
CIS 401 Final Progress Report (Team 27)

1

Abstract

Blockit is a mobile application oriented

towards students and working individuals

who want to be ultra-productive. Time

blocking is an extremely effective method

to stay productive and efficient, but the

process is a pain. Our project combines

both the to-do list with the calendar in one

application to productively use one’s

pockets of free time and manage one’s

workload with ease. We built a beta iOS

application that integrates a user’s Google

Calendar and lets one block to-dos with one

tap, along with a prototype automated

scheduler. We evaluated our work with a

feature conjoint study, Time-to-First-Block

(TTFB) analysis, and an automated

scheduling comparison to competitors. The

results undoubtedly show that our

application can provide serious benefits to

users.

1 Motivations and Product High-Level

Functionality

Our motivation for this project is to resolve two

pain points we experience frequently as students:

first, the annoyance of cross-checking our to-do

lists with our calendars to schedule when to work

on tasks, and second, the annoyance of emailing

people back and forth to schedule a simple

meeting. We also realized that there are currently

no services available that solve both of these issues

simultaneously. As a result, we conducted primary

research to find out whether other people had

similar experiences with their productivity apps

and aimed to build a solution that addressed these

problems. Now that we have built the prototype,

we expanded our evaluation studies to draw

statistical comparisons with competing apps to

prove whether or not Blockit managed to offer a

meaningful value proposition.

Time blocking refers to the concept of blocking

or segmenting out time on one’s calendar for

specific tasks or work. This allows users to create

a specific time zone or block to work on that task.

To-dos refer to your inputted items that you want

to get completed, like buying a flight ticket or

working on a CIS 530 HW 8 assignment. The New

York Times has done a study showing that ultra-

productive people use time blocking as their

primary tool for organizing their life and basically

live off their calendar. However, to this date, time

blocking is a tedious and annoying process that

involves dragging out events on Google Calendar

or Apple Calendar, and we want to help people

become more effective.

1.1 Value Proposition

Blockit offers two main features: first, it

seamlessly integrates a user’s to-do lists with their

calendar so that they can schedule when they want

to work on their tasks as easily as archiving an

email in their inbox. This new hybrid is simply

called “The List.” The app integrates with their

existing calendars (e.g. Google Calendar and

Apple Calendar) and users can swipe to-do list

tasks to place the task into an open spot on their

calendar with one tap, creating a “block” of time to

work on that task. This would be especially useful

in the workplace, where employees are constantly

trying to block out their schedules to work on

certain tasks, only to have to create each event

slowly and manually. Blockit would do it all very

easily and let users harness small pockets of free

time to keep themselves productive.

The second feature is scheduling meetings:

instead of the usual emailing back-and-forth to try

to figure out when someone is free, Blockit would

use the data it already knows from integrating with

one’s calendar to automatically schedule a time

when they are guaranteed to be free. This feature is

simply called “The Scheduler.” We realize that

plenty of services already do this (e.g. When2Meet,

YouCanBook.me, Doodle, etc.), but 1) most, if not

all, do not automatically integrate with one’s

calendar to find occupied times and 2) if both

parties have registered Blockit accounts, Blockit

would schedule this meeting automatically for

them without the invited party having to fill out a

Blockit: Time Blocking Made Easy

Ezaan Mangalji (ezaan@seas.upenn.edu)

Griffin Fitzsimmons (gfitz@seas.upenn.edu)

Rishab Jaggi (rjaggi@seas.upenn.edu)
Young Lee (jaeyounglee@seas.upenn.edu)

External Advisors: Swapneel Seth, Sebastian Angel, Joe Devietti

CIS 401 Final Progress Report (Team 27)

2

form. This would be possible as users would have

already inputted scheduling preferences when they

signed up for the app.

While this is an awesome feature we wanted to

implement, due to time and the COVID-19

pandemic, we were unable to build this into our

iOS beta. As this was an important feature to use,

we instead built out the algorithm itself in a

standalone code repository. As a result, we were

still able to evaluate this feature by comparing our

algorithms’ results to that of others. We go into

much more detail on these results in the evaluation

section later on.

1.2 Stakeholders

The stakeholders for this project include:

• Students trying to better manage their time

• Employees trying to manage when they will

complete their tasks between a full load of

meetings:

• Employees in companies trying to schedule

meetings with other employees

• Gig workers (e.g. freelance photographers)

who want to schedule gigs more easily into

their work schedules

It is important to note that Blockit will provide

value not only when it is used individually to block

out free time, but also among groups of people who

can benefit from the assisted scheduling

functionality.

2 Related Work and Competition

2.1 Market Research

In a 2014 report released by VisionMobile, an

estimated $28 billion was spent on business and

professional apps in 2013. This figure was

projected to reach around $58 billion by the end of

2016. Although this is a small slice of the

forecasted $6.3 trillion mobile app industry by

2021, productivity and collaboration software is a

quickly growing market today.

This growth can also be indirectly measured by

the growth rates of our competitors, who are

described in more detail in the following section.

Not only are there more competitors in each of our

targeted spaces (task management, scheduling)

overall, but also each of these competitors have

been raising massive rounds of capital from

venture capitalists with the expectation that these

productivity apps will eventually become

quintessential to every company in the near future.

2.2 Competition

A full list of competitors and their respective

productivity sub-industries are listed in Appendix

A: Competitors of this paper. We provide a brief

explanation of the pros and cons for a select

number of competitors in Figure 1 below (a larger

copy of this table can also be found in Appendix

A: Competitors):

Figure 1: Pros and cons of competitors in the

productivity software market.

3 Unit Cost Analysis and Revenue Model

3.1 Business Model Overview

Our go-to-market plan involves pricing our

product similarly to other products already in the

market. Most productivity “software-as-a-service”

(SaaS) apps are offered under a freemium model: a

(usually) perpetual free tier with limited features,

and a paid (“premium”) tier with all features. We

plan to monetize Blockit in a similar fashion,

creating tiers based on feature set and type of

customer. In general, Blockit offers three main

features: time blocking, automated scheduling, and

calendar optimization. We also note three general

types of customers in the SaaS market: individuals

(for personal use), small teams (for business use),

and enterprises. At rollout, in order to maximize

traction and organic growth, Blockit would offer

time blocking and automated scheduling for free

for all individuals and small teams. Since we

expect enterprises to comprise the bulk of our sales

revenue in the long run, they will not be included

in the free tier at all.

Once we reach a steady state in our business (in

approximately several years), we aim to target the

small teams segment as well, making the free tier

only available for individuals only. Furthermore,

since the free tier would now only include

http://www.visionmobile.com/product/business-productivity-apps/
https://techcrunch.com/2017/06/27/app-economy-to-grow-to-6-3-trillion-in-2021-user-base-to-nearly-double-to-6-3-billion/

CIS 401 Final Progress Report (Team 27)

3

individuals, automated scheduling would no longer

belong in the free tier (since the feature inherently

requires teams). All in all, our approach would

always focus on enterprise sales under a freemium

model.

An analysis of our costs and revenue streams

are given in the following subsections.

3.2 Cost Analysis

As a SaaS business, Blockit has the advantage

of having extremely low fixed costs. All costs are

strictly variable based on our usage, and include

AWS EC2 and MongoDB Atlas fees, Stripe online

transaction fees, and social media marketing costs.

Each of these services scale automatically, so our

costs will grow smoothly and predictably as

Blockit gains traction. Our model assumes using a

given amount of data storage and data transfer in

three stages: year one, year two, and year three

onwards. A detailed breakdown of each of our

costs, our estimates on how much data usage we

expect from users, and cost growth over time can

be found in Appendix B: Revenue Model.

3.3 Revenue Model

Our revenue model is primarily based on paid

user growth over time. Our primary source of

revenue is the subscription fee users pay for the

premium tier, and we expect to price Blockit at

$19.99 per month, per user for enterprise

customers. We thought this was a reasonable price

given competitors’ rates for enterprise customers

(e.g. Notion). Our critical assumptions include the

monthly growth and churn rates. We were able to

minimize our assumptions to just these two metrics

as a subscription model is a very predictable source

of revenue, even in the long run. Putting it all

together, given modest monthly growth and churn

rates (converging to 3% and 2% respectively by

Year 4), Blockit’s profit grows to over $1.3 million

per year by Year 5. A breakdown of our costs and

revenue by year is shown in Appendix B:

Revenue Model.

4 Technical Approach

Our project consisted of five technical

components: the design system, mobile

application, RESTful API, database, and the

scheduling algorithm. We describe each of these

components in detail below and is summarized in

Figure 2 below:

Figure 2: Diagram of our tech stack.

4.1 Design System

A design system, while not a public component,

is essential to any application. We created a full

guideline to the aesthetics of our app in a Figma, a

collaborative interface design tool. This allowed us

to plan in detail the views for most aspects in our

app and create design patterns that we used

throughout. It was essential that we kept our design

methodology in mind at all times because a large

portion of our core value proposition (aside from

core functionality) was clean design and displaying

only essential details. We also made use of

Webflow, a prototyping tool that helps you build

responsive websites and export code for

implementation. These two tools allowed us to

design an extremely simple, flowing, application.

We provide screenshots and details of our design

and website in Appendix C: Design System.

4.2 Mobile Application

While working through various design

concepts, it became clear that a mobile application

was the best form for our productivity tool to

deliver the greatest value. We developed it using

React Native, an open-source mobile application

framework, which allowed us to leverage our

team's previous experience with React.js and build

a single native application for both Android and

iOS. We also used Expo.io, a platform for building,

deploying and quickly iterating on applications to

accelerate our development. Building the mobile

application basically involved two main tasks:

implementing our Figma designs to make the most

delightful user interface as possible and

marshalling data back and forth in communicating

with the back-end server.

We leveraged some great front-end libraries in

implementing our designs. We also took advantage

of Figma’s ability to export code (mostly CSS) in

CIS 401 Final Progress Report (Team 27)

4

order to make our implementation resemble the

original designs as much as possible. Some

interesting components we built included the

navigation bar, swipeable to-do list tasks, and one-

click calendar blocks.

Connecting the mobile app to the back-end

server involved marshalling account, event and

calendar data back and forth from the back-end, as

well as properly representing and storing this data

in the app itself. We used the Fetch API to make

HTTP requests from the mobile app to the server

in order to send and retrieve information and the

state of our React components to store this data. We

also leveraged some libraries like Moment.js for

parsing, validating, manipulating, and formatting

dates and times as they related to events and tasks.

Finally, we made use of the “expo-google-app-

auth” API for adding Google authentication and

access to our mobile application. This allowed us

to seamlessly integrate a “log-in with Google”

screen into our app. Upon successful

authentication, a secure access token is returned,

which we send back to the back-end server and

store in the user session for future Google API

requests. A code snippet of the Google log-in flow

can be found in Appendix F: Code Snippets.

4.3 RESTful API

The back-end API is responsible for

communication between the front-end mobile

application and services like the Google API and

the database where information is stored. We

developed it using Node.js and the Express.js

framework.

The server was able to interact with our

database using the Mongoose library. This a

powerful and elegant object modeling library that

allows us to easily create, update and delete objects

from our database. A code snippet of API endpoints

for interacting with the database can be found in

Appendix F: Code Snippets.

While the initial Google authentication

mechanism is built into our mobile application

front-end, all subsequent requests to the Google

API are handled by our own back-end server. After

retrieving the secure access token from the original

authentication, the server is able to include this in

every request to Google API’s in order to

identify/authenticate the user and retrieve, create,

edit and delete events in the user’s Google

Calendar. The Javascript code on the server

handles manipulating and editing the data before

sending it to the mobile application as well as

syncing the data to our own database with our own

database.

For development, we deployed our API on a

free-tier Heroku dyno. This allowed us to get the

server up on a URL extremely quickly with only a

few steps. However, this also came with some

disadvantages as free-tier dynos go to sleep after

30 minutes of no activity and then take several

seconds to relaunch when a new request comes in.

For production, we decided to move the server to a

dedicated AWS EC2 instance, which remains up

and running.

4.4 Database

We decided to use a NoSQL database as it

allowed us to rapidly iterate on and modify our

schemas as we built out more functionality without

having to worry about creating new tables or run

migrations. Our database provider of choice is

MongoDB and this is hosted by MongoDB’s cloud

product called Atlas. For production, we would

port this to a collection of SQL tables to better

handle scale and throughput. A code snippet of our

To-do model database schema can be found in

Appendix F: Code Snippets.

4.5 Scheduling Algorithm

Our automated scheduler attempts to find the

lowest-impact free block of time in a given week.

Our objective was for the algorithm to suggest

meeting times that does not conflict with existing

events, does not disrupt flow time, and does not

extend the end of the day or beginning of the day.

For more information on how we weighed and

measured these metrics, see the Automatic

Scheduling part of the Evaluation section of this

report. We implemented our algorithm

functionality in Python with an algorithm based

around discretizing the day into events (from an

existing calendar) and into free blocks. Below is

pseudocode further detailing this subroutine.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://reactjs.org/docs/state-and-lifecycle.html
https://momentjs.com/
https://expressjs.com/
https://mongoosejs.com/
https://www.heroku.com/
https://aws.amazon.com/ec2/
https://www.mongodb.com/cloud/atlas

CIS 401 Final Progress Report (Team 27)

5

Based on the free blocks we obtained for each

day, our algorithm searched for the minimum time

slot sufficiently large enough to accommodate a

given event. If the block is long enough to be

considered flow time (two hours) and another

block is available within the time span that is

smaller, our algorithm will choose this block. This

example subroutine is included below.

Our algorithm is biased to find within-day free

blocks and will only look to schedule events

outside of the normal working hours. A code

snippet of scheduling algorithm can be found in

Appendix E: Scheduling Data.

4.6 Application Demo

A video demonstration of our application’s

functionality can be found here:

https://www.dropbox.com/s/tga2jw8s7qj6hyo/Ap

p%20Demo.mp4

5 Evaluation

When we first made our evaluation plan, we

thought it would be important to test Blockit

against its competitors both quantitatively and

qualitatively. Ideally, the best way to evaluate our

application would be to get it in the hands of as

many users as possible and run thorough user

studies and focused interviews; however, due to the

COVID pandemic, this immediately became

infeasible. As a result, we conducted analyses that

we believe validate our value proposition and

provide us with very useful information in

improving our product.

The three analyses we conducted were:

1. Feature-based conjoint analysis: to determine

which aspects of our features were most

important to users,

2. Time-to-First-Block (TTFB) analysis: to

measure how quick and easy it was for Blockit

users to time block, compared to competitors,

and

3. Automated scheduling analysis: a simulation

to test the effectiveness of our standalone

scheduling algorithm against other

competitors.

We now go into the setup, results, and other

details for each of these studies below.

5.1 Feature-based Conjoint Analysis

Conjoint analysis is a great method for

understanding implicit user preferences as it forces

people to make tradeoff decisions.

Design

We begin by creating a design for our conjoint

survey. We want to have people rate different

product offerings on a Likert scale from one to

seven on how likely they would be to use that

product. A product is composed of 6 different

attributes which we selected. Each attribute has

two to three levels to it, which we vary in the

survey to provide different product offerings. We

had the following six attributes and levels:

1. Application: web, mobile, mobile and web

2. To do list: plain list, list with categories, list

with categories and subtasks

3. Task scheduling: none, task deadlines, task

blocking directly into calendar

4. Automated scheduling: none, yes

5. Calendar optimization: none, yes

6. UX: separated calendar and to do list,

combined and integrated single application

We then used a fractional factorial design which

provides us with the levels of each attribute we

need to offer in each of the survey questions to gain

proper insights. The output of this can be seen in

Appendix D: Conjoint Analysis.

https://www.dropbox.com/s/tga2jw8s7qj6hyo/App%20Demo.mp4
https://www.dropbox.com/s/tga2jw8s7qj6hyo/App%20Demo.mp4

CIS 401 Final Progress Report (Team 27)

6

Survey

Next we created a Google Form to conduct the

survey and collected results from a multitude of

students and other people. The survey asks to rate

16 different product profiles on a Likert scale from

one to seven, you can see a screenshot of the survey

in Appendix D: Conjoint Analysis.

Analysis

Finally, we distill the results into a spreadsheet

where we can begin to analyze them. For each

person we extract their rating for each profile, this

is the dependent variable. Then we create a set of

indicator variables to be used as the independent

variables, setting the first level of each attribute as

the baseline. Indicator variable setup can be seen in

Appendix D: Conjoint Analysis.

We then run multiple regression on this data to

extract part-worths (Figure 4), the utility that each

level provides in comparison to the baseline. You

can see an example of one person’s regression in

Appendix D: Conjoint Analysis.

Figure 4: Part-worths of our conjoint analysis.

Let us analyze these part-worths. In the

Application attribute, we see that in comparison to

just Web both levels that include a Mobile option

are valued much higher. This confirms our belief

that a mobile-first application is important and that

we made a good decision at the turn of the semester

in pivoting from a web app to a mobile one. We see

that the type of to-do list level does not matter very

much. In the Task Scheduling attribute, users want

some form of scheduling, with the ability to block

tasks in their calendar providing the most utility out

of any level. Both the inclusion of Automated

Scheduling and Calendar Optimization are good

but not that important to our users. Finally, we see

that having an integrated to-do list and Calendar

application is very important to users.

Using the part-worths we too can find out

Attribute Percent Importances using the ranges of

each level within an attribute. We reach the

following results in Figure 5:

Figure 5: Attribute Percent Importance values

for each attribute.

From this we can easily see that users place the

highest importance on Application, Task

Scheduling, and UX attributes.

Finally, our Conjoint analysis lets us perform a

market share study. To do this we used two existing

products, Google Calendar and Todoist, and

created product offerings using our predefined

attribute levels. We also create a product profile for

our application Blockit. Using the part worths of

each individual we can sum product each of these

three product profiles with each individual's part

worths to obtain a utility value. This provides one

metric for which we can compare to see a user’s

most valued product. Product profiles can be found

in Appendix D: Conjoint Analysis. When Google

Calendar and Todoist are the only products in the

market respondents are split 62.5% to 37.5% in

favor of Google Calendar. Once Blockit enters the

market it takes 75.0% while both Google Calendar

and Todoist are at 9.09%. This confirms that our

application provides a value proposition that is

unique to both Google Calendar and Todoist that

users want.

5.2 Time-to-First-Block (TTFB) Analysis

Time-to-First-Block (TTFB) is a metric we

defined that measures the time it takes to create one

event on a specific date between two existing

events. This is a key metric because it quantifies

one of the most frequent use cases of Blockit:

spontaneously noting and scheduling a single task.

To measure TTFB across existing calendar

platforms, we asked fifteen potential users (mostly

friends and some working alumni) to download our

CIS 401 Final Progress Report (Team 27)

7

three biggest calendar competitors’ apps—Google

Calendar, Apple’s Calendar, and Spark Calendar—

and follow these instructions below:

1. Start timer

2. Wake up phone

3. Unlock phone

4. Open calendar app

5. Create an event (in the fastest way possible)

6. Set time to fill the gap between two existing

events

7. Name event "Work on CIS 401 pset 5"

8. Stop timer

We then asked test subjects to repeat this

process five times per app (Apple Calendar,

Google Calendar, Spark Calendar). We first ran a

one-sided T-test with unequal variances to ensure

that the differences in TTFB averages compared to

our own TTFB measurements using Blockit were

statistically significant: our p-value was less than

0.01 for all pairs of data (Apple vs. Blockit, Google

vs. Blockit, and Spark vs. Blockit). The average

TTFB values across platforms were:

• Apple: 17.8s

• Google: 18.5s

• Spark: 25.0s

• Blockit: 10.0s

Which ultimately meant that on average,

Blockit was 44% faster than Apple Calendar, 46%

faster than Google Calendar, and 60% faster than

Spark Calendar. This is a significant improvement

to the time-blocking experience. Qualitatively

speaking, from surveying our test subjects, we

noticed that the biggest time-saver for Blockit (and

conversely, the biggest pain point of competitors’

apps) was not having to manually specify the start

and end times for a block as Blockit did that

automatically. All in all, this TTFB study proved

our original value proposition that Blockit makes

time blocking quick and easy for users.

5.3 Automated Scheduling Analysis

We tested our automated scheduling algorithm

against the automatic scheduling features on some

of our competitors’ calendar software. For this

analysis, we compared Blockit to Clockwise and

X.ai. We formulated our evaluation in the

following way. We used a White House dataset

(Appendix E: Scheduling Data) containing the

daily schedule of the President of the United States

as an example of a busy schedule. We loaded three

sample weeks (w = 3) into Google Calendar and

stress-tested the scheduling algorithms by

attempting to schedule ten events (n = 10) into the

already busy schedule. To define an objective

function to evaluate the performance of the

algorithms, we first define the following violation

categories. These are the scheduling mistakes for

which we will penalize our algorithm (Appendix

E: Scheduling Data).

1. Flow Time Violation (FT): incurred by any

scheduling action which reduced the number

of two-hour blocks of within-schedule open

time.

2. Edge of Day Violation (ED): incurred by any

scheduling action which schedules an event

before the would-be first event of the day, or

after the would-be last event of the day.

3. Event Violation (EV): incurred by any

scheduling action which schedules an event

contemporaneously with a previously

scheduled event or fails to find a viable

scheduling time within the allotted date span

given.

All these violations are represented in the

objective function which we term the Automatic

Scheduler Evaluation Metric (ASE) defined as the

weighted average of these metrics, cumulatively

summed over all m events, summed across the

weekdays (Monday through Friday) of all n given

weeks.

𝚽ASE = ∑m ∑n (0.2 FT + 0.1 EOD + 0.4 EV)] * (–1)

The weighting was chosen ad hoc to represent

the notion that an event violation would be the

most egregious mistake an algorithm could make,

that we value a flow time violation about half as

much as an event violation, and an edge of day

violation about half as much as a flow time

violation. The following graphs depict our results

(Figures 6 and 7).

https://www.getclockwise.com/
https://x.ai/
https://data.world/makeovermonday/2019w7

CIS 401 Final Progress Report (Team 27)

8

Figure 6: ASE values across Blockit and

competitors.

Though our algorithm performs the worst of all

the algorithms under the most stressful conditions,

we are encouraged that our algorithm is effective at

finding viable free space in a busy schedule before

it crowds too much. To further understand what

kind of mistakes all three automatic schedulers

were making, we conducted the following further

analysis (Figure 7).

Figure 7: Kinds of mistakes by Blockit and

competitors.

Clockwise makes the fewest flow time

violations, which is understandable because it is a

metric which they created and value in the schedule

of productive people. Our algorithm’s event

failures are what cost us a great deal because they

are highly weighted in the ASE metric. This

indicates that we need to continue work on core

resilience of our algorithm under various calendar

types to ensure it can reliably make viable

suggestions.

5.4 Future Evaluation with Users

If the COVID-19 fiasco did not strike our team

would have liked to perform a series of user

studies. Ideally, we would have liked to hold one-

on-one interviews and focus groups with users who

have our app. These types of settings are very

helpful in gaining specific knowledge on user

experience, intuitiveness of the application,

simplicity, pain points, and other feedback. We

would have also gotten users to use our application

for a week and report on their productivity using

some form of ratings criterion and qualitative

experience information.

Additionally, as suggested by Professor

Nenkova, a great long-term study that would be

beneficial to run is a true experiment. Creating a

test and control group and tracking their

productivity for a month or even three months.

This could be done by following a group of

individuals for a month and tracking their

productivity, then giving a random subgroup the

Blockit app and continue to track both the control

and test group for another month. After this we

would be able to compare the productivity of those

who began to use Blockit with their past

performance and with the control group.

6 Societal Impact

Our project is an application that allows users to

time block their to-do list into their calendar with

ease, which we believe has both positive

implications societally and ethically. Our product

can benefit busy individuals professionally,

socially and personally. It does this through a

multitude of ways that help people become more

productive and efficient when it comes to pain

points in organizing their everyday lives. Our

product also presents some potential societal and

ethical pitfalls. One example we discuss is that our

implementation promotes more automation of

interpersonal connections. Our project also faces

other, more general pitfalls about privacy concerns,

cybersecurity risks, potential malicious misuse,

and ethical conundrums associated with

monetization down the road.

To reiterate some technical details, we created

this application using React Native and Expo along

with a plethora of Node Package Manager (“npm”)

packages. We are using the Google log-in API to

protect user logins and give us access to users’

Google Calendars. This provides us with a user’s

entire calendar information: events, meetings,

locations, and invitees. Our database is a

MongoDB NoSQL storage platform that helps us

store user IDs and calendar information.

6.1 Positive Impacts

One of the biggest positive impacts our

application provides is helping people reduce their

anxiety and stress when it comes to their work

week. Time blocking is a scientifically proven

method to becoming more efficient. It helps users

CIS 401 Final Progress Report (Team 27)

9

focus their time on their tasks (as it sets a distinct

period to work on them), help them effectively use

pockets of time in their day, and remove

multitasking delays. This is great for society as it

allows people to get their work done and help free

up time in their day for other activities.

Additionally, our algorithm that helps people

schedule events efficiently to free up chunks of

flow time is great for all sorts of professions.

Studies have shown that two-hour blocks of time

are enough time for one to get into the zone and

truly focus on a task without being interrupted.

This can help users become more effective in their

lives and reduce their stress when it comes to

completing their tasks for school or work.

Blocking out one’s to-do list helps provide users

with peace of mind as it helps set aside time for all

their tasks, giving them knowledge that they will

be able to complete everything they need to.

Finally, our application helps remove pain points

regarding scheduling meetings with others. There

is no need to go back and forth to figure out the best

meeting time when Blockit can do it automatically,

as it knows the users’ scheduling preferences. All

these aspects of our application provide a great deal

to society, helping individuals become more

productive, efficient, and less stressed.

6.2 Risks and Cybersecurity

One dilemma which our project potentially

faces is the handling of user data and the issue of

privacy. Our database stores the following

sensitive data: standard account information

(email, name, and password) as well as users’

calendar information, which can be insidiously

sensitive. Calendars can contain material regarding

what people do every second of every day, where

they are meeting, when they are meeting, and who

they are meeting with. For people who use

calendars as a form of task management, this

private information falling into the wrong hands

can be especially dangerous. Blockit would store

the locations and times of many individuals which

could potentially include high-ranking leaders in

companies. Furthermore, since our application

allows users to input their to-do list items, this

information would contain what people are

working on throughout the week. It is imperative

that this data is protected from both developers on

our end and any malicious actors. As we have

learned throughout recent years, data is incredibly

valuable and can tell a lot about an individual. It is

important to ensure our users’ privacy is protected

and nothing is compromised. Currently, our

application mitigates these concerns by requiring

authorization for every API call made to our server,

which means that users must be logged in to access

any of their private information. A more detailed

mitigation plan is outlined at the end of this

Societal Impact section.

Additionally, our application provides read and

write access to a user’s calendar for creating blocks

when you block an item. This is a potential risk

both in terms of security and manipulation. A

hacker could remove or delete events that may lead

people to forgetting about important meetings or

even having them attend a meeting with malicious

intent. This is especially a concern for those that do

not manage their own calendar (e.g. a secretary), as

one would simply go along with what their

calendar says.

6.3 Unintended Consequences

One unintended negative societal impact that is

unique to our product is the potentially problematic

automation of the process of keeping in touch.

Making an effort to continually reach out and keep

in touch conveys genuine caring in today’s

connected society. By making the process of

scheduling meetings more robotic, the meetings

themselves become less meaningful. Another

potential unintended consequence could come with

the monetization of our platform, should we

continue with our plan to pursue a freemium

business model. Premium users usually have

access to a more advanced set of features which

allows them to accomplish more. Concerning our

users’ interactions, however, we feel it would be

unethical for the dynamic between them to

reinforce existing power and economic

inequalities. For example, in the scheduling of a

meeting premium and a free-tier user, we want to

ensure that in no way do our algorithms encode that

the time of the premium user is somehow more

valuable than that of the free-tier user.

6.4 Mitigation and Future Work

We have tried to do our best to mitigate these

problems so far by adhering to a high level of

security, but we know we must do more. We use

Google OAuth 2.0 for logins instead of having to

store our own login system and we use specific

encryption schemes, SSL and HTTPS, using Let’s

Encrypt, a free SSL service, to ensure the safety of

CIS 401 Final Progress Report (Team 27)

10

our data. Furthermore, all database requests must

be authenticated, which we enforce through our

RESTful API by design. We store as little sensitive

data as we can in a cloud-hosted database with

secure access tokens hidden in configuration files.

We do all this to ensure privacy, authenticity, and

integrity when it comes to data. Using the peer

feedback that we received from our ethics report,

we have come up with a few additional ideas we

want to implement. We want to create a trusted

contacts system for the automated scheduling

feature of our application since a user should not

be able to view anyone else’s calendar without their

permission. Additionally, right after creating an

account, we want to display a pop-up listing all the

data we will be storing that relates to the new user.

Finally, in the spirit of data privacy, if a user were

to delete their account, we want to ensure that all

data related to that user is wiped securely and

comprehensively. All of these would be great

extensions to our application to help it become

more secure.

In the end, our application provides a myriad of

societal and ethical benefits to users to help

ameliorate their lives and make them more

productive. However, this does come at a cost to

potential privacy threats of hackers or the misuse

of personal calendar data. We believe that Blockit

provides an extreme net positive impact to its users

and we plan to minimize any potential negative

impacts and security concerns. We all sincerely

believe in the product we are building and are eager

to begin using Blockit in our lives regularly.

7 Conclusion, Lessons Learned, and

Future Work

We learned an immense amount technically,

from becoming experts on modern design tools like

Figma and Webflow, to writing organized

Javascript code using state-of-the-art frameworks

like React Native, to integrating distributed

components with third-party APIs and deploying

on cutting-edge cloud services like AWS and

MongoDB. One of the most important parts of this

was learning how to design, plan, build, and iterate

on a product while continuously integrating

feedback from users, our class, and professors. We

made sure we were always building a product our

users wanted by conducting rigorous testing and

surveying to get detailed feedback on our

prototypes. This taught us a lot, like how to build

accurate conjoint analysis tests and foresee user

behavior in order to create an effective UI based on

user preferences rather than speculation. For many

of us, these evaluation studies were the first time

we applied statistical analysis techniques learned

from our other classes inside a real-world scenario.

Additionally, we built a holistic business model,

describing various stages of scaling our product

and the associated costs and in doing so, we learned

about enterprise software sales, economies of

scale, revenue models, and pricing structures. It

was not only interesting to discover the broad

landscape of competitors Blockit was being built

within, but also helpful in narrowing down our

product design before we started to build.

While we were not able to truly launch this

product on the Apple App Store and get it into the

hands of users like we wanted to, we still built a

great beta application that we feel has the potential

to be an amazing productivity tool someday. Our

ideas and creativity when creating a design and app

were based on real needs we found in the

community, but we were unfortunately not able to

completely satisfy our users' needs as much as we

wanted to. We found that a very difficult part of

building any successful company is your ability to

devote your time and mind to it. Since all four of

us were full-time students, it was very difficult to

find time to work on this project together,

especially after schooling became remote. To

create a truly good application and product, one has

to both want and be able to make it his or her full-

time job and not just a side hobby. Fortunately for

us, we all now have a free summer of sitting at

home during this pandemic and perhaps we will

continue to iterate.

With the prototype built and evaluations ready

to go, we were able to prove Blockit’s value

proposition not just qualitatively, but quantitatively

as well. We truly believe in the benefits that time

blocking provides us and were glad to find out

others felt similarly about our product. That said,

we do recognize that the evaluation we ended up

conducting was relatively limited given the global

context, which we discussed earlier in the

Evaluation section. The longer-term studies

outlined there would have been something we wish

to have done instead had the pandemic not

occurred. Fortunately, we were still able to get

several substantial studies done remotely through

our personal networks and were glad to have been

able to complete this portion of our project.

CIS 401 Final Progress Report (Team 27)

11

We were also happy to have been able to apply

many of the concepts and ideas we learned in class.

For example, in the brainstorming phase of our

project, we learned about scope creep in class and

decided to focus on only a select number of

features for our product. This ensured that we were

able to divide up the building process amongst all

teammates evenly and still meet realistic deadlines.

Furthermore, our in-class discussions and

assignments about ethics and social impact made

us consider aspects of our product that we never

thought about before. Our lessons from these sorts

of topics have ultimately made us better engineers

and we hope to continue what we have learned

from Senior Design in all of our future projects.

 Looking ahead, if we were to continue developing

Blockit, we would first prioritize the completion

and testing of our remaining features. Calendar

optimization is a very data-centric feature and

would require a lot of test data to get right. This

was something we discussed with one of our

advisors, Professor Angel, before and there were

definitely many implementation issues that we

would have to overcome. We must also improve

upon our current scheduling algorithm in order to

not only automatically schedule events, but also

take user preferences (potentially from multiple

parties) into account. Once we are able to achieve

these milestones, our ideal next step would be to

beta test our app with users in real corporate

environments. While students—who comprised

the majority of our evaluation user data—may find

a lot of value from Blockit, our core market

segment are enterprise customers and therefore our

evaluation methodologies should reflect that. All in

all, we are happy to be able to show that Blockit is

a valuable product and we hope to inspire more

people into leading more productive lives in the

future through our software.

8 References

Grant, A. (2019, March 29). Productivity Isn't

About Time Management. It's About Attention

Management. Retrieved from

https://www.nytimes.com/2019/03/28/smarter-

living/productivity-isnt-about-time-management-

its-about-attention-management.html

Gregg, M. (2015). 12 Getting Things Done:

Productivity, Self-Management, and the Order of

Things. Networked affect, 187.

Herrera, T. (2019, March 25). May I Have Your

Attention, Please? Retrieved from

https://www.nytimes.com/2019/03/25/smarter-

living/time-management-productivity.html

Moment.js 2.24.0. (n.d.). Retrieved from

https://momentjs.com/

Mongoose. (n.d.). Retrieved from

https://mongoosejs.com/

Node.js web application framework. (n.d.).

Retrieved from https://expressjs.com/

Perez, S. (2017, June 27). App economy to

grow to $6.3 trillion in 2021, user base to nearly

double to 6.3 billion. Retrieved from

https://techcrunch.com/2017/06/27/app-economy-

to-grow-to-6-3-trillion-in-2021-user-base-to-

nearly-double-to-6-3-billion/

React – A JavaScript library for building user

interfaces. (n.d.). Retrieved from

https://reactjs.org/

9 Acknowledgements

The team would like to give a significant thank

you to Professor Ani Nenkova and the TAs for

helping us shape and guide our project to what it is

now. We especially thank them for their ability to

keep this class afloat during the pandemic—we

truly appreciate it. We also want to thank our

faculty advisors Professor Sheth, Professor Angel,

and Professor Devietti for all their help. Finally, we

would like to thank the entire CIS graduating class

for continuing to persevere along with us during

the pandemic; we are happy to e-graduate

alongside you all.

https://www.nytimes.com/2019/03/28/smarter-living/productivity-isnt-about-time-management-its-about-attention-management.html
https://www.nytimes.com/2019/03/28/smarter-living/productivity-isnt-about-time-management-its-about-attention-management.html
https://www.nytimes.com/2019/03/28/smarter-living/productivity-isnt-about-time-management-its-about-attention-management.html
https://www.nytimes.com/2019/03/25/smarter-living/time-management-productivity.html
https://www.nytimes.com/2019/03/25/smarter-living/time-management-productivity.html
https://momentjs.com/
https://mongoosejs.com/
https://expressjs.com/
https://techcrunch.com/2017/06/27/app-economy-to-grow-to-6-3-trillion-in-2021-user-base-to-nearly-double-to-6-3-billion/
https://techcrunch.com/2017/06/27/app-economy-to-grow-to-6-3-trillion-in-2021-user-base-to-nearly-double-to-6-3-billion/
https://techcrunch.com/2017/06/27/app-economy-to-grow-to-6-3-trillion-in-2021-user-base-to-nearly-double-to-6-3-billion/
https://reactjs.org/

CIS 401 Final Progress Report (Team 27)

Appendix

Appendix A: Competitors

Task Management

- Todoist
- OmniFocus
- TickTick
- Wunderlist
- Trello

Scheduling

- YouCanBook.
me

- When2Meet
- Doodle
- Calendly
- Clockwise

Calendar

- Google
Calendar

- Apple
Calendar

- Microsoft
Outlook

- Spark Mail
- Fantastical

Hybrid Apps

- Asana
- Notion
- Taskade
- Any.do
- Swit

Pros and Cons of Select Competitors

 Task Management:
Todoist

Scheduling:
YouCanBook.me

Calendar:
Google Calendar

Hybrid Apps:
Asana

Pros - Perpetual free tier
- Cross-platform

support
- Task

prioritization
- Good UI

- Easy for
non-users to
interact with
app

- Good UI

- Easy to schedule with
other users

- Many third-party
integrations

- Ubiquity
- Good UI

- Many
third-party
integrations

- To-do list and
calendar

- Data-driven
insights

- Good UI

Cons - No collaboration
- No calendar
- No time blocking
- No task

permanence:
tasks disappear
after completion

- Over-complicated
workflow

- Publicizes
entire week’s
free time to
public

- Vanilla
filled/unfilled
time blocks
without priority
or category

- Poor UX (many steps
to schedule an
event/meeting)

- Poor mobile app
experience

- Privacy concerns

- Too
comprehensive
for individual
use

- No time
blocking

- No scheduler
for non-team
users

https://todoist.com/
https://www.omnigroup.com/omnifocus/
https://ticktick.com/home
https://www.wunderlist.com/home
https://trello.com/en-US
https://youcanbook.me/
https://youcanbook.me/
https://www.when2meet.com/
https://doodle.com/en/
https://calendly.com/
https://www.getclockwise.com/
https://calendar.google.com/
https://calendar.google.com/
https://www.icloud.com/calendar
https://www.icloud.com/calendar
https://outlook.live.com/owa/
https://outlook.live.com/owa/
https://sparkmailapp.com/
https://flexibits.com/fantastical
https://asana.com/
https://www.notion.so/
https://www.taskade.com/
https://www.any.do/
https://swit.io/

CIS 401 Final Progress Report (Team 27)

Appendix B: Revenue Model

AWS EC2 Costs

CIS 401 Final Progress Report (Team 27)

MongoDB Atlas Costs

Stripe Transaction Fees

Social Media Marketing Costs

CIS 401 Final Progress Report (Team 27)

Appendix C: Design System

Figma Design System

CIS 401 Final Progress Report (Team 27)

Webflow Landing Page

CIS 401 Final Progress Report (Team 27)

Appendix D: Conjoint Analysis

Fractional Factorial Design Output

CIS 401 Final Progress Report (Team 27)

Conjoint Survey

Indicator Variables

CIS 401 Final Progress Report (Team 27)

Sample Regression Output

Product Profiles

CIS 401 Final Progress Report (Team 27)

Appendix E: Scheduling Data

Scheduling Algorithm: Sample Calendar Day Events (Wednesday, November 28th, 2018)

2018-11-28 10:00 10:30 Meeting with chief of staff

2018-11-28 10:45 11:15 Media engagement

2018-11-28 12:15 12:30 White House military office departure photos

2018-11-28 12:45 13:45 Lunch with the governor of new york state

2018-11-28 14:00 14:30 Meeting with presidential personnel

2018-11-28 14:30 14:45 Policy time

2018-11-28 14:45 15:15 Policy time

2018-11-28 16:35 16:40 Depart White House en route The Ellipse

2018-11-28 16:45 16:55
Photo opportunity with national christmas tree lighting ceremony
participants

2018-11-28 17:00 18:00 National Christmas tree lighting ceremony

2018-11-28 18:05 18:10 Depart The Ellipse en route the White House

Scheduling Algorithm: Sample Violation Data (Week of November 26th, 2018)

App Violation 1 2 3 4 5 6 7 8 9 10

Blockit Flow 0 0 0 1 1 1 0 0 0 0

 EOD 0 0 0 0 0 0 1 0 0 0

 Event 0 0 0 0 0 0 0 1 1 1

Clockwise Flow 0 0 0 0 0 1 2.5 0 0 0

 EOD 0 0 0 0 0 1 1 1 0 0

 Event 0 0 0 0 0 0 0 0 1 1

XAI Flow 0 0 0 0 0 0 0 0 0 0

 EOD 0 0 0 1 0 1 1 0 0 0

 Event 0 0 0 0 0 0 0 0 0 1

CIS 401 Final Progress Report (Team 27)

Appendix F: Code Snippets
There are four code snippets attached to this appendix:

1. Google Log-in
2. Todo API Endpoints
3. Todo Database Schema
4. Scheduling Algorithm

4/27/2020 https://bakerfranke.github.io/codePrint/

https://bakerfranke.github.io/codePrint/ 1/1

PDF document made with CodePrint using Prism

async signInWithGoogleAsync() {
 const config = {
 iosClientId: GOOGLE_IOS_CLIENTID,
 scopes: [PROFILE, EMAIL, GCAL_SCOPE],
 };
 try {
 const { type, accessToken, user } = await Google.logInAsync(config);
 if (type === 'success') {
 console.log('Google auth successful!')
 this.setState({loggedInUserEmail: user.email})
 this.setState({loggedInUserAccessToken: accessToken})
 this.sendGoogleAccessTokenToServer()
 } else {
 console.log('Google auth not successful!')
 }
 } catch (e) {
 return { error: true };
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

http://prismjs.com/

4/27/2020 https://bakerfranke.github.io/codePrint/

https://bakerfranke.github.io/codePrint/ 1/1

PDF document made with CodePrint using Prism

const express = require('express')
router = express.Router()

const Todo = require('../models/todo')

router.get('/test', (req, res) => {
 res.json('Todo description from API')
})

router.get('/', (req, res) => {
 Todo.find()
 .then(todos => res.json(todos))
 .catch(err => res.status(404).json({ no_todos_found: 'No Todos found' }))
})

router.get('/:id', (req, res) => {
 Todo.findById(req.params.id)
 .then(todo => res.json(todo))
 .catch(err => res.status(404).json({ no_todo_found: 'No Todo found' }))
})

router.get('/byauthor/:userid', (req, res) => {
 Todo.find({author: req.params.userid})
 .then(todo => res.json(todo))
 .catch(err => res.status(404).json({ no_todo_found: 'No Todo found' }))
})

router.post('/', (req, res) => {
 Todo.create(req.body)
 .then(todo => res.json({ msg: 'Todo created successfully' }))
 .catch(err => res.status(400).json({ error: 'Unable to add this todo' }))
 // TODO: return todoID for potential deletes
})

router.put('/:id', (req, res) => {
 Todo.findByIdAndUpdate(req.params.id, req.body)
 .then(todo => res.json({ msg: 'Updated successfully' }))
 .catch(err => res.status(400).json({ error: 'Unable to update the database' }))
})

router.delete('/:id', (req, res) => {
 Todo.findByIdAndRemove(req.params.id, req.body)
 .then(todo => res.json({ msg: 'Todo entry deleted successfully' }))
 .catch(err => res.status(404).json({ error: 'Todo not found' }))
})

module.exports = router

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

http://prismjs.com/

4/27/2020 https://bakerfranke.github.io/codePrint/

https://bakerfranke.github.io/codePrint/ 1/1

PDF document made with CodePrint using Prism

const mongoose = require('mongoose')
const Schema = mongoose.Schema

const TodoSchema = new Schema({
 title: String,
 subtitle: String,
 deadline: Date,
 priority: {
 type: String,
 enum: ['none', 'low', 'medium', 'high'],
 default: 'none'
 },
 blocks: [{
 type: Schema.Types.ObjectId,
 ref: 'block'
 }],
 scheduled: Boolean,
 author: {
 type: Schema.Types.ObjectId,
 ref: 'user'
 }
})

module.exports = Todo = mongoose.model('todo', TodoSchema)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

http://prismjs.com/

4/27/2020 https://bakerfranke.github.io/codePrint/

https://bakerfranke.github.io/codePrint/ 1/2

def getFreeBlocks(self, date):
 day = self.getDay(date)
 # sorted_events = day.sort_values(by=['time_start'], ascending=True)
 free_blocks = []
 last_event = None
 for event in day.itertuples():
 curr_event = event
 if curr_event and last_event:
 last_end = getattr(last_event, "time_end")
 curr_start = getattr(curr_event, "time_start")
 if last_end < curr_start:
 # print('open', last_end, curr_start)
 free_blocks.append((last_end, curr_start))
 else:
 # print('closed', last_end, curr_start)
 pass
 last_event = curr_event

 return free_blocks

def schedule_event_on_days(self, dates, duration_seconds, name, location, category):
 datetime_blocks = []
 for elem in dates:
 block = self.schedule_event_on_day(elem, duration_seconds, name, location, category)
 if block:
 datetime_blocks.append((datetime.combine(elem, block[0]), datetime.combine(elem, blo

 # print(datetime_blocks)

 # First free block week heuristic
 first_free_block = None
 first_free_block_dur = -1
 for datetime_block in datetime_blocks:
 first_time = datetime_block[0]
 second_time = datetime_block[1]
 diff = second_time - first_time
 if diff >= duration_seconds:
 first_free_block = datetime_block
 first_free_block_dur = diff

 # Maximum sufficiently large free block in the day
 max_free_block = first_free_block
 max_free_block_dur = first_free_block_dur
 for datetime_block in datetime_blocks:
 first_time = datetime_block[0]
 second_time = datetime_block[1]
 diff = second_time - first_time
 if diff >= duration_seconds and diff > max_free_block_dur:
 max_free_block = datetime_block
 max_free_block_dur = diff

 # Minimum sufficiently large free block of day

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

4/27/2020 https://bakerfranke.github.io/codePrint/

https://bakerfranke.github.io/codePrint/ 2/2

PDF document made with CodePrint using Prism

 min_free_block = first_free_block
 min_free_block_dur = first_free_block_dur
 for datetime_block in datetime_blocks:
 first_time = datetime_block[0]
 second_time = datetime_block[1]
 diff = second_time - first_time
 if diff >= duration_seconds and diff < min_free_block_dur:
 min_free_block = datetime_block
 min_free_block_dur = diff

 # chosen_block = first_free_block
 # chosen_block = max_free_block
 chosen_block = min_free_block

 print(chosen_block)
 self.addEvent(chosen_block[0].date(), chosen_block[0].time(), chosen_block[1].time(), name,

 return chosen_block

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

http://prismjs.com/

	CIS401-final-progress-report
	1 Motivations and Product High-Level Functionality
	1.1 Value Proposition
	1.2 Stakeholders

	2 Related Work and Competition
	2.1 Market Research
	2.2 Competition

	3 Unit Cost Analysis and Revenue Model
	3.1 Business Model Overview
	3.2 Cost Analysis
	3.3 Revenue Model

	4 Technical Approach
	4.1 Design System
	4.2 Mobile Application
	4.3 RESTful API
	4.4 Database
	4.5 Scheduling Algorithm
	4.6 Application Demo

	5 Evaluation
	5.1 Feature-based Conjoint Analysis
	5.2 Time-to-First-Block (TTFB) Analysis
	5.3 Automated Scheduling Analysis
	5.4 Future Evaluation with Users

	6 Societal Impact
	6.1 Positive Impacts
	6.2 Risks and Cybersecurity
	6.3 Unintended Consequences
	6.4 Mitigation and Future Work

	7 Conclusion, Lessons Learned, and Future Work
	8 References
	9 Acknowledgements

	Final Report 401
	googleLogIn
	api
	todoSchema
	scheduling

