predicted posterior distributions of the latent variables λ and µ,
and figure 7 shows the distribution of customers in the various clusters.

Here again, the posterior distribution for λ has a form similar to that of
a gamma distribution, while the beta-distributed µ has a long left tail with a
mean of approximately 0.90 and a median of approximately 0.90. Compared
to the original PDO model, which produced a log-likelihood of -9,585.6, this
non-parametric approach produced a log-likelihood of -9,534.351, indicating
a significant improvement based on the likelihood ratio test. As with the
Pareto/NBD model, however, the model does not perform well for uncondi-
tional expectations.

4.3 BG/BB

The BG/BB was implemented based on the work presented in Fader et al.
(2009) and in line with the theory laid out in section 2.3. The main change
is that, similar to the Pareto/NBD model, α, β, γ, and δ are implemented as
vectors with length equal to the size of the truncated DP. This size is also the
desired upper bound on the number of clusters. Additionally, similar to the
PDO model, the log-likelihood is calculated from the distribution parameters
rather than the latent variables.

4.3.1 Results

Table 4 presents the summary statistics for the key parameters of the model,
figure 8 presents the distributions of the cluster-level parameters, figure 9
shows the predicted posterior distributions of the latent variables p and θ,
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and figure 10 shows the distribution of customers in the various clusters.
Compared to the original BG/BB model, which produced a log-likelihood of
-33,225.6, this method resulted in a log-likelihood of -23,021.68, indicating a
significant improvement based on the likelihood ratio test. Again, however,
as with the Pareto/NBD and PDO models, this model does not perform well
for unconditional expectations.

5 Economic and Business Applications

The most direct consequence from the improvement shown by these non-
parametric models is that they can be used by managers and decision-makers
to better understand the behavior and underlying characteristics of their
business’ customers. For example, with the non-parameterized Pareto/NBD
model, the distribution of µ is fairly unlike a gamma distribution, and such
a quirk would not have been captured by the original model. Since all the
analyses conducted here are in the context of already having some informa-
tion at the customer-level, these results naturally lend themselves to a more
customer-centric approach, in which managers can better utilize different
marketing strategies in a more targeted nature.

As a result of these model developments, more accurate and precise esti-
mates for customer lifetime value (CLV) can be made at the individual level.
Rather than relying on point estimates from a distribution across the en-
tire customer base to calculate CLV from expectations, this non-parametric
approach, particularly through the clustering information it provides, can
provide segmentation information about the customers. From this, man-
agers can then more accurately calculate threshold values for how much to
spend retaining these customers.

As a corollary to this result, it can be seen how this new methodology
would be particularly useful in settings where customer behavior is funda-
mentally not well-modeled by the assumptions underlying these models. An
example of this arises in the secondary retail dataset used by QM, in which
the the posterior predictions for λ and µ diverge from the form of a gamma
distribution.
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6 Conclusions & Future Work

In this paper, a more effective, non-parametric approach to modeling cus-
tomer transaction behavior was validated and extended to variants in the
Buy-’Til-You-Die class of models. A methodology of using the stick-breaking
representation of Dirichlet processes as the means of non-parameterization
in place of an underlying, fixed distribution was demonstrated to produce
significantly better predictive results both in and out of sample. Lastly, a
framework for understanding the clustering/segmentation of the customers
based on these models was briefly presented.

The work presented in this paper can be thought of as an additional
proof-of-concept, in that it opens up many different possibilities of in-depth
investigation and study. One such example is to explore how the aforemen-
tioned issue with the weighting scheme can be resolved to allow for modeling
of and predictions on randomly chosen with no prior transaction history.
In addition, since the precise values of the scale parameters in the gamma
distribution are actually not of great importance, another possible area of
study would be to fix those values (for example, such that α = β ≈ 10 in the
Pareto/NBD model, which is what the original point estimates are) to allow
for a greater degree of interpretation in the resulting cluster-level parameters.

Ultimately, as there does not currently exist a large quantity of literature
in this area of non-parametric probability models in marketing (particularly
with Dirichlet processes), there is much study to be done as well as a variety
of potential applications to be further studied.
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Appendix

Cluster π r α s β

1 0.453 0.761 10.212 171.461 9.778× 103

2 0.224 0.432 3.909 15.441 6.906 805× 101

3 0.0673 27.374 2300.219 5.420 1.112× 1014

4 0.227 1.721 49.596 20.673 5.172× 103

5 0.0271 18.279 3001.578 0.611 2.858× 103

Table 1: Summary statistics for key parameters of the current Pareto/NBD
model
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(a) r (b) α

(c) s (d) β

Figure 1: Cluster-level distributions of key parameters of the current
Pareto/NBD model
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Figure 2: Posterior distributions for λ and µ of the current Pareto/NBD
model

Figure 3: Distribution of customers among clusters of the current
Pareto/NBD model
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Statistics Current QM Pareto/NBD

Log-Likelihood −7852.3 −8588.5 −9595.0
Correlation 0.752 0.631 0.630
MAE 0.536 0.668 0.755
RMSE 1.555 1.599 1.604

Table 2: Model comparisons for goodness-of-fit of the current Pareto/NBD
model

Figure 4: Posterior distributions for λ and µ from QM

Cluster π r α a b τ

1 0.671 0.273 1.804 1.813 0.148 6.504
2 0.117 0.340 5.355 3.523 0.167 6.504
3 0.186 1.005 0.580 6.716 1.551 6.504
4 0.005 4.209 0.364 0.376 0.289 6.504
5 0.021 0.467 2.531 0.731 0.534 6.504

Table 3: Summary statistics for key parameters of the current PDO model
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(a) r (b) α

(c) s (d) β

Figure 5: Cluster-level distributions of key parameters of the current PDO
model
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Figure 6: Posterior distributions for λ and θ of the current PDO model

Figure 7: Distribution of customers among clusters of the current PDO model
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(a) r (b) α

(c) s (d) β

Figure 8: Cluster-level distributions of key parameters of the current BG/BB
model
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Cluster π α β γ δ

1 0.177 0.209 2.867 3.983 0.696
2 0.635 6.716 6.140 0.201 93.094
3 4.001 2.191 7.468 6.716 1.866
4 0.019 68.918 0.204 1.275 5.213
5 0.005 4.196 5.310 2.063 2.580

Table 4: Summary statistics for key parameters of the current BG/BB model

Figure 9: Posterior distributions for λ and θ of the current BG/BB model
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Figure 10: Distribution of customers among clusters of the current BG/BB
model
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