

Forecasting Outcomes of Major League Baseball
Games Using Machine Learning

EAS 499 Senior Capstone Thesis
University of Pennsylvania

An undergraduate thesis submitted in partial fulfillment of the requirements for the

Bachelor of Applied Science in Computer and Information Science

Andrew Y. Cui1
Thesis Advisor: Dr. Shane T. Jensen2
Faculty Advisor: Dr. Lyle H. Ungar3

April 29, 2020

1 Candidate for Bachelor of Applied Science, Computer and Information Science. Email: andrewc@seas.upenn.edu
2 Professor of Statistics. Email: stjensen@wharton.upenn.edu
3 Professor of Computer and Information Science. Email: ungar@cis.upenn.edu

A. Cui 1

Abstract

When two Major League Baseball (MLB) teams meet, what factors determine who will win?
This apparently simple classification question, despite the gigabytes of detailed baseball data,
has yet to be answered. Published public-domain work, applying models ranging from one-line
Bayes classifiers to multi-layer neural nets, have been limited to classification accuracies of 55-
60%. In this paper, we tackle this problem through a mix of new feature engineering and
machine learning modeling. Using granular game-level data from Retrosheet and Sean Lahman’s
Baseball Database, we construct detailed game-by-game covariates for individual observations
that we believe explain greater variance than the aggregate numbers used by existing literature.
Our final model is a regularized logistic regression elastic net, with key features being percentage
differences in on-base percentage (OBP), rest days, isolated power (ISO), and average
baserunners allowed (WHIP) between our home and away teams.

Trained on the 2001-2015 seasons and tested on over 9,700 games during the 2016-2019 seasons,
our model achieves a classification accuracy of 61.77% and AUC of 0.6706, exceeding or
matching the strongest findings in the existing literature, and stronger results peaking at 64-65%
accuracy when evaluated monthly. Further refinements in game-level pitcher covariates, team
statistics such as errors, and Bayesian hyperparameter optimization are likely to strengthen our
overall predictive accuracy and model lift. With continued improvement, this model has
applications for baseball team strategy, sports predictions, and personal fan interest.

Keywords: sports analytics, baseball, machine learning, feature engineering, computer science

Note: All code associated with this thesis has been uploaded to GitHub and has been solely done
for the purposes of EAS 499, Senior Capstone Thesis, Spring 2020. The repository can be found
at https://github.com/andrew-cui/mlb-game-prediction

A. Cui 2

Table of Contents

Abstract 1

1. Introduction and History 4

2. Literature Review 6

2.1 Aggregate predictions for a baseball season 6

2.2 Game-level prediction strategies 8

2.3 Consensus and averaging methods in ensemble models 11

2.4 Literature summary 11

3. Motivation and Relevance 14

4. Models 15

4.1 Elo ratings with covariates 15

4.2 GLM and Logistic Regression models 16

4.3 K-Nearest Neighbor Classifiers (KNN) 17

4.4 Decision Trees and Random Forests 18

4.5 Support Vector Machines/Classifiers (SVM/SVC) 19

4.6 Boosting models and XGBoost 20

4.7 Artificial Neural Nets (ANN) 20

5. Methodology 22

5.1 Problem definition 22

5.2 Software stack 22

5.3 Reducing overfitting: train/test splits and cross-validation 23

5.4 Analysis roadmap; Code and GitHub repository 24

6. Model Evaluation 25

6.1 Prediction Accuracy 25

6.2 Brier score for weighted MCE 25

6.3 ROC Curve and AUC 26

6.4 Lift 26

6.5 Summary 27

7. Preprocessing: data cleaning and feature engineering 28

7.1 Data acquisition 28

7.2 Data cleaning: game logs 28

7.3 Data cleaning: team/game-level data 29

A. Cui 3

7.4 Data cleaning: pitching-level data 30

7.5 ELO model 31

7.6 Feature engineering 31

8. Analysis 33

8.1 Exploratory data analysis 33

8.2 Modeling approach 35

8.3 Models considered 35

8.3 Model tuning and evaluation 36

9. Results 38

9.1 Comparing models with scaled and unscaled data 38

9.2 Selecting our final model 39

9.3 Logit elastic net regression analysis 40

10. Discussion 43

10.1 Feature importance 43

10.2 Lift 43

10.3 Monthly predictions 44

10.4 Qualitative validation 45

10.5 Limitations 46

Conclusion 49

Acknowledgements 50

Appendix 51

1. Glossary of MLB Terms/Statistics 51

2. Computation of 2002 Oakland A’s wins percentile in MLB history 52

3. Transcript from Moneyball 53

4. FiveThirtyEight’s ELO model for baseball 53

5. Elo model for the Seattle Mariners’ 2001 season 54

6. Analysis and filtering of starting pitchers 55

Bibliography 56

Notes and Disclaimers 56

Bibliography 56

A. Cui 4

1. Introduction and History

Every year (at least between 1995 and 2019), 30 Major League Baseball teams each play 162
games. Official game statistics have been kept in America since the mid-1800s, when Henry
Chadwick developed systems for keeping records, modernizing the game towards its present-day
form (Schiff, 2008). Player records evolved into statistics such as home runs, batting average
and slugging percentage, which allowed fans and team managers to differentiate superior
performance within the team of players. Even today, historically famous baseball achievements
are interlocked with their quantitative measures: Babe Ruth’s 14-WAR 59-home run monster;
Ted Williams being the last man to hit .400 (.406, specifically); Steve Carlton’s 30 complete
games; Bob Gibson carrying an live-ball era low 1.12 season earned-run average (Tylicki, 2011).4

The inherent variance in baseball games, such as the players on the field, game
conditions, and momentum, make it challenging to forecast the results of individual games.
However, the sports analytics world provides us with multiple approaches to forecast games.
The most basic models use aggregate statistics to compute values such as Pythagorean expected
W-L percentage (Heumann, 2016), evaluating a team over the course of a season. On the other
hand, the most complex models (and likely the proprietary ones used by teams) can update win
posterior forecasts based on singular events in the course of a game. For instance, consider
Fangraphs’ win probability chart during Game 7 of the 2019 World Series, which evaluates win
probability in greater detail or speed than the human brain can catch up with:

Figure 1: 2019 World Series, Game 7, Win Probability Graph (Fangraphs, n.d.)5

4 Seasons ranked in the article as follows: 1. Ruth (1942), 5. Gibson (1968), 17. Williams (1941), 19. Carlton (1972)
5 Y-axis ranges from 0 (Washington Nationals win) to 100% (Houston Astros win). We see a bias in favor of the
home-team Astros at the beginning of the game, which grows as they take the lead, but rapidly vanishes when the
Nationals hit a go-ahead home run (swinging from 68.7% Astros win to 34%), and progressing similarly as the game’s,
and Houston’s, time runs out.

A. Cui 5

Due to the quantity of widely available baseball data, we are curious to create a model
that sits in the middle of these extremes: machine learning-based approaches that incorporate
game-specific data (such as roster ability or pitching) but provide prior predictions of which
team will win a game.

In this paper, we seek to understand the game of baseball better through applying
machine learning models, as the culmination of four years of study in computer science,
engineering, and data science methodology. Through analyzing the existing literature about
baseball prediction and machine learning models and using data from historical seasons (post-
2000), we seek to construct a binary classifier that can predict, using only data available before
a game is played, which of the two teams is more likely to win. In addition to understanding the
modeling approaches, we apply practical data wrangling and feature engineering skills to create
game-level covariates for each observation, which allow us to identify team strengths, hopefully
in turn explaining part of the variance in baseball game results.

Note: we abbreviate many MLB statistics and terms in this paper. A full glossary is found in
Appendix 1.

A. Cui 6

2. Literature Review

We begin by understanding the body of literature available for baseball analytics and
specifically prediction of baseball game results. In order of increasing statistical and
computational complexity, we discuss, in the context of game result classification (win/loss):
aggregate evaluations of team performance such as Pythagorean W-L expectation; machine
learning (ML) approaches including logistic regression and generalized linear models, tree-based
classifiers such as random forests, support vector machines (SVMs/SVCs) and gradient-boosting
ensemble classifiers; Bayesian and Markov-Chain statistics models; and artificial neural nets
(ANNs). Several of these methods can be applied to tracking in-game events as well, achieving
instantaneous predictions. While we mention examples of these latter models, they are meant to
highlight the machine-learning techniques rather than focus on the sports-analytics question at
hand, since our goal is to understand these methodologies as we build a model to predict games.

2.1 Aggregate predictions for a baseball season

Baseball’s analytical revolution gained velocity and salience notably during the early
2000s, when the 2002 Oakland Athletics used statistical models for on-base percentage and
expected run-scoring to discover undervalued players, winning 103 games6 and qualifying for the
playoffs with one of the lowest payrolls and least ability to sign top players (Brown et al., 2017).
Since then, a spectrum of ways to predict baseball outcomes, with varying computational
complexities, have emerged. On the basic end, we have backwards-looking forecasts based on
aggregate team statistics. The most prominent is Bill James’s Pythagorean W-L expectation;
arguing that successful teams tend to outscore opponents, this computes an expected win
percent based on the ratio of run-scoring and prevention (Heumann, 2016) as follows:7

This approach is intuitive to understand and compute and can be improved slightly
through tuning the exponent hyperparameter, which through back-testing provides an RMSE-
minimizing adjusted exponent of 1.83 instead of 2 (Davenport & Woolner, 1999; Heumann,
2016). More complicated analytical approaches include Davenport and Woolner (1999), who

6 103 wins in a season is no small feat; since MLB moved to the modern 162-game season, only 28 teams out of 1520
have won 103+ games, equivalent to a 98th percentile (Baseball Almanac, n.d.; Lokker, 2019). See Appendix 2.
7 Note: many of the equations have been formatted externally in LaTeX

A. Cui 7

apply Poisson models to forecast win ratios, and Heumann (2016), who tests weighted pairwise
Pythagorean W-Ls, factoring in the number of times two teams have played against each other.
These refinements improve model flexibility, which means the model is able to adapt to a
greater variety of potential function surfaces that map the input (runs scored and allowed) to
the response (win-loss ratio), improving accuracy at a cost of interpretability (James et al.,
2013). However, the models provide only incremental RMSE benefits: with the exponent set to
1.83, Heumann (2016) improves just 1.3% over James and 1.0% over Davenport and Woolner --
while these enhancements have solid theoretical approaches (from statistics, game theory, and
baseball), the improvement in predictive accuracy is not meaningful enough to justify the slight
loss of interpretability, which is why James’ simple formula remains relevant.

Individual player forecasts are also used to project MLB seasons in advance, unlike the
Pythagorean approach that requires existing data from the season. For instance, PECOTA8 is a
nearest-neighbor based proprietary method that identifies similar player attributes from baseball
history, forecasting future performance through a combination of the comparable players and
the individual’s prior seasons (Koseler & Stephan, 2017; Druschel, 2016). Fangraphs’ Steamer
and ZiPS methods are alternative regressions of past performance, league performance, and
advanced statistics such as BABIP, which are intended to isolate the signal from a player’s own
abilities in order to project their performance in the season (Druschel, 2016). However, while
these projections have credibility -- Bailey et al. (2020) use PECOTA and batted-ball statistics
to strengthen batting average predictions -- and are used in the industry widely, they still apply
a Pythagorean approach to forecasting team results, which limits its usefulness for game-to-
game predictions and can misvalue teams before a season starts despite having predictions for
each player on the roster (Miller & Rogers, 2019).

The Pythagorean W-L is limited by the aggregated data (runs scored/allowed over
multiple games combined) used in these metrics; the models lack the flexibility and parameters
necessary to capture micro-level variations (in this case, individual games) that are important in
further improving prediction accuracy, and as a result are mean-reverting by smoothing out
variations in the underlying events/games (Park & Garcia, 1994). For instance, a team that
wins many close games will be naturally mathematically overrated relative to their Pythagorean
W-L, ignoring potential fundamental characteristics (such as good situational, or “clutch,”
pitching/hitting that allows teams to gain the slight edge) and increasing prediction error.
Nonetheless, these approaches are important as the underlying strategy that our more complex
machine-learning approaches build up from and highlight the importance of explanatory power -
- particularly in communicating to fans and non-quantitative sports executives.

8 “Player Empirical Comparison and Optimization Test Algorithm”

A. Cui 8

2.2 Game-level prediction strategies

Machine learning techniques are more mathematically complex and able to fit variations
in baseball game outcomes better. Baseball’s wealth of data makes the computational needs of
ML models feasible, such as pitch-by-pitch data collected in games today allows for researchers
to classify pitches thrown and forecast pitcher ERAs (Koseler & Stephan, 2017). Here, we want
to predict the winner of games in advance. There are two ways to do this: first, by binary
classification to identify the winner of a game based on features; second, regression-based
analysis such as tracking the “performance” of a team over time and forecasting predictions, like
Elo ratings (Koseler & Stephan 2017; Valero, 2016; Elo, 1978). The latter models, such as
continuous responses like Elo, can be incorporated as independent variables as well.

In this case, we are primarily interested in understanding which team wins a baseball
game (ignoring result components like the final score), which makes this a binary classification
problem that considers the impact of features that can explain variance in the result of games.
We limit the discussion of literature primarily to understanding binary classification of baseball
games and series below; however, there still exists a breadth of machine learning applications to
this problem, between sources from academic literature as well by sports writers. We outline the
prominent examples below.

Valero (2016) compares four machine learning methods -- k-Nearest-Neighbors classifiers
(KNN), support vector machines/classifiers (SVM/SVC), tree-based models (specifically,
decision trees), and artificial neural networks (ANN) -- using prediction accuracy (proportion of
accurately predicted games divided by the total games) to evaluate them, using aggregate
features such as Pythagorean expectation, win percentage, OBP, and SLG percentage season-
wide differences between the teams. Valero’s features line up with research by Stick (2005)
found through regression analysis that OPS and WHIP accounted for 26% of variance in all
baseball productivity indexes alone; although Stick’s findings were not in the context of
predicting games specifically, they demonstrate the importance of factors like OPS. In Valero’s
(2016) analysis, the KNN model performed worst in game result classification, followed by
pruned (to reduce overfitting) classification trees and artificial neural nets at 58% accuracy, and
the SVM model had 59% accuracy.

These analyses outperform naïve baselines such as a guaranteed “home-team advantage”
-- where the home team is always predicted to win -- that scored a 53.01% accuracy in the 2016
season (Elfrink & Bhulai, 2018). In another study, SVMs with 10-fold CV and varying kernel
polynomial specifications (linear, quadratic, and cubic), predicted major league baseball playoff
championship outcomes at similar accuracies of 57.1-67.9% (Tolbert & Trafalis, 2016). Tolbert
and Trafalis (2016) likely selected SVMs due to their flexibility and predictive accuracy, as
Valero (2016) found, while still maintaining some interpretability -- such as identifying which

A. Cui 9

attributes were most important in each model, even if without evaluations of how they
influenced chances of winning. Despite the similarity in measures used, in comparing these
models’ accuracies, we must note that while Valero (2016) evaluated outcomes of individual
games, Tolbert and Trafalis (2016) were predicting winners in the playoffs -- where “winning”
was defined as winning the majority of games in a best-of-7 series in all cases, and variance in
individual games is smoothed out more over a series.

Seeing the SVM and ANN have little difference, despite the latter’s complexity (Valero,
2016), suggests an upper bound in the ability to predict baseball games from potentially two
factors: first, quantitatively measured improvements in competitive balance through luxury
taxes that reduce the separation between teams’ skills, making contests more likely to go either
way (Ajilore & Hendrickson, 2007); and second, variance inherent to sporting events since they
depend on players’ performances in a given day.

Meanwhile, Elfrink and Bhulai (2018) add less flexible methods such generalized linear
regression models and logistic regression in addition to a tree-based random forest and gradient
boosting, but despite targeting the same classification problem, have similar, but poorer, model
classification accuracies of 53.75% to 55.52% compared to Valero (2016)’s 55.98% to 58.92%.9
Comparably, Pharr (2019) used gradient boosting methods through LightGBM and XGBoost to
find results of 59.3% and 60.7% respectively, even though he only ran a 30-day back test, where
his strongest predictions occurred when only considering consensus models (where all models
agree). Like FiveThirtyEight (2015), he uses an Elo-esque covariate, team and pitcher rest, and
pitcher statistics; however, he also adds match differences such as the spread of errors between
the home and away team (Pharr, 2019).

Jia et al. (2013) used adaptive boosting or AdaBoost, a similar boosting algorithm, in
addition to logistic regressions and random forests, finding aggregate accuracies of around 56-
60%. Like Pharr (2019), they also include team-level covariates such as team RBIs, batting
average, and ERA; however, they choose to include the team’s existing win percentage, similar
to Valero (2016), whereas Pharr excludes it, and use aggregate season information instead of
rolling statistics, which devalues “team momentum” (Jia et al., 2003). Interestingly, they chose
to fit models over each month to test, arguing that baseball games are harder to forecast at the
beginning of the season when there is less information about the team’s skill, finding average
accuracies of 52.7-57.6% in April and May, but of 59.7-64.1% by August and September (Jia et
al., 2003).

9 Both Valero (2016) and Elfrink and Bhulai (2018) consider results from the question as a regression problem as well.
However, if the result is to predict which a team will win rather than a continuous response (such as the score), I see
it more appropriate to use the binary classification situation.

A. Cui 10

Gradient boosting methods and random forests can sacrifice explanatory for predictive
power; as is discussed below in MODELS, logistic regressions allow for log-odds coefficients that
relate observable characteristics (ex: home team; team ERA; ERA difference) to their impact on
the forecasted probability of winning that specific game observation, while decision trees’
partitioning based on rules about the dataset characteristics (ex: ERA difference < 0.2) work
like the way humans classify objects and events (James et al., 2013). Subsequently, these models
are quantifiable and easier to explain to non-computer scientists, which is valuable when they
need to be accepted for more than just quantitative measures.

Anecdotally, consider managerial decisions, like for Oakland manager Billy Beane as
depicted in Moneyball, who needed to win the faith of his scouts and team ownership in order to
trade for new players (Miller, 2011); lacking interpretable models would dampen his confidence
and persuasiveness, rendering the models eventually useless in practical context, even if they are
theoretically sound and accurate. Although predictive power is incredibly important, we must
recognize that baseball prediction models may be used in contexts that demand more than just
numerical excellence.

Bayesian statistics methods extend the basic conditional probability law of Bayes’ Rule
and treat parameters as random variables from probability distributions, which demands
computational intensity but allows the resulting models to reduce assumptions about the data
while making direct probability statements about parameter intervals and future sample
predictions (Jensen, 2020). Soicher (2019) uses a simple Bayes classifier based on home vs.
away-team status, which achieved a 55% accuracy despite its lack of features and outperformed
rudimentary machine learning approaches, particularly at the beginning of the season lesser
prior data hurts ML algorithm accuracy, as Jia et al. (2003) show.

Meanwhile, Yang and Swartz (2014) implement a hierarchical model comparing relative
strength through comparing team records, batting averages and ERAs between opponents; their
two-stage model accounts for greater variation in the data, computing season-long win-loss
differences to within 2-3 raw percentage points for the majority of teams, but do not report
individual game prediction accuracy, making it challenging to compare. Bukiet et al. (1997)
apply Markov chain statistics to estimate conditional values of each offensive player to their
team, which may be useful in a model that considers the impact of lineup order to game
outcomes; however, they do not make this extension on their own.

Across these approaches, we see consistent themes. First, almost all the models focus on
game-level features, believing they can help explain variance in the game-to-game results.
Second, the game-level predictions emphasize the use of prior data only, to avoid data
contamination (Valero, 2016). Finally, most models come in under 65% accuracy, with a
baseline around 50-53%, indicating potential limitations in capturing baseball game variance.

A. Cui 11

2.3 Consensus and averaging methods in ensemble models

Several works (Elfrink & Bhulai, 2018; Valero, 2016; Pharr, 2019) use ensemble
classification methods including boosted classifiers and random forests. Since ensembles use
multiple individual classifiers, the eventual prediction from the model is often conducted by a
majority vote (whichever label is predicted most often) by the individual classifiers (James et
al., 2013).

However, for observations that are less obviously classified into either label (in the
context of Major League Baseball, games where two teams are of similar skill levels), majority
vote may not be the ideal solution. Pharr (2019) found an increase from 59.9% to 61.1% in
boosted regression model accuracy when applying consensus instead of averaging ensemble
methods, which require all ensemble learners to agree on the prediction (for example, that the
home team will win) in order to make a classification. In both bagging and boosting models,
averaging or majority-voting methods can hurt classification accuracy (Alzubi et al., 2018), as
Pharr observed.

To remedy this, Alzubi et al. (2018) propose “consensus-based combining methods”
(CCM) that iteratively adjusts each classifier’s weights based on other classifiers until they
converge to a consensus decision, and demonstrate superior accuracy of up to 2-5% when tested
on standard pattern recognition datasets, like the Iris flower dataset (UCI, n.d.). However,
Pharr (2019) combats this by only acting and placing bets on games when his models show
consensus with stronger prior probabilities of winning, which makes the 9% of cases without
predictions less relevant and omits needing to integrate Alzubi et al. (2018)’s approach.

For the purposes of our analysis, we are interested in understanding the entire set of
game predictions across seasons, so the majority or averaging/majority classifications are less
important. However, particularly in cases of potential sports bets (not the purpose of this paper,
but a potential application for certain readers), mimicking Pharr (2019)’s use of consensus
models may prove profitable, in line with considering model lift as we mention in Discussion
later on.

2.4 Literature summary

In the prior section, we discuss examples of existing publications and their data science
methodologies. To avoid making the assumption of prior knowledge about each of these models,
but for brevity above, we include brief descriptions about the modeling approaches mentioned,
with citations for machine learning and statistics textbooks that carry the mathematical
derivations; while these are important to understanding the modeling approaches and
conducting the analysis, the overview should be sufficient for comprehending this applied-science

A. Cui 12

paper. Afterwards, we aggregate information about the models, their strengths/weaknesses, and
cited literature in “Comparison of analytical methods.” The models discussed are (in order):
generalized linear and logistic models (GLM), K-Nearest Neighbors (KNN), tree-based models
(and random forests), gradient boosting methods (XGBoost), SVMs, and neural nets (ANN).

Several statistics and machine learning techniques from the field of sports analytics have
been presented above but carry their own strengths and limitations. It is important to note the
surprisingly limited literature in our problem of prior predictions for MLB games, similarly,
noticed by Bunker and Susnjak (2019) who cite only Valero (2016) in a paper of key machine
learning approaches in sports result predictions. Although online writers like Soicher (2019) and
Pharr (2019) also document model examples, our research question demands further publicized
study. It is important to note that many predictive strategies (ex: PECOTA, ZiPS, and any
MLB-team-built models) will be proprietary for competitive advantage -- and are likely to be
superior to the published works (Druschel, 2016).

However, despite the limited scope, we compare the analytical methods used to forecast
baseball results. Since each model differs in statistical theory, use case, and interpretation of
results, we can compare them using several components. These evaluations are also based off of
Hastie et al. (2008) and shown on the next page. We evaluate:

● Flexibility: the degree to which a model can account for variation in the relationship

between features and response variables within individual observations, where greater
flexibility allows models to be predictive, at the risk of overfitting (James et al., 2013)

● Complexity: considers both the statistical (theory) and computational (operational)

difficulty of running such models (subjectively evaluated, since is no purely objective
measure)

● Interpretability (abb. “Interp.”): how easy it is to communicate the modeling, such as

identifying coefficients, or even just key features used in the prediction, which make the
model useful in baseball context.

A
. C

ui 13

Table 1: Comparison of machine learning techniques in the literature

Interp.

High

High

Low

High

Medium/
high; lower
for random
forests

Medium;
feature
importance

Low

Medium

Negligible:
"black box"

Complexity

Minimal

Low

Variable; high
dimensional
data is costly

Low

Medium

Medium

High; nonlinear
kernels

High

High; back-
propagation
needed to train

Flexibility

Low; aggregate
data only

Medium; if
covariates are
used

Medium;
higher K can
overfit

Medium

Medium

High; many
weak learners

High

High

Very high

Applications in Baseball

Computes an expected W-L% based on teams' run-
scoring and run-prevention abilities

Tracks ratings as team skill levels that determine
prior probabilities of winning a game; updates ratings
based on the result and other team's rating

Computes conditional probability of a win or loss
based on Bayes' Rule relative to the K nearest other
observations by Euclidean distance

Computes a linear relationship between features to
evaluate an output that can be a continuous response
or a probability that can be classified into wins/losses

Recursively partitions data into sections based on
information gain, classifying each section; random
forests consider bootstrap subsets of features at each
split to reduce overfitting

Combines a series of weakly predictive models, such
as trees, by sequentially adjusting weights, improving
the predictivity in aggregate. Ex: XGBoost

Creates polynomial kernel decision boundaries in the
hyperspace of games, classifying as wins or losses

Models individual outcomes as random variables, uses
joint/conditional distributions to forecast posterior
and predictive results using Bayes' Rule and MCMC

Mimics the human brain's decision process through
sequential layers of "neurons" with varying edge
weights. Weights are trained through complex back-
propagation for highest flexibility and accuracy

Literature

Davenport & Woolner, 1999;
Heumann, 2016; PECOTA (in
Druschel, 2016)

Elo, 1978; Glickman & Jones,
1999; FiveThirtyEight, 2015;
Marcus, 2000; Hvattum &
Arntzen, 2010
 Valero, 2016; PECOTA (in

Koseler & Stephan, 2017);
ZiPS (in Druschel, 2016)

Elfrink & Bhulai, 2018; Tait,
2014; Jia, Wong & Zeng, 2013

Valero, 2016; Elfrink & Bhulai,
2018; Jia, Wong & Zeng, 2013

Elfrink & Bhulai, 2018; Pharr,
2019; Jia, Wong & Zeng, 2013

Valero, 2016; Tolbert &
Trafalis, 2016

Tait, 2014; Yang & Swartz,
2004; Soicher, 2019

Valero, 2016

Method

Pythagorean
expectation

Elo ratings

K-Nearest
Neighbors

Logistic regression
(GLM)

Decision trees and
random forests

Gradient boosting

Support vector
machines

Bayesian models

Artificial
neural nets

A. Cui 14

3. Motivation and Relevance

Baseball is a complicated sport and has a wealth of detailed game data. Moreover, “America’s
pastime” is popular and remains lucrative, with MLB teams constituting seven of the most
valuable sports teams worldwide (Badenhausen, 2019). Consequently, there are many positive
implications of studying baseball game prediction, and sabermetrics, through applying data
science and computer science techniques as this paper does. they include:

1. Academic value in studying complex modeling questions: identifying and
engineering the key components that can understand complicated, high-variance events
such as sporting events is challenging but rewarding, as it contributes to our knowledge
of data science applications.

2. MLB long-term franchise management: a model that explains variance in game
outcomes can be leveraged to selectively sign or draft players who show strong
performance among certain statistical categories, providing better return for team
managers and success for the franchise; this is the “Moneyball” strategy that popularized
sabermetrics (Miller, 2011).

3. MLB game-to-game strategy: baseball is constantly changing as teams look to
increasingly analytical domains for a competitive edge. Identifying drivers of winning
games can be used to change the way a team plays, such as the “opener” strategy re-
invented in the last two seasons (McWilliams, 2019).

4. Sports betting: where legal, a model that can forecast results of games consistently
better than average has potential to be profitable on Las Vegas sports gambling blocks,
beating gambling spreads. Several papers, including Jia et al. (2013) and Pharr (2019)
compare results to gambling outcomes; however, this is not a core goal of this thesis.

5. Personal interest: just as teams are becoming more analytical, so too are fans.
Understanding the dynamics of how a team can win is intrinsically valuable to fans, who
love the game. It allows fans to appreciate nuances in baseball strategy (ex: certain
player substitutions or pinch-hitting) that improve odds of winning, deepening their
relationship and interest in the sport. This was the primary motivation for this paper,
and for many works written about baseball analytics from the Literature Review.

A. Cui 15

4. Models

4.1 Elo ratings with covariates

Baseball games are zero-sum events, played until one team definitively wins, and the
other loses; therefore, Elo ratings have been used to track teams’ relative strengths over time to
build prior predictions for baseball game outcomes (FiveThirtyEight, 2015). Devised by Arpad
Elo in 1978 to compare chess players, the Elo system has ratings that represent the comparable
strengths for a given team or individual, which are updated due to the result of the match as
follows, in this case for some team/individual A after playing a match against B (Elo, 1978;
Glickman & Jones, 1999):

With the variables defined as follows:

 A’s prior rating

 A’s updated rating after the match

 Scaling constant; determines how significantly to weight match outcomes

 Binary response, 1 if team A wins; 0 if team A loses (no ties in baseball)

 Elo logistic expectation for the outcome of a game vs. B (rating 𝑅!), s.t.:

The Elo update method and expectations are set formulas, but otherwise the formula is

interpretable and flexible. First, 𝐸" parallels the form of the logit function we commonly see in
logistic regressions (James et al., 2013; Couronné et al., 2018), and due to scales of 𝐸", 𝑆"for
wins and losses (draws are impossible here), represents a probability of A winning the match;
𝐸" ≈ 1 indicates greater likelihood based on the difference between A and B’s Elos.

Second, although this uses the same or a smaller number of variables as Pythagorean
expectation formulas, the base Elo model allows us to make statements about individual
matches that can be aggregated into a summary season-based prediction, providing us with
similar insights but greater granularity (Davenport & Woolner, 1999; Heumann, 2016). Third,
Elo allows us to introduce covariates that influence individual match outcomes, which allows us
to integrate machine learning analysis through covariates that adjust teams’ ratings; for
instance, the best starting pitchers in the league will improve their team’s odds of victory
(FiveThirtyEight, 2015). For example, linear regressions or tree models could compute covariate
weights and boundaries at which Elo adjustments are made, influencing the prior Elos similar to
FiveThirtyEight’s (2015) model, ideally improving accuracy (Valero, 2016).

A. Cui 16

Finally, Elo can be tracked over time, since it is a constantly updating mode, whereas a
Pythagorean W-L system has to be reset every year (after all, there are no runs scored or
against to begin with!),10 adding to the reasons why it has been applied to chess (its original
purpose), table tennis and soccer as well (Marcus, 2000; Hvattum & Arntzen, 2010).

4.2 GLM and Logistic Regression models

Generalized linear models are some of the mathematically simplest machine learning
approaches, based on linear-combination relationships between observations, feature coefficients,
and a response variable. One of the most popular linear models for classification problems is the
logistic regression, which relates observations 𝑋with feature covariates 𝛽to a response variable
𝑌(in our analysis here a binary response variable using the logistic function, defined as (James
et al., 2013):

Logistic regression is popular because its variable coefficients can be translated into

probabilities, where observation features and log-odds probabilities are directly correlated
(James et al., 2013). Its simpler algebraic form, relative to other machine learning models,
makes it convenient for any binary classification problem involving probabilities. For instance,
Elfrink and Bhulai (2018) as well as Jia et al. (2013) both use logistic models to predict the
result of MLB games.

Typically, linear models are suspect to overfitting on their own since they often use
optimization strategies such as ordinary least squares (OLS) to identify coefficients best-suited
for the training data (Brownlee, 2019). However, both cross-validation (including scikit-learn’s
LogisticRegressionCV package that we use in this paper) and regularization methods combat
overfitting. Regularization methods either shrink the coefficient weights or remove certain
features from consideration entirely, which reduce the risk over overfitting even at a slight cost
to training dataset model accuracy (James et al., 2013). We use three of the most common
regularization methods:

10 In fact, FiveThirtyEight has used their model to do precisely that. As seen in this link, they have back-tested their
Elo algorithm over the last 130 years, plotting every team’s day-to-day Elo to identify franchises’ peaks and relative
strengths over time.

A. Cui 17

1. Lasso regression, known as a “L1” or linear penalty due to its exponent of 1 on the
coefficients, which minimizes the equation’s residual sum of squares like OLS, but adds a
penalty term to make its objective function as follows (James et al., 2013; van
Wieringen, n.d.):

Here, the first term is RSS, residual sum of squares, for the logit model; the penalty term
has a tuning parameter 𝜆 for all k coefficients 𝛽# (van Wieringen, n.d.).

2. Ridge regression, known as a “L2” or quadratic penalty due to an exponent of 2 on
the coefficients, similarly behaving like Lasso but being well-fit, but will not shrink
coefficients exactly to 0 unlike Lasso (James et al., 2013; Hastie et al., 2008):

3. Elastic net, which combines the lasso and ridge regularizations to optimize the

following objective function (Zou & Hastie, 2005) -- for simplicity, on the right hand side
we have used RSS, 𝐿1(𝜆$, 𝛽), 𝐿2(𝜆%, 𝛽) to indicate the aforementioned regression residual
sum of squares, and each of the penalty terms from above (van Wieringen, n.d.; James
et al., 2013):

4.3 K-Nearest Neighbor Classifiers (KNN)

KNN is a simpler classification approach designed to mimic what the decision boundaries
on a native Bayes classifier would be like (James et al., 2013). In context of our baseball
prediction problem, a KNN algorithm would identify, for each given game 𝑥&, the 𝐾 “closest”
(Euclidean distance in a multi-dimensional plane) other observations, and averages their
response values (if the team won or not) to estimate a Bayesian conditional probability for
𝑥&being a win or loss for the team, selecting whichever result had the higher conditional
probability (Hastie et al., 2008). Its mathematical probability can be computed as, for a binary
problem, we can view the chance of being a home-team win, 𝑃(𝑌 = 1), for some observation can
be derived (James et al., 2013):

A. Cui 18

where 𝑦' are the response variables for each of the K-nearest neighbors, by Euclidean distance.

However, since it takes in little prior information about the data, it is likely to overfit if

the hyperparameter 𝐾 is too large, due to the flexibility of this model (James et al., 2013).
Furthermore, they can be computationally intensive for high-dimensional datasets; it has to
evaluate distances for all observations and KNN lacks a direct objective function to optimize
such as that of our linear and logistic models (Smola & Vishwanathan, 2008).

4.4 Decision Trees and Random Forests

Tree-based models recursively linearly partition the space of observations based on
conditions in the data (for example, ℎ𝑜𝑚𝑒𝑡𝑒𝑎𝑚	 = 	1	𝑣𝑠. 0; 	𝑡𝑒𝑎𝑚𝐴𝑉𝐺Δ > 	0.04011), evaluating
different options via conditions like Gini index or entropy, eventually assigning a classification
or regression value to each of the final partitions of observations (James et al., 2013).

The Gini index is a measure of variance across our classes, here our binary options that
the outcome variable can take on as shown below, where �̂�(,' indicates the proportion of our
observations in each partition that have outcome value i -- simplified for our two-class win/loss
model (James et al., 2013). Meanwhile, entropy measures information gain, which reduces the
amount of future depths and splits needed to partition tree elements (Sharma, 2020). These two
methods behave similarly in practice, where both Gini and entropy will be very low if a
partition’s games are more homogeneous -- which makes sense when we have very low variance
in that segment, and hence defining that partition does not help us define the overall tree much
better (James et al., 2013).

Trees have a unique advantage of being both flexible (since hyperparameters can be
tuned to control how detailed the splits should be) and interpretable (since their classification
methods are similar to how humans evaluate decisions or classify objects based on attributes)

11 These are hypothetical examples. “teamAVGΔ” would be how much greater the predicted team in question’s
batting average is than the opposing team; positive difference being better for winning odds, all else equal.

A. Cui 19

(Hastie et al., 2008). Unfortunately, they tend to be less stable and potentially less accurate on
new data, because they make binary linear splits within the data (James et al., 2013).
Techniques such as cross-validation or pruning must be used to carefully reduce overfitting,
since in theory, a tree could recursively partition all elements to get perfect training dataset
accuracy (Hastie et al., 2008; Sharman, 2020).

Random forests, also called bootstrap random forests, are constructed through numerous
decision trees, and build to improve accuracy while reducing overfitting, explaining their
popularity (used by Elfrink and Bhulai (2018); Jia et al. (2013); Couronné et al., 2018, among
others). At each split, each decision tree only evaluates a bootstrap-sample vector of predictors
(typically a minority), which prevents trees from all using the same predictors; through this,
random forest prediction error rates are empirically lower that trees, and the model is more
robust to outliers in the data (Breiman, 2001; James et al., 2013).

As with most ensemble methods, such as bagged trees (which are also a collection of
trees, but evaluate all predictors when making splits), the prediction of the forest as a whole
depends on the predictions of each individual tree, of which there may over 100, typically
through a majority vote (James et al., 2013). However, since each of the components of a
random forest is a classifier in itself, methods such as consensus-based combining (CCM) can
vary classifier weights until there is an eventual convergence, further improving classification
accuracy (Alzubi et al., 2018).

Yet, one downside of random forests is explanatory power. Although the importance of
features in random forests can be extracted (Gregorutti et al., 2013) -- and modern code
packages include this ability -- the complex nature of random forests makes it more difficult to
understand the decision mechanism for each classification. With many individual classifiers and
different subsets of predictors in each case, although we can extract the most “important”
features, it is not possible to understand a broader decision framework for classifying games in
the way a linear model such as logistic regression, or the simpler but less stable decision tree
provides.

4.5 Support Vector Machines/Classifiers (SVM/SVC)

SVMs are a non-linear extension of support vector classifiers (SVC) -- models that use
hyperplanes that separate the observation space, creating a kernel to , while creating a “soft
margin” of classification that allows errors (James et al., 2013). Mathematically, through
adding a slack variable 𝜉 in the optimization constraints, the underlying SVC models allow
non-linearly separable data to be split by these hyperplanes through allowing for margin errors,
or points within the classification margin range that will be intentionally misclassified (Smola &

A. Cui 20

Vishwanathan, 2008); by adding higher-order terms and polynomial kernels, a SVM is able to
represent nonlinear classification boundaries that improve the model’s flexibility in aggregate
(James et al., 2013), which helped Valero (2016) find optimal performance with SVMs. Despite
taking longer to train, SVMs are good at combating overfitting, and have also been used in
basketball sports prediction (Haghighat et al., 2013).

However, the SVMs pay for the improvement in predictive power; the optimization
increases sensitivity to scaling of inputs and reduces interpretability, as there are not direct
evaluations of individual features’ impact on the classification outcome (Hastie et al., 2008), as
opposed to tree or regression based models which are more advantageous for explaining the
components behind the classification.

4.6 Boosting models and XGBoost

Gradient boosting is an ensemble modeling strategy that combines a series of weak
learners in sequence; this differs from random forests, which considers many weak trees in
aggregate and intentionally lowers correlation through samples of predictors at each split
(Natekin & Knoll, 2013; Breiman, 2001). By iteratively using many small, weaker models, the
boosted trees tend to perform better, especially since their learning rates and tree
hyperparameters can all be tuned for increased cross-validation accuracy, such as with tuning
methods like grid search and randomized search -- which we eventually use (James et al., 2013;
Bergstra & Bengio, 2012; Bergstra et al., 2011).

Specifically, we look at XGBoost for this analysis, which is faster yet accurate gradient
boosting method for tree-based classifiers (Chen & Guestrin, 2016). XGBoost is popular among
data science competitions due to its accuracy and implementation speed -- even though boosted
methods tend to learn more slowly -- which makes it well-suited to large datasets and complex
relationships between many features and outcome variables (Chen & Guestrin, 2016).

4.7 Artificial Neural Nets (ANN)

Much like SVMs, ANNs are powerful predictive models that sacrifice understandability
for predictive accuracy. Using a collection of neurons that are designed to simulate the decision
framework of a human brain, each ANN perceptron takes in multiple inputs (such as team
batting average difference, starting pitcher ERAs, etc.), using a non-linear bias term and
activation function (ex: ReLu, sigmoid) to activate certain neurons, and passing the relevant
weights and outputs to further layers that eventually lead to the output, a classification of the

A. Cui 21

win or loss (Chauhan, 2019). To fit the model, neural networks use a technique called gradient
descent (Hastie et al., 2008), which minimizes a loss function (error sum of squares between
trained model output layer and actual classifications in this case) and iteratively do this from
the output layers back through each layer of perceptrons, adjusting weights, in what is known
as back-propagation (Li et al., 2012; Moawad, 2018).

The accuracy to which neural nets can be tuned through this back-propagation
algorithm is NNs have become popular even despite their computational requirements (often
needing GPUs). However, the multi-layered mathematics behind these algorithms create “black
boxes” of computation, which makes it difficult to determine the inputs considered and their
relative importance in determining the final classification; comparatively limited progress has
been made to understand feature and information extraction, such as by Lee and Landgrebe
(1997). We discuss ANNs in this section since they are a relevant classification model; however,
since our goal is to have an interpretable model, we refrain from fitting one because it is harder
to extract qualitative meaning from neural networks.

A. Cui 22

5. Methodology

5.1 Problem definition

Our goal is to make prior forecasts of win-loss results in MLB games. Since we are only
interested in the win-loss result, rather than the score, this becomes a binary classification
problem (Valero, 2016; Elfrink & Bhulai, 2018). Most MLB games are zero-sum because games
are extended until one team wins,12 and each game always has a home/away team, so we define
our binary y-variable (named “outcome”) similarly to Pharr (2019):

For our model, we will use team and player stats as features, such as rolling batting

averages, which we believe will explain greater variance in computing the probability of being
classified as a win or not for the home team (most models we explore allow for the latter). For
this, we do have to assume that win determinants in baseball have not changed meaningfully
over the period we are building our model on; namely, that the relationship between
observations/covariates and outcome response is stationary.

This is not realistic over the course of baseball history. For instance, starting pitchers’
average innings per start mattered far more in the 1960s, when complete games were frequent,
than now, where the game’s later innings are dominated by relief pitchers (S. T. Jensen,
personal communication, February 3, 2020). As a result, we restrict our data to observations
post-2000, which allows us to train and test on datasets from similar data-generating
distributions of baseball play -- allowing us to be more accurate and make realistic predictions.13

5.2 Software stack

We used Python and Jupyter Notebook to compute the majority of this analysis.
Primary packages used include pandas (the Python data analysis library), numpy (matrix

12 In fact, after a 2007 rule change, ties can only occur at the end of the season if the game does not impact the
postseason; there has only been one tie since, on September 29, 2016, when the Chicago Cubs (8 games ahead of any
other team) drew against the Pittsburgh Pirates (9 games short of playoff qualification), where the outcome did not
impact season standings (Baseball Reference, n.d.-c; Baseball Reference, n.d.-f).
13 Note: recent changes like “openers” can impact this game, such as by devaluing starting pitchers (McWilliams,
2019). However, we ignore this because it is challenging to forecast in advance.

A. Cui 23

computation), matplotlib.pyplot (used for visualizations), xgboost (Extreme Gradient Boosting),
scikit-learn (machine learning), scikit-plot (model visualization), statsmodels (statistical
modeling and tests). Citation for their documentations are found in the Bibliography; we cite
each package’s documentation and reference the functions/models used with the package name.

5.3 Reducing overfitting: train/test splits and cross-validation

One key problem in machine learning is overfitting. This is also referred to in context of
the bias-variance tradeoff: the more attuned our model is to characteristics of the training
dataset, the lower our bias (difference in error), but similarly the greater our variance on fitting
unseen datasets -- leading to higher error rates and “overfitting” (James et al., 2013). We
simulate this in machine learning modeling through the use of training and testing datasets,
where we only fit the model on the “training” portion of the dataset, and then see its
performance on the remaining “test” dataset, which should confirm our models do not overfit.
Standard training and testing splits randomly assign observations to either the training or
testing data at common ratios of 80/20 or 75/25 (Shah, 2017).

Yet, this standard approach does not work as well for our classification problem. As we
also discuss in Analysis, we want to avoid data contamination (Valero, 2016) and only train
our model on both features/observations that it would have access to in advance of predicting a
given game. This is stricter than just demanding independent samples. The rationale: if we used
a standard training and testing data split, we could have games in the training set that are
played before games in the testing set. Since we are using features that are customized to each
day, this independent testing and training split would be statistically appropriate; however, this
does not emulate how we could train models in practice, making it less valid (S. T. Jensen,
personal communication, April 22, 2020). As a result, we train on the 2001-2015 seasons, and
use the 2016-2019 datasets as hold-outs individually.

Cross-validation strategies help combat overfitting in the training process, where the
model is evaluated on different samples of the training dataset to estimate an out-of-sample
error for unseen data; low differences/biases between cross-validation and training dataset error,
as well as low cross-validation accuracy variances, suggest lesser overfitting (Hastie et al., 2008).
In this paper, we use k-fold cross validation to do this, where the training dataset is partitioned
k ways, and for each “fold,” our model trains on the remaining k - 1 partitions, evaluating that
fold’s cross-validation error as the testing error on the held out partition (Hastie et al., 2008).
This gives us estimates of prediction error through the mean and variance of the fold estimates
(James et al., 2013):

A. Cui 24

We use 5-fold cross validation, scikit-learn’s default CV setting for many algorithms. In

fact, cross validation for the bulk of our models is performed automatically by our Python
modeling packages, where models like LogisticRegressionCV or RandomForestClassifier
automatically cross-validate parameters using a specified number of folds. Through this, we
minimize our overfitting and improve eventual performance on our holdout data for evaluation.

5.4 Analysis roadmap; Code and GitHub repository

Table 2: Data science approach

Modeling Step Relevant Thesis Section

1. Define the problem Methodology

2. Identify models and testing metrics that will be used
to compare them

Models; Model Evaluation

3. Acquire datasets and perform data cleaning Preprocessing: Data Cleaning and
Feature Engineering

4. Perform feature engineering and split data for test
and training sets

Preprocessing: Data Cleaning and
Feature Engineering

5. Train models on training datasets and tune
hyperparameters to minimize cross-validation
overfitting

Analysis

6. Evaluate models based on the testing metrics and
select one or several best models to use

Results

7. Quantitatively and qualitatively interpret the model’s
features in context of the analytical problem

Discussion

The Python notebooks, some copies (when space permitting) of data files, Python scripts, and
some charts’ raw image files are included on a public GitHub repository under my name,
username @andrew-cui. This code and associated work were done solely for the purposes of EAS
499, Senior Capstone Thesis, Spring 2020.

The link is here: https://github.com/andrew-cui/mlb-game-prediction

A. Cui 25

6. Model Evaluation

Machine learning is valuable for its ability to evaluate future observations, after “learning” the
patterns in existing data, which is why we use hold-out and validation datasets to combat
overfitting. However, since we have many variables of features, models, and patterns in the
hold-out datasets, we must consider multiple methods to evaluate our classifier, where our best
model should perform well across all of these metrics.

6.1 Prediction/Classification Accuracy

The most frequently used evaluation criteria, found in every single MLB game prediction
paper or article in the literature review, is classification accuracy, defined as (Ferri et al., 2009):

This computes the rate of correctly predicted baseball games, both home team wins and

losses. Due to its simple computation and clear meaning, prediction accuracy is used widely by
cross-validation techniques, which compare accuracy across each validation set to minimize bias
and variance relative to the training data accuracy (Hastie et al., 2008).

Since we are looking at the 2016-2019 seasons, which are individual entities, it makes
most sense to compute prediction accuracy over each season individually. Although we do not
expect drastic differences between seasons, this parallels our use of such a model in practice, and
also gives us more data points to consider. In addition, both Soicher (2019) and Jia et al. (2013)
describe time-dependence of game predictive accuracy, since earlier games with less data may be
less predictive of a team’s true quality. So, we also will evaluate our model on a monthly scale
(only 1-2 seasons) to compare its results to Jia et al. (2013) as well as validate their findings.

6.2 Brier score for weighted MCE

We want to reduce severity of inaccuracy. To do this, we use Brier scoring, which for

each estimate, computes squared deviation from the outcome (Czakon, 2019; Roulston, 2007):

A. Cui 26

Brier scoring has been used by prediction engines such as the Good Judgement Open
(Good Judgement Open, 2019). Smaller Brier scores are good, because they indicate that
inaccurate evaluations were less severe (for example, a P(outcome = 1) probability of 0.56 is
better than a probability of 0.95 if the home team actually lost, since the lower probability
represented a lower prediction confidence). We can compare Brier scores directly, or evaluate
them relative to a baseline (in our case, a model where the home team wins every game; a naïve
classifier), using a Brier Skill Score (Roulston, 2007; DWD, n.d.):

In this case, a positive Brier skill score close to 1 indicates a much lower Brier score for

our model than the baseline, which would suggest our model is stronger (Roulston, 2007).

6.3 ROC Curve and AUC

Another popular metric for evaluating classification model quality is the ROC curve, or
receiver operating characteristic -- which plots true positives (games where our model predicts
the home team wins, which it does) against false positives (games where we predict the home
team wins, but it loses) across different probability classification thresholds (Vuk & Curk, 2006).
Note that in our modeling, we still use the standard 0.5 classification rule, since we are
indifferent to wins and losses.14

The quantitative component of ROC is known as AUC, or “area under the curve,” a
metric that can be used to compare ROC curves of different models (James et al., 2013). We
compare the ROC of our models to each other as well as a reference diagonal line with AUC =
0.5; the farther our model’s ROC curve bows away from this reference line, and correspondingly
the higher our AUC is, the better fit this model is for the data (James et al., 2013l; Vuk &
Curk, 2016).

6.4 Lift

Elfrink and Bhulai (2018) highlight the value of having higher-confidence predictions be
more likely to be accurately forecasted (such as probability that it is a win for the team); while
they propose it in the context of betting, they do not explore this metric extensively. Inspired

14 See Analysis.

A. Cui 27

by their discussion, we will examine events with a higher response probability (greater prior
likelihood of a team winning) to see if they are indeed more likely to be accurately classified,
known as the “lift” of the model (Vu et al., 2019; Vuk & Curk, 2006).

For games labeled as a high probability of a win, lift measures the ratio of actual wins.
Ideally, a classification model would be more accurate for these high-likelihood events (Soicher,
2019), being up to several times better at classifying the top percentage of observations for a
given outcome (Czakon, 2019). While some games in an MLB season will be very close and
challenging to forecast in advance, being able to identify certain higher-probability outcomes
improves the usefulness of our model even if we are capped at 55-60% accuracy due to improved
competitive balance in the sport (Ajilore & Hendrickson, 2007) and game-idiosyncratic variance;
a model with strong lift would be useful for betting on baseball games, making plays only on
games forecasted as high-likelihood wins to maximize returns (Elfrink & Bhulai, 2018).

6.5 Summary

Through considering these metrics and others discussed in statistics and computer science
literature, we use the following order of evaluating our models. We include qualitative
consideration as discussed in our Literature Review

1. Classification accuracy scoring on our holdout “test” dataset, from 2016-2019, and
monthly measures

2. Brier scoring to penalize models with lower lift (greater misclassification severity)
3. ROC curves of false positive vs. true positive classification rates, and AUC measures
4. Interpretability of model as a tie-breaker, since we want to understand the

determinants of a baseball game, in addition to gaining prediction quality

The open-ended nature of this final characteristic gives us strong flexibility in how we choose to
apply it. For instance, comparing models that have different measures of feature importance
(regressions and direct coefficients on one hand; neural nets with little information on the other)
can be useful. In addition, running our model over specific team-seasons or years would let us
compare our forecasts to truth. Finally, we could use the model for individual games, bringing in
personal knowledge about the sport to judge the sensibility of our predictions.

A. Cui 28

7. Preprocessing: data cleaning and feature engineering

7.1 Data acquisition

Our primary dataset -- including game logs and in-game events -- comes from
Retrosheet’s baseball database and includes all events from 2000 to 2019, inclusive, (Retrosheet,
n.d.-c; Retrosheet, n.d.-d). Since each of 30 teams plays 162 games, and each game has two
teams (home and away), this is a total of 20	𝑠𝑒𝑎𝑠𝑜𝑛𝑠	 ∗ 81	ℎ𝑜𝑚𝑒	𝑔𝑎𝑚𝑒𝑠/𝑡𝑒𝑎𝑚	 ∗ 	30	𝑡𝑒𝑎𝑚𝑠	 =
	48,600games of data, at both game-level (game results) and event-level (individual hitting and
pitching at-bats/outcomes) granularity.

Our secondary dataset comes from Sean Lahman’s15 baseball database (Lahman n.d.),
specifically using his People and Pitching CSV datasets to compute covariates for our pitchers.
The preprocessed datasets had a combined size of 291.9 MB. Although these datasets originally
come with many features, a large portion of our work here involves data cleaning and feature
engineering. As a result, we withhold more detailed descriptions of the columns until after this
portion has been completed.

7.2 Data cleaning: game logs

The game log data (Retrosheet, n.d.-c) provides metadata (Retrosheet, n.d.-b) about the
date, teams, result, and information about data quality. We preprocessed it as follows:

● Removed games that did not finish on the same day they started, since this is
challenging to model, and it is a small proportion of the dataset16

● Combined records for teams that had name-changes (ex: the Florida Marlins and Miami
Marlins), to leave us with 30 teams in total

● Created our response variable “outcome”: 1 if home team wins; 0 if away wins

We are left with 48,556 games across 20 seasons, with 26 columns in game date, team
names, starting pitchers, starting lineups, and our response variable. Our response variable
mean was 53.87%, corresponding to the overall percentage of games won by the home team.

15 Coincidentally, I discovered that Sean Lahman is an active reporter in my hometown of Rochester, NY.
16 Official baseball scoring has these games played later but retroactively updated in the standings/statistics; however,
since games might be played months later, the actual team on the field often differs, hence making it challenging for
us to model. As less than 3/4 of a percent (32/48600) of the data, it is a reasonable omission.

A. Cui 29

7.3 Data cleaning: team/game-level data

We are interested in using team-level performance covariates as observed in the
literature, where performance gaps between teams such as home-run differences should provide
signals for win-loss outcomes (Valero, 2016; Pharr, 2019; Yang & Swartz, 2014). Using
Retrosheet event files and metadata (Retrosheet n.d.-a; Retrosheet n.d.-d), we scraped each
relevant at-bat and its corresponding statistical outcomes (since there is no native tabular
format, necessitating manual data wrangling) across all seasons from 2000 to 2019.

We tracked at-bats, hits, total bases, walks, home runs, runs, and sacrifice flies at a player-
game-level, so that we can compute rolling means for team performance such as AVG, OBP,
and SLG. Similar to Valero (2016), we omit information about the actual game outcomes, such
as the number of outs, home and away runs scored, game protest, or time of game, since they
would contaminate the data we are modeling. Out of the remaining features though, since
Retrosheet’s comma-delimited text files include many edge cases, despite counting for stolen
bases, sacrifice hits, and wild pitches, we miss the following scenarios that impact the aggregate
statistics counted:

● Balks
● Double-plays that lead to a run scoring (coded differently by Retrosheet)
● Errors by the fielding team that lead to runs scoring (such as errant throws on a pickoff

attempt)

In aggregate, our scraper performs reasonably accurately, extracting nearly 4.5M rows from
the CSV structure across 600 files. For a large-scale, “big-data” wrangling problem, with a
complicated text-encoding, is non-tabular, and physically large, these error rates are reasonably
low (Ives et al., 2018), at less than 1-2% differences for the 2000 Los Angeles Angels’ aggregate
statistics (Baseball Reference n.d.-a) for instance:

Table 3: Evaluating data cleaning quality (ex: 2000 Los Angeles Angels)

 AB RS H HR TB BB SF

Cleaned Data 2767 447 797 130 1364 339 23

Actual 2742 447 788 130 1346 339 23

% Difference 0.91% 0 1.14% 0 1.34% 0 0

We also omit doubleheader games, since our eventual modeling iterates over dates,

which becomes problematic to update information for if we have multiple entries on the same

A. Cui 30

date; however, this affects only 452 (~0.01%) entries in the dataset. Though tracking player-
level rolling averages is most detailed -- and we have the foreign keys to do so in the tables -- it
is computationally impractical. This is a limitation of our analysis, as instead, we aggregate by
day and team to compute ~20,000 rows for each team’s performances.

7.4 Data cleaning: pitching-level data

Retrosheet’s event file dataset (Retrosheet, n.d.-c) includes event-level information that
can be used to identify a game’s starting pitchers and their statistics for the game; however, the
metadata format (Retrosheet, n.d.-b) requires tabulating over each dataset while tracking the
active pitchers to a 𝑂(𝑛%)complexity in addition to being algorithmically challenging to set up,
which makes tracking game scores (FiveThirtyEight, 2015) harder to do even though they
directly evaluate starting pitcher performance. Instead, we use a proxy for pitcher data,
assuming their performance matches the prior season’s average performance. For instance, for
some statistic Y in year t, game observation i in the data, our prior estimate for the pitcher’s
performance is:

Lahman’s database (Lahman n.d.) includes pitcher aggregate statistics over each season,
which we match to our Retrosheet database using the foreign key retroID (Lahm 2019). We
select starters as pitchers that make more than 12 starts in a given season.17 We kept summary
statistics like ERA and WHIP (Stick, 2005), computed measures such as K/BB, K/9, and BAA,
and added a feature for FIP (Valero, 2016), or Fielding-Independent Pitching.

Sabermetricians created FIP to evaluate MLB pitcher “quality,” all else equal to
teammates' defensive performance and random chance, arguing that a pitcher with ERA in
excess of FIP may be “unlucky” and their ERA is expected to improve in time (Slowinski,
2010). We normalize FIP so each year’s average is equal to the league ERA (Slowinski, 2010):

17 We compute the number of pitchers who make a given number of starts per year; finding a cutoff that leads to
around 30 * 5 = 140-160 starting pitchers, since, conventionally, a team has five starting pitchers in its rotation. A
graph can be found in the Appendix 6.

A. Cui 31

7.5 ELO model

Our first feature was inspired by Elo models (Elo 1978; Glickman & Jones 1999) such as
FiveThirtyEight’s baseball predictor (2015), which track a team’s underlying “quality rating”
based on wins and losses against opponents, where the ratings create their own, albeit limited,
forecasts of probabilities of future matches. FiveThirtyEight’s model is shown in Appendix 4.

Elo models are fantastic for understanding performance over time but were built to
compare chess players when their primary statistics were wins and losses (Elo 1978) rather than
the detailed data available in MLB predictions -- in fact, FiveThirtyEight’s model includes very
few features. This is a binary classification, so instead of Elo being used to determine the
probabilities themselves, we instead use it to account for “momentum,” hoping to capture some
variance in pitching, relief pitchers, or streaks of good play that other covariates do not.

We start all Elos at 1500 (FiveThirtyEight, 2015) in 2000, and track over time, with
hyperparameters tuned to reduce variance in teams as the season goes on. For future years, we
start the Elo on the prior year’s final Elo rating. Since our data is sorted by date and the teams
in each game are mutually exclusive, we can run an 𝑂(𝑛) Elo algorithm. Our basic model, over
2001-2019, has an accuracy of 0.5442 with 95% proportion confidence interval (since each season
has the same number of observations) of [0.528, 0.560]. This interval contains our baseline p =
0.5387 of home team wins.

7.6 Feature engineering

Using a team’s season-wide statistical performance, as Jia et al. (2013), Valero (2016),
and Tolbert and Trafalis (2016) do, provides signal, and would be appropriate if we restrict the
data used to only games previously played. For example, tracking a game on August 1, 2018
using the entire 2018 season would not be appropriate because the team’s aggregate statistics
are influenced by nearly two months’ data that is yet to come and would not be available if
forecasting in practice, causing data contamination (Valero, 2016). Subsequently, we use 7-day
rolling periods for each hitting statistic and set the prior values at the beginning of the season to
be the team’s average from the entire previous year.

For pitchers, as described, we use their previous year’s average data, setting the
information to be 0 in any cases where we do not have their previous year’s data; this is a weak
estimate, but our best possible since we do not have the game-level data that FiveThirtyEight
(2015) uses to track game scores.

We also bring in our Elo momentum tracker, and include the number of rest days a
team has (FiveThirtyEight, 2015), similar to how Valero (2016) uses the team’s current

A. Cui 32

Pythagorean expectation to model team strength so far in the season, or how Yang and Swartz
(2014) use a team’s existing W-L record as a feature. In addition, while betting lines for baseball
games can be strong predictive factors for the actual result (Pharr 2019), the predictive
accuracy of diverse individuals in aggregate is an observed phenomenon known as the “wisdom
of crowds” (Surowiecki 2004) -- hence, it is neither a novel signal nor a fundamental baseball
component that impacts the game’s outcome, so we do not include it.

We also create a feature for ISO (MLB n.d.), or isolated power to separate the impact of
power from getting on base. We remove features including AVG and SLG (since ISO is a linear
combination of the two), ERA (since FIP can be used to track this performance) and IP
averages per start (due to low correlation). We use 2000 to set prior estimates for our features,
so we exclude that year’s games from the final dataset. Our final set of features has dimensions
(46128, 9), with a tenth column for the outcome:

● Team hitting: OBP, ISO
● Team starting pitching: FIP, WHIP, K/9, HR/9, K/BB
● Additional metrics: ELO, rest days between games

For each statistic, we computed differences and percent differences between our feature

statistics for the home and away teams, with the home team as our baseline. A positive value
means a higher statistic (not necessarily good, such as FIP) for the home team.

𝑌*+,, = 𝑌-./0 − 𝑌"1"2

𝑌%*+,, =
𝑌*+,,
𝑌-./0

× 100%

We used the raw differences for models that require scaling, since it is complicated to

interpret a model based on standard-scaled percentage differences between two statistics, and
scaling puts all the feature values on the same mathematical scale. We used percent differences
for scale-invariant algorithms since a more extreme difference, hence stronger signal -- while also
avoiding scaling the data and add a layer of interpretation complexity.

A. Cui 33

8. Analysis

8.1 Exploratory data analysis

We begin by looking at our features, and some basic distributions of our data.
Examining the distributions of several features as percentage differences between home and
away teams,18 we find that most appear normally distributed, with limited primarily seen in the
ISO and K/BB graphs. This is promising for our analysis; data with a heavily skewed
distribution could mask the signal from our features, particularly on the linear models such as
our regularized logit regressions.

Figure 2: Histograms of % difference features

Our data shows correlation between factors such as HR9 and FIP, which is sensible since

home runs are considered in the calculation of FIP. We have weak correlations with our
response variable, with OBP and ISO the highest (r = 0.27, 0.19 respectively) -- indicating no
single factor can predict games:

18 We also use raw differences and standard-scale them in preprocess. We do not show these plots here; however, they
appeared all normally distributed.

A. Cui 34

Figure 3: Correlation plot of % difference features

Summary statistics of our features using Δ% are seen here:

Table 4: Descriptive statistics for Δ% features (Δ% implied in feature names)

 OBP ISO FIP WHIP K9 HR9 K/BB Elo

Mean -0.361 -7.749 -2.283 -1.104 -3.551 -8.090 -10.008 -0.057

SD 14.753 46.718 22.182 14.868 46.676 54.387 54.387 3.150

Min -83.206 -690.004 -233.875 -129.224 -269.458 -663.718 -1048.39 -12.587

50% 0.641 0.976 0 0 0 0 0 0.018

Max 45.785 86.971 69.886 54.189 73.482 88.837 90.411 12.373

We also use the differences themselves as features, but standard scaled so they fit a
standard Normal distribution and allow us to work with scale-sensitive models (James et al.,
2013); their summary statistics are shown here. The median for the pitching statistics is 0 due
to two factors: 1), the normal distributions we saw in the histograms for the raw differences
(although not plotted); 2) additional values 0 caused by our data wrangling, which occurred if
both pitchers did not have any prior data.

These statistics’ distribution looks less promising to analyze because almost all the
means are around 0, where there would not be a strong signal with feature coefficients.
However, it provides valuable insight into what baseball games look like in terms of statistical
spreads. For instance, means all around 0 indicate that the “average” game has balanced out
more (Ajilore & Hendrickson, 2007), even with the presence of outliers such as a 5.0 difference
in FIP (indicating one pitcher is a top-line ace and the other is far below average).

A. Cui 35

Table 5: Descriptive statistics for Δ features (Δ implied in feature names)

 OBP ISO FIP WHIP K9 HR9 K/BB Elo

Mean 0.002 0.001 -0.001 -0.001 0.002 ~0 0.005 -0.113

SD 0.462 0.058 0.838 0.195 1.807 0.382 1.353 47.109

Min -0.178 -0.275 -4.167 -1.155 -8.682 -2.028 -14.008 -176.251

50% 0.002 0.001 0 0 0 0 0 0.267

Max 0.196 0.215 5.000 0.999 9.586 2.208 13.964 193.659

8.2 Modeling approach

The most straightforward way to train our models is to randomly set a training and
testing split, with cross-validation to reduce overfitting. However, in an actual MLB season, we
do not have the luxury of randomly splitting up games, because they occur sequentially, but a
train-test split could have us training on data from September 2019 even if our test samples
include games from April 2002. Statistically, since all the feature values are game-specific and
would not be affected by our approach here, there is no difference; however, a true baseball
model would be fit on prior seasons and then applied to an entirely new season (S. T. Jensen,
personal communication, April 22, 2020). Since we want to make our model applicable in an
actual baseball setting, it is appropriate to behave as if we are in such a setting.

Lacking a 2020 season19 due to COVID-19, we set our training sample for the overall
models to be the 2001-2015 seasons, and our test sample to be 2016-2019. As part of our
evaluation, we will also track performance over the months in a given season, as suggested by
Jia et al. (2013). Our training dataset includes 36,417 games while our holdout/test dataset
includes 9,711 games, a 79-21% split (approximately 80-20).

8.3 Models considered

We evaluated a series of machine learning models by training on the 2001-2015 seasons
and evaluating their test accuracies each year over the 2016-2019 seasons separately. For
consistency, we set random_state = 499 and used 5-fold cross-validation in testing, to combat

19 Our initial goal was to train the model and live-track its performance during this season to see how it behaves on
completely unexplored data.

A. Cui 36

overfitting. We fit the following models and tested against a “naïve” model where the home
team always wins.

Logistic regression
• Lasso (L1) penalty regularization
• Ridge (L2) penalty regularization
• Elastic net (L1+L2) penalty regularization

Support vector machine
K-Nearest Neighbors classifier
Tree-based models and ensemble methods

• Decision tree classifier
• Random forest ensemble
• XGBoost classifier

Stochastic gradient descent classifier

We chose these models based off the ones included in the literature. The exception is the
stochastic gradient descent classifier; the scikit-learn SGDClassifier implementation includes a
loss function specification that can model either an SVM or logistic regression, increasing
flexibility of our models. While we reviewed Bayesian models and neural nets briefly, we do not
discuss them here. Certainly, a Bayesian model that can update its posterior distributions per
game and capture greater variance (Jensen, 2020) or a complex neural net (Valero, 2016) would
provide strong predictive power, but sacrifice interpretative ability (and as Valero (2016) finds,
does not appear to provide a meaningful increase in predictive strength).

We use several classifiers that compute probabilities, both P(y = 0) (away wins) and
P(y = 1) = 1 - P(Y = 0) (home wins), for each game. By default, these classifiers assign any
probability less than 0.5 to a response value of 0, and any above 0.5 as a response value of 1.
However, we have no interest in home teams specifically; rather, this framing is a byproduct of
the data we have available. This indifference allows us to accept the default 0.5 classification
rule across all models to which it applies.

8.3 Model tuning and evaluation

For simple models, particularly the logistic regression variants, hyperparameter tuning can be
done manually through adjusting cross-validations or built-in packages such as
LogisticRegressionCV. In each case, we ran the models, adjusted hyperparameters, and
compared each iteration’s cross-validation results to identify ideal parameters.

A. Cui 37

Meanwhile, for our tree-based ensemble models (random forests and XGBoost), since

there are a set of continuous hyperparameters, we cannot do this tuning by hand. Our solution
is automated hyperparameter optimization, which runs iterations quickly and produce the
strongest set of hyperparameters through 5-fold cross-validation. Since our final dataset, after
aggregation, has 9 features and is trained on 36,000 rows, its size is reasonable for a randomized
search (implemented as RandomizedSearchCV) which runs many cross-validation iterations on
randomly selected sets of hyperparameter values within specified ranges and is empirically more
efficient than a standard grid-search approach (Sharma, 2018; Bergstra & Bengio, 2012).
Moreover, the lower complexity of our engineered features, especially compared to the original
data we began with, reduces the gain that a Bayesian method like SMBO or Python’s hyperopt
(Bergstra et al., 2011; Koehrsen, 2018; Sharma, 2018) would provide, since our models’ objective
functions are easier to evaluate.

The parameter grids are set through a combination of initial manual searches, adjusted
depending on observed results -- such as for XGBoost’s learning rate (Brownlee, 2016;
Cambridge Spark, 2017; Jain 2016) -- and are meant to be excessive to give the randomized
search a greater space to examine due to the feasible size of our data. Cross-validated
randomized search results are as follows:

Table 6: Hyperparameter grid for RandomizedSearchCV

Model Parameter Range Selected

DecisionTree criterion [Gini, entropy] entropy

 max_depth [1..5, 7] 3

 max_features [auto, sqrt, log2, None] None

RandomForest criterion [Gini, entropy] entropy

 n_estimators [30, 40, 50, 60] 60

 max_depth [2, 3, 4] 4

XGBoost max_depth [3, 5] 3

 learning_rate

[0.001, 0.01, 0.025, 0.05, 0.08,
0.1, 0.15]

0.05

 n_estimators [55, 100, 200, 300, 400] 300

A. Cui 38

9. Results

9.1 Comparing models with scaled and unscaled data

For comparing our models, we looked at four key factors discussed in Model Evaluation:

1. Model accuracy scoring on our holdout “test” dataset, from 2016-2019
2. Weighted Brier scoring to penalize models with lower lift (greater misclassification

severity)
3. ROC curves of false positive vs. true positive classification rates, and AUC measures
4. Interpretability of coefficients as a tie-breaker, since we want to understand the

determinants of a baseball game more than just predictive power

In general, the models using scaled-difference features performed worse in classification
accuracy and Brier score, in addition to interpretability, than the unscaled-percentage-difference
ones -- not a product of the scaling but rather the appropriateness of the models to the
classification situation. For example, SVC and KNN models are less interpretable naturally than
tree-based models like decision trees. This is in line with what Valero (2016) discovered when
using KNN-classifiers.

Comparing the ranges here from our testing data, we see that the scale-invariant models
almost universally perform better than the scale-sensitive models.

Table 7: Performance comparison between our models that required scaled data
vs. models that are scale-invariant

Metric Scaled models Unscaled models Best

Classification accuracy 53.2% - 60.5% 61.2% - 62.77% Unscaled models

Brier score 0.234 - 0.605 0.227 - 0.230 Unscaled models

ROC/AUC 0.614 - 0.671 0.666 - 0.6706 Comparable

Interpretability Low/Medium Medium/High Unscaled models

The exception to this rule is the stochastic gradient descent classifier (SGDClassifier),
which had the highest AUC of all models at 0.6710 and a classification accuracy of 60.5% on the
data to the best Brier score of 0.234 out of the scaled models. However, this was on a classifier
fit with log-loss, which gives an underlying logistic regression. Since the unscaled logistic
regression is more interpretable (directly comparing impacts of percent differences), and the
unscaled logit models perform arguably better (mean classification accuracy 62.4%, AUC 0.6706,

A. Cui 39

and Brier score of 0.227), we discard it in favor of our logit models and other models fit on the
unscaled dataset with percentage differences.

9.2 Selecting our final model

Out of these models, the three logistic regressions performed similarly well likely because
our dataset did not have high dimensionality. As a result, we selected the Elastic Net out of
these variations since it converged fastest empirically on smaller datasets, whereas the Lasso and
Ridge did not, which would be problematic if we were training a model using a smaller set of
observations (such as only 3-5 instead of 15 seasons). The benefits of the regularization do not
appear to be as salient in this problem, since we do not have many feature variables (especially
not in excess of our number of observations) for instance, but the regularization nonetheless
helps us reduce overfitting (Zou & Hastie, 2005).

The random forest classifier similarly outperformed the decision tree on new data, since
the bootstrap random samples and multiple classifiers help increase robustness to overfitting.
Similarly, our gradient-boosted XGBoost, particularly after tuning our learning rate parameter
through RandomSearchCV, had strong predictive power as expected. So, we make our final
evaluation between the logistic regression with elastic net regularization, random forest
classifier, and XGBoost classifier.

The majority of our models perform similarly on AUC from the ROC curves, which
demonstrate why having multiple metrics to distinguish between them is important.

Figure 4: Model ROC curves and AUC comparisons

A. Cui 40

Out of the elastic net, random forest, and XGBoost, the Brier scores (respectively

0.2270, 0.2290, 0.2274) were very similar but slightly favoring the elastic net. For the sake of
interpretability, we select the logistic regression with elastic net regularization as our final
“best” model, because its coefficients can directly compute impacts of feature values on the prior
forecasted probability of a team (in this case, our home team) winning. This makes it easiest to
understand as well as explain to others -- particularly useful in a baseball front office, for
instance -- without sacrificing predictive power.

Its mean classification accuracy is 61.77%. The hyperparameters used are:

Table 8: Logit elastic net model hyperparameters

C CV Penalty L1 Ratio

0.01 5 elasticnet 0.5

C is an inverse regularization strength, so picking a lower C (default = 10) results in a
stronger regularization and shrinkage of our parameters. We used 5-fold cross-validation in
fitting the model, standard stopping criteria and appropriate solver (“saga” to use an elastic
net), and an elastic-net mixing L1 ratio of 0.5. These were selected by manual tuning due to the
lower number of combinations of hyperparameters.

9.3 Logit elastic net regression analysis

For this model, our coefficients are generally tiny, expected since the coefficients are
multiplied against percentages and then used as exponents in the logit function and are
additionally regularized.

Table 9: Regularized logit elastic net coefficients

OBPΔ% ISOΔ% FIPΔ% WHIPΔ% K9Δ% HR9Δ% K/BBΔ% ELOΔ% restΔ

0.0286 0.0065 -0.0004 -0.0046 0.00099 -0.00069 -0.00075 ~0 -0.0106

However, we can only evaluate what the magnitude of the coefficients means through
statistical tests, which we do using the statsmodels package.20 Unfortunately, the statsmodels

20 Surprisingly, scikit-learn, despite being the default for machine learning analysis in Python, does not have a single
means to compute statistical significance of parameters.

A. Cui 41

package’s elastic net regressions and summary tables are (somehow) not implemented, which
means we have to examine a regression output of a regularized Lasso, a close comparison (given
our earlier model analysis). However, this runs into the same issues that caused us to choose an
elastic net; the Lasso logit regression does not converge fast enough, even after parameter
tuning. Nonetheless, this proxy model’s coefficients and hypothesis tests are below:

Table 10: Regression hypothesis tests for logit elastic net model

 β SE(β) z P(Z >|z|) [0.025 0.975]

OBPΔ% 0.0347 0.001 37.591 < 0.001 *** 0.033 0.036

WHIPΔ% -0.0059 0.001 -4.809 < 0.001 *** -0.008 -0.003

K9Δ% 0.0012 0.000 2.495 0.013 * 0.000 0.002

HR9Δ% 0.0003 0.000 0.738 0.461 n.s. -0.001 0.001

K/BBΔ% -0.0016 0.000 -5.329 < 0.001 *** -0.002 -0.001

FIPΔ% -0.0069 0.001 -4.806 < 0.001 *** -0.010 -0.004

ISOΔ% 0.0039 0.000 14.235 < 0.001 *** 0.003 0.004

ELOΔ% -0.0112 0.004 -2.892 0.004 ** -0.019 -0.004

restΔ 0.0042 0.005 0.853 0.394 n.s. -0.005 0.014

Although many of these small features are statistically significant, we see that OBP is by

far the largest coefficient -- suggesting that the biggest determinant of a team winning is not the
fancy pitching, or even home run hitters that draw crows to the ballpark, but rather the ability
to, as Billy Beane says, “get on base” (Miller, 2011). We compare our top three models’
performance on the test dataset (2016-2019) versus a baseline where the home team wins:

Table 11: Final evaluation of model performance

 Accuracy Brier Score AUC

Elastic Net 61.77% 0.2278 0.6706

Random Forest 61.48% 0.2383 0.6657

XGBoost 61.19% 0.2300 0.6687

Naïve 53.16% 0.4684 --

Best Model Elastic Net Elastic Net Elastic Net

A. Cui 42

Our final model, the logistic regression with elastic net, outperforms a naïve predictor

(assuming the home team always wins, accuracy 53.16%) by 8.61 raw percentage points, an
increase of 16.2% in predictive power on the holdout dataset. Moreover, computing our Brier
Skill Score (Roulston, 2007; DWD, n.d.) against the same naïve forecast’s 0.4684 gives a Brier
Skill Score of:

A positive BSS indicates an improvement in predictive power (DWD, n.d.). Examining

these statistics compared to the baseline further validate the strength of our model and viability
in predicting baseball games, and selection of the elastic net.

A. Cui 43

10. Discussion

10.1 Feature importance

For our logistic regression, feature analysis can be evaluated by looking at the strength
of the coefficients. Since all of our models are on a percentage basis, a greater coefficient
magnitude indicates generally greater impact on the impact of the game (although we do have
slight differences in the distribution of our statistics). For XGBoost, we use the “total_gain”
metric out of XGBoost’s five different options since we are looking for the aggregate prediction
importance of each feature (Abu-Rmileh, 2019).

Plotting feature importance for our three models, we find that OBP is consistently the
most important feature across all our models, with ISO typically coming in second, in line with
Stick (2005) who demonstrates the importance of OPS in predicting productivity indexes.

Notably, the pitching covariates show similar but generally weak feature importance,
which is sensible since they are aggregate numbers from the prior season; hence, this does not
contradict Stick (2005). We would expect that, if we used live rolling game scores
(FiveThirtyEight, 2015), we would see pitching increase in importance, since the information
from that feature would be more relevant to each game.

Figure 5: Feature importance for Elastic Net, XGBoost, and Random Forest Models

10.2 Lift

Another evaluation criterion we discussed was “lift” where a model should be better for
the most extreme forecasted predictions (Czakon, 2019). We look at “lift” two ways, first
through a standard lift chart, and second by bucketing our win probabilities and looking at the
conditional chance of being a true positive.

A. Cui 44

On the left, our logit elastic net model shows around a 1.5-2x greater predictive strength
for the most extreme 10-20% of games; on the right, all three models show positive correlation
in conditional probability of being true positives, which means we could also act similarly to
Pharr (2019) and count on our extreme values being more accurate in either direction.

Figure 6: Lift curves and conditional TP plot

10.3 Monthly predictions

Jia et al. (2013) discussed how the beginning of a season is harder to predict due to a
lack of data about a team’s true performance, which is why they broke up their predictions by
month. Similarly, for the 2019 season, we plotted predictive accuracy by month, omitting the
few games played in March since we are looking at percentages, and the other months have 20-
30 games apiece per team (March usually has no more than 1-3).

Figure 7: Monthly out-of-sample prediction accuracy (Jia et al., 2003)

A. Cui 45

This chart validates Jia et al. (2013)’s findings, as we do see a slight increase over time
from April to September, an increase from 60.57% in April to 63.52% accuracy in September.
However, while their models sat in the 53-57% range (hardly above the baseline) at the
beginning of the year, ours begins much stronger, hence the smaller apparent increase. This
suggests that our local covariates (7-day rolling periods) are a good fit, as they are more
predictive than the season-to-date cumulative measures that Jia et al. (2013) among others use -
- which fluctuate more at the beginning of the season.

10.4 Qualitative validation

Briefly, we can also qualitatively examine overlays of our model against prior team-
seasons, because we can model individual team-years. Although our model’s limitations
(discussed below) prevent it from being a perfect fit, and we are only modeling the chance of
winning, it stands that we could see some overlap between our probabilities of winning and the
actual win-loss scores from Baseball Reference.

In each comparison, the top chart (green/red) is the actual win-loss margin for the team
across the entire season, from Baseball Reference; the bottom (in team colors) is our model’s
forecasted probabilities of the team of interest winning, or P(y = 1). We have to perform a
slight adjustment of the model to calculate this, instead of just calculating home team win
probabilities. Also, the likelihoods are only meant to compute the home team’s expected
probability of winning; they are not meant to line up with the margins of victory.

Case Study 1: The 2017 New York Yankees

I am an avid Yankees fan, and loved watching a young team that was not expected to
make the playoffs nearly reach the World Series. Hence, this first comparison.

Figure 8a: 2017 New York Yankees W-L chart (Baseball Reference, n.d.-d)

Figure 8b: 2017 New York Yankees model-predicted win probabilities

A. Cui 46

The model overemphasizes streaks, but generally predicts batches of results well. Since it

does not rapidly adjust to game-to-game variations fast enough (likely due to the lack of
pitching data, or just inherent variance in baseball), hot streaks for the team led to
overestimated wins, with the model predicting 99 wins to New York’s 91 -- but almost exactly
nailing New York’s 100-win Pythagorean W-L projection (Baseball Reference, n.d.-d).

Case Study 2: The 2002 Oakland Athletics

The Oakland A’s in 2002 were the first poster child of sabermetrics, proving statistical

understanding of the game rather than home runs and financial muscle were key to winning.

Figure 9a: 2002 Oakland Athletics W-L chart (Baseball Reference, n.d.-c)

Figure 9b: 2002 Oakland Athletics model-predicted win probabilities

This comparison makes our model look stellar, primarily due to the Oakland A’s enjoyed

a 20+ game win. However, looking more closely we see that our model also tracks the team’s
early struggles, midseason recovery, and faltering towards the playoffs relatively well, giving low
probabilities of winning forecasted on the games around the all-star break (the star in the top
chart) where Oakland alternated wins and losses by slim margins. Our model projects 104 wins,
slightly more than Oakland’s actual 103 and its Pythagorean expectation of 96 wins (Baseball-
Reference, n.d.-b).

10.5 Limitations

There are several limitations in the analysis that we discuss in order of actionability.

A. Cui 47

1. We use an aggregate proxy from the pitcher’s prior year performance, rather than live-
tracking game scores (FiveThirtyEight, 2015)

As previously mentioned, we model a pitcher’s performance on some statistic Y in year t, game
observation i in the data as distributed 𝑌'4 ∼ 𝑁V𝑌45$WWWWWW, 0X. This simplified our analysis and allowed
us to use some level of pitcher information in the models but lacks the granularity we hoped to
get. Specifically, players have variance even across seasons, so a pitcher who has a considerably
better or worse campaign (either due to young pitchers improving their game, older pitchers
declining, injury, etc.) will be mis-modeled over the duration of the season. A rolling game score,
or other metrics of pitching performance like the ones we used for hitting data would be most
accurate in capturing variance and is far more likely to match professional teams’ models.

2. We track team aggregate performance and do not consider day-to-day lineup changes

It is certainly reasonable that a lineup change (for example, replacing a minor-league substitute
player with an MVP after a day of rest) would impact a team’s chances of winning, which we
could capture by including our player-level performance based on what players are in the lineup.
Research such as Bukiet et al. (1997) demonstrates potential impacts of batting order
optimality, although the complexity of their model makes it infeasible for us to integrate on a
game-by-game setting (notably, their batting orders are season-wide and backwards-looking,
which runs the risk of data contamination (Valero, 2016) if we take their findings and directly
apply them); however, our aggregate features as previously mentioned can reduce variance and
signal. Moreover, it is computationally infeasible to track rolling means across all games and
over 4.5M instances of player data, given the limited computational resources at our disposal.

3. Variance in the game of baseball

All sports include variance, which makes them fun to watch and coveted to be a part of. As a
result, there is a lot of variance due to in-game performance and events that impacts the win-
loss outcome of a game, which we cannot capture with prior statistics. In fact, inconsistencies
are why “consistent” players are regarded highly, and help explain why the models evaluated in
other studies (Jia et al., 2013; Valero, 2016; Koseler & Stephan, 2017; Elfrink & Bhulai, 2018;
Pharr 2019) all find predictive results for MLB games in the range of 55-61% predictive power
(up to 63-64%, if we consider Jia et al. (2013)’s monthly analysis), which suggests a natural
limit to how well baseball games can be forecasted in advance. In fact, our models appear to be
at the top end of these accuracy measures.

A. Cui 48

4. Other minor limitations to take note of, but of lesser severity:

● Use of randomized search (Bergstra & Bengio, 2012) in tuning rather than Bayesian SMBO,
which identifies the next hyperparameters to test based on the results of prior cross-
validation tests (Koehrsen, 2018; Bergstra et al., 2011); this may select better
hyperparameters choices

● Omission of fielding features such as errors, which are removed by FIP but impact the
results of the game. Valero (2016) and Pharr (2019) both include differences in errors
committed.

● statsmodels lacks functionality for elastic-net/regularized regression statistical test
summaries, so we have to assume that, given similar coefficients, the statistical significance
carriers over to our regularized model with shrunken weights. This is not fully rigorous.

Altogether, we have built a strong model that matches if not exceeds the top predictors found in
the literature through applying a novel idea of rolling statistics. Extensions of our model include
adding in these covariates, Bayesian models that adjust weights (similar to Yang and Swartz
(2014)) and game distributions as the season goes on, or machine learning analysis to
supplement our basic Elo model.

Furthermore, an interesting supplementary analysis could be to build a betting strategy and
back-test on the betting lines. This would be not for money, as much for seeing if we beat the
concept that Surowiecki calls the “wisdom of the crowd” (2004). For example, we could identify
at what confidence cutoffs would our model be able to out-predict Las Vegas spreads, and place
positive-EV bets even with the uneven betting lines (a game that has a heavy favorite, for
instance, might be less profitable to bet on because the comparative payout is small), as Tait
(2014) demonstrates with a Bayesian approach. Succeeding here would be interesting and
potentially profitable validation of our modeling approach and decisions.

A. Cui 49

Conclusion

We set out to understand the factors that influence Major League Baseball game
outcomes with a goal to build a predictive model for future games. Using data from over 45,000
games from the 2001-2019 seasons, we engineered detailed covariates for team abilities, such as
day-by-day rolling means of hitting performance, creating far stronger granularity than the
features seen in the literature. As a result, we achieved classification accuracies above 61%
above three models, including our elastic net logistic regression’s 61.77% on the 2016-2019
seasons, which exceeds the classification accuracies found by cited works in the literature:
Valero (2016), Elfrink & Bhulai (2018), Pharr (2019), Jia et al. (2013), and Soicher (2019).

In addition, we evaluated our model’s performance over each month in the 2019 season,
confirming the hypothesis by Soicher (2019) and empirical results from Jia et al. (2013), peaking
at 64-65% classification accuracy in the latter months of the 2019 season. Our model also
demonstrates good lift, where the top decile of predictions for both home wins and losses are
accurate around 2x as often as other lower-confidence predictions are. As a result, our model
could be leveraged in a baseball front office, at the Las Vegas books, or at home, streaming the
next MLB season, when it does resume post-COVID-19.

This analytical process was not perfect, between data wrangling issues and concerns
about omitted feature bias. Moreover, there is the broader looming question about from sports
analytics: how much variance in baseball game results can be actually captured by prior
statistics and features like ours?

Nonetheless, through this our work demonstrates the importance of feature engineering
in problems like this, where the aggregate statistics that are easy to pull off of a database -- and
used by other works -- explain less variance in results. This traces back to an underrated
computer science and problem-solving lesson I learned from Professor Steve Zdancewic on my
first day of CIS 120: define and understand the problem before you start. We defined our
classification problem, supplemented it with literature and background knowledge gained from
watching 100+ MLB games annually, before applying the relevant data science techniques to
extract our datasets. The machine learning models are still the pièce de résistance, but they are
only possible because of the deep understanding from the earlier sections of this paper, through
the ways of thinking and technical skills built up over four years at Penn.

Looking back, I am so grateful to have been given this opportunity by the University of
Pennsylvania and the School of Engineering and Applied Sciences to study here, opening
intellectual doors I did not know even existed back in 2016.

Thank you to everyone who has made this journey -- culminating with this thesis today
-- both possible, and invaluable.

A. Cui 50

Acknowledgements

This paper is the culmination of four years of study at Penn, and there are many people and
groups whose support has been invaluable to this process.

First and foremost, thank you to my thesis advisor, Dr. Shane Jensen, for your modeling ideas,
support, and eagerness to talk all things statistics and baseball. It has been an honor and
pleasure to work with you and learn from you this semester.

Thank you to the EAS 499 coordinators and team -- Dr. Max Mintz and Desirae Cesar -- for
your hard work behind the scenes to make this capstone project, and opportunity to apply my
academic knowledge to this field I am so passionate about, possible.

Thank you to my CIS 545 professors -- Dr. Zack Ives and Dr. Lyle Ungar -- for sparking my
interest in data science sophomore spring. Dr. Ives -- for giving me the chance to TA for CIS
545, a phenomenal learning experience that helped me fall in love with teaching while also
giving me confidence in my data science abilities. Dr. Ungar -- for your help in course advising,
suggesting Dr. Jensen as an advisor, and of course, the pizza during in advising sessions.

Thank you to the CIS department’s professors, department coordinators, and chairs, have
taught me, given me opportunities to learn and teach, and fascinated me with new concepts
across data science, internet and web programming, and computer systems.

Thank you to my friends and fellow classmates for inspiring me, supporting me in my tough
moments, and pushing me to become my best self here. It’s special relationships like these that
make it even more bittersweet to realize we are graduating.

Of course, thank you to my family -- Mom, Dad, and Claire -- for your constant support and
love. College has been a massive growing-up experience, but I would not have made it here
without you all being there, from my shocked sprint down the stairs when I got admitted, to
right now as I finish writing this last page under the same roof.

And finally, thank you to the University of Pennsylvania for an incredible four years in Philly.
Penn has been my dream school since I stepped foot on campus. Thank you for taking the
chance on me on March 31, 2016, and for filling these years with excitement, happiness, and
memories. I am to be leaving, but I am proud to be graduating as a Penn alumni.

A. Cui 51

Appendix

1. Glossary of MLB Terms/Statistics

This is a list of common MLB terms and their definitions. Events that are relevant to
pitchers/batters respectively can be identified through cross-matching with the glossary of
statistics below. We also define the following statistics that are used extensively in the paper.
These definitions are all written using our background knowledge of the sport, or formulas from
Baseball Reference (n.d.-e), MLB (n.d.), and Clark (2016) when applicable.

Table 12: Definitions of common MLB terms
Term Abb. Definition
Hits H A ball put in play where the runner reaches base and the inning

does not end.
At-bats AB A plate appearance that does not end in a walk or sacrifice hit.

Walks/base on
balls

BB When a pitcher throws four balls in an at-bat that are not
called strikes, the batter advances to first base.

Hit by pitch HBP A thrown pitch that hits the batter. The batter is granted first
base, but this is not counted as a walk.

Sacrifice fly/hit SF/SH A ball in play where the runner is called out, but a teammate
currently on base either advances or scores.

Home run HR A ball that exits the field of play, scoring the hitter as well as
all current baserunners.

Total bases TB A weighted sum of the bases a hitter reaches. 2B (double), 3B
(triple), and HR (home run) are worth 2, 3, and 4 respectively.

Earned run ER For pitchers, a run that scores not due to errors or a wild pitch;
the runner cannot have reached on an error or wild pitch either.

Innings pitched IP 3 * the number of outs a pitcher records.

Table 13: Formulas for common MLB statistics

Term Abb. Formula Measures

Batting average AVG H/AB Batter’s hitting ability

On-base percentage OBP

Batter’s ability to get on base, even
without hits

A. Cui 52

Slugging percentage SLG TB/AB Batter’s power and contact hitting

Isolated power ISO SLG – AVG Batter’s power only

Earned-run avg. ERA 9·ER/IP Pitcher’s ability to prevent runs

Fielding-
independent
pitching

FIP See 7.4 Pitcher’s ability “independent” of team
and chance. 𝐶,+6 calibrated so the league
average FIP = average ERA

Strikeout/home
run rate

K/9,
HR/9

9·K/IP, 9·HR/IP Pitcher’s strike out and home run rates

Walks/hits per
inning pitched

WHIP (HR + BB)/IP Pitcher’s ability to prevent baserunners
(lower = better)

Strikeout-walk ratio K/BB K/BB Pitcher’s strikeout to walk ratio.

2. Computation of 2002 Oakland A’s wins percentile in MLB history

Since MLB switched to a 162-game season in 1962, we found all team seasons with at least 100
wins (Baseball Almanac, n.d.) and subtracted the number of 103+ win-seasons before 1962 from
the total (53; 102 wins is ranked 54th) to get a total of 28 instances. From Lokker (2019)’s
article, we can compute the total number of 162-game team-seasons, excluding the strike-
shortened 1994* season:

Table 14: Computation of the “Moneyball” Oakland A’s percentile

First Last Years Event Teams Seasons

1962 1968 7 162-game season 20 140

1969 1976 8 Expansion to 24 teams 24 192

1977 1992 16 American League expands to 14 teams 26 416

1993 1997 4* National League expands to 14 teams 28 112

1998 2019 22 Expansion to 30 teams 30 660

Grand Total 1520

Number of seasons with 103 or less wins, |	𝑊 ≤ 103	|21 1504

Percentile, 𝑃(𝑊 ≤ 103) 98.15%

21 While there are 28 teams of 103 or more wins, percentiles are calculated as the proportion of occurrences “equal to
or lesser than” the given value, so we exclude the 12 teams who also won 103 games.

A. Cui 53

3. Transcript from Moneyball
(Zaillian & Sorkin, 47-51; Miller, 2011)

Context: Billy Beane (BILLY) and Peter Brand (PETER) are leading a meeting with the
Oakland Athletics’ scouts, looking to replace players on their roster. Brand has engineered
statistical models to forecast W-L records for the team; however, the old-school scouting staff is
skeptical. While the scene is dramatized, it illustrates the conflict between computational
modeling and intuition-based “knowledge of the game” that demands explanatory power in
order to accept the models. This excerpt is scripted as follows (Zaillian & Sorkin, 47-51):

“BILLY: ‘He can get on base.’
POLONI: ‘Alright, so he walks a lot.’
BILLY: ‘He gets on base a lot, Rocco. Do I care if it's a walk or a hit?’
PETER: ‘You do not.’
BILLY: ‘I do not.’
GRADY: ‘Billy, I got 37 free agents who are better than those guys.’
(...)
POLONI: ‘You’re not buying into any of this Bill James bullsh*t are ya?’
BILLY: ‘This is the new direction of the Oakland A’s.’”

(Zaillian & Sorkin, 47-51; Miller, 2011)

4. FiveThirtyEight’s ELO model for baseball
(FiveThirtyEight 2015)

According to FiveThirtyEight’s website, their model tracks each team’s underlying team Elo
team rating over time. For each game, FiveThirtyEight computes prior likelihoods of winning
by adding factors of home-field advantage (+24 points; baseline 1500), days of rest (+2.3 points
per day, max of three days), and a penalty for travel (𝑚𝑖𝑛(−4,−0.31 ∗ (𝑚𝑖𝑙𝑒𝑠	𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑)$/8)).
They also factor in starting pitcher ratings based on rolling game scores. All this computes a
“pregame team rating” that predicts the expected win/loss outcome and probabilities between
the two teams. After each game, the Elos are adjusted accordingly (FiveThirtyEight 2015).

The full model can be found on their website, cited in the Bibliography and linked here:
https://fivethirtyeight.com/features/how-our-mlb-predictions-work

A. Cui 54

5. Elo model for the Seattle Mariners’ 2001 season

This is an example of our Elo model validated across the 2001 Seattle Mariners season. We have
chosen this as the example since the Mariners set the all-time record with a 116-46 W-L, and we
should see significant changes in their Elo over the course of the season. Accordingly, their Elo
quickly spikes as high as 1600. This makes sense for a team that won over 70% of its games --
based on our Elo formula, a Elo of 1596 (the peak observed here around June) would have an
expected ~75.12% chance of beating a team with an Elo of 1500, and a 90.5% chance of beating
a team with an Elo of 1400.

Figure 10: Elo for the Seattle Mariners, 2001

Although a 90.5% chance may be high, we observe from our data that most teams’ worst Elo on
any given day between March 2001 and October 2019 is at lowest just below 1400; hence, a
peak-strength team in the modern era should be strong favorites against a team at its weakest
in two decades, should this matchup ever occur. Summary statistics for several teams’ Elos
across the 19 seasons are shown below.

Table 15: Elo summary statistics

 ANA ARI ATL BAL BOS CHA CHN CIN CLE COL

Mean 1517 1493 1508 1490 1525 1500 1497 1487 1506 1487

Min 1436 1393 1387 1390 1434 1423 1408 1406 1419 1422

Max 1596 1584 1592 1577 1601 1580 1595 1569 1614 1561

The team names here come from our game logs (Retrosheet, n.d.-c). Some of the abbreviations
are no longer used since the data goes back to 2000; particularly “ANA” which is now “LAA.”

A. Cui 55

6. Analysis and filtering of starting pitchers

From top to bottom in the graph, these are plotted as the number of pitchers in each year who
make 8, 10, 12, 15, 20, and 25 starts in a given season. The standard 5 starting pitchers per
team times 30 teams gives around 150 expected starting pitchers; due to injuries and roster
changes, we expect there may be slightly more in a given season, setting our filter to a minimum
of 12 starts per year for starting pitchers.

Figure 11: Number of pitchers (descending order) that made 8, 10, 12, 15, 20, and 25 starts per season

A. Cui 56

Bibliography

Notes and Disclaimers

All code was done in Python (www.python.org) using Jupyter notebooks (jupyter.org). The Git
repository can be found at https://github.com/andrew-cui/mlb-game-prediction. However, there
are several packages we used, some of which’s documentation we reference. They are, with
documentation cited below in our bibliography: pandas, numpy, matplotlib, scikit-learn, scikit-
plot, statsmodels, xgboost. Our datasets came from Retrosheet game logs/event files
(Retrosheet, n.d.-c; Retrosheet, n.d.-d) and Sean Lahman’s database (Lahman, n.d.).

Bibliography

Abu-Rmileh, A. (2019, February 8). The Multiple faces of ‘Feature importance’ in XGBoost.

Towards Data Science. https://towardsdatascience.com/be-careful-when-interpreting-
your-features-importance-in-xgboost-6e16132588e7

Ajilore, O., & Hendrickson, J. (2007). The Impact of the Luxury Tax on Competitive Balance
in Major League Baseball. Northern American Association of Sports Economists, 7(27),
1-13.

Alzubi, O., Alzubi, J., Tedmori, S., Rshaideh, H., & Almomani, O. (2018). Consensus-Based
Combining Method for Classifier Ensembles. The International Arab Journal of
Information Technology, 15(1), 76-86.

Bailey, S. R., Loeppky, J., & Swartz, T. B. (2020). The Prediction of Batting Averages in Major
League Baseball. Stats, 3, 84-93.

Badenhausen, K. (2019, July 22). The World’s 50 Most Valuable Sports Teams 2019. Forbes.
https://www.forbes.com/sites/kurtbadenhausen/2019/07/22/the-worlds-50-most-
valuable-sports-teams-2019/#53f1f44c283d

Baseball Almanac. (n.d.). 100-Win Seasons in Major League Baseball. Baseball Almanac.
https://www.baseball-almanac.com/recbooks/100-win-seasons-major-league-
baseball.shtml

Baseball Reference. (n.d.-a). 2000 Anaheim Angels Batting Splits. Baseball Reference.
https://www.baseball-reference.com/teams/split.cgi?t=b&team=ANA&year=2000

Baseball Reference. (n.d.-b). 2002 Oakland Athletics Statistics. Baseball Reference.
https://www.baseball-reference.com/teams/OAK/2002.shtml

Baseball Reference. (n.d.-c). 2016 NL Team Statistics. Baseball Reference.
https://www.baseball-reference.com/leagues/NL/2016.shtml

Baseball Reference. (n.d.-d). 2017 New York Yankees Statistics. Baseball Reference.
https://www.baseball-reference.com/teams/NYY/2017.shtml

A. Cui 57

Baseball Reference. (n.d.-e). Baseball statistics. Baseball Reference. https://www.baseball-
reference.com/bullpen/Baseball_statistics

Baseball Reference. (n.d.-f). Tie - BR Bullpen. Baseball Reference. https://www.baseball-
reference.com/bullpen/Tie

Bergstra, J. S., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization.
Journal of Machine Learning Research 13, 281-305.

Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. (2011). Algorithms for hyper-parameter
optimization. In J. Shawe-Taylor, et al. (Eds.), Proceedings of the 25th International
Conference on Neural Information Processing Systems, NIPS ‘11 (pp. 2546-2554). Curran
Associates. https://dl.acm.org/doi/10.5555/2986459.2986743

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
Brown, D.T., Link, C.R., & Rubin, S. L. (2017). Moneyball After 10 Years: How Have Major

League Baseball Salaries Adjusted? Journal of Sports Economics, 18(8), 771-786.
Brownlee, J. (2016, September 16). Tune Learning Rate for Gradient Boosting with XGBoost in

Python. Machine Learning Mastery. https://machinelearningmastery.com/tune-learning-
rate-for-gradient-boosting-with-xgboost-in-python

Brownlee, J. (2019, October 28). A Gentle Introduction to Logistic Regression With Maximum
Likelihood Estimation. Machine Learning Mastery.
https://machinelearningmastery.com/logistic-regression-with-maximum-likelihood-
estimation

Bukiet, B., Harold, E. R., & Palacios, J. L. (1997). A Markov Chain Approach to Baseball.
Operations Research, 45(1), 14-23.

Bunker, R., & Susnjak, T. (2019). The Application of Machine Learning Techniques for
Predicting Results in Team Sport: A Review. Manuscript submitted for publication.

Cambridge Spark. (2017, October 9). Hyperparameter tuning in XGBoost. Cambridge Spark.
https://blog.cambridgespark.com/hyperparameter-tuning-in-xgboost-4ff9100a3b2f

Chauhan, N. S. (2019, October 3). Introduction to Artificial Neural Networks (ANN). Towards
Data Science. https://towardsdatascience.com/introduction-to-artificial-neural-networks-
ann-1aea15775ef9

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Krishnapuram,
B., Shah, M. (Eds./Chairs), Proceedings of the 22th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ‘16 (pp. 785-794).
Association for Computing Machinery. https://dl.acm.org/doi/10.1145/2939672.2939785

Clark, J. T. (2016). Regression Analysis of Success in Major League Baseball (Publication No.
101) [Senior thesis, University of South Carolina].
https://scholarcommons.sc.edu/senior_theses/101

Couronné, R., Probst, P., & Boulesteix, A-L. (2018). Random forest versus logistic regression: a
large-scale benchmark experiment. BMC Bioinformatics, 19(1), 270-284.

Czakon, Jakub. (2019, August 28). The ultimate guide to binary classification metrics. Towards
Data Science. https://towardsdatascience.com/the-ultimate-guide-to-binary-
classification-metrics-c25c3627dd0a#248c

A. Cui 58

Davenport, C., & Woolner, K. (1999, June 30). Revisiting the Pythagorean Theorem. Baseball
Prospectus. https://legacy.baseballprospectus.com/article_legacy.php?articleid=342

Druschel, H. (2016, February 22). A guide to the projection systems. SBNation: Beyond the Box
Score. https://www.beyondtheboxscore.com/2016/2/22/11079186/projections-marcel-
pecota-zips-steamer-explained-guide-math-is-fun

DWD. (n.d.). Skill measure: Brier Skill Score. Deutscher Wetterdienst (German Meterological
Service).
https://www.dwd.de/EN/ourservices/seasonals_forecasts/forecast_reliability.html

Elfrink, T., & Bhulai, S. (2018). Predicting the outcomes of MLB games with a machine
learning approach [Unpublished report]. Vrije Universiteit Amsterdam.
https://www.math.vu.nl/~sbhulai/papers/paper-elfrink.pdf

Elo, A. E. (1978). The Rating of Chessplayers, Past and Present. Arpo Publishers.
Fangraphs. (n.d.). Scoreboard >> Wednesday, October 30, 2019. Fangraphs.

https://www.fangraphs.com/scoreboard.aspx?date=2019-10-30
Ferri, C., Hernandez-Orallo, J., & Modroiu, R. (2009). An experimental comparison of

performance measures for classification. Pattern Recognition Letters, 30, 27-38.
FiveThirtyEight. (2015). How Our MLB Predictions Work. FiveThirtyEight. Retrieved April 1,

2020, from https://fivethirtyeight.com/methodology/how-our-mlb-predictions-work
Glickman, M. E., & Jones, A. C. (1999). Rating the chess rating system. Chance, 12, 21-28.
Good Judgement Open. (2019, February 14). Frequently Asked Questions (FAQ): How are my

forecasts scored for accuracy? Good Judgement Open. https://www.gjopen.com/faq
Gregorutti, B., Michel, B., & Saint-Pierre, P. (2013). Correlation and variable importance in

random forests. Statistics and Computing, 27(3), 659-678.
Haghighat, M., Rastegari, H., & Nourafza, N. (2013). A Review of Data Mining Techniques for

Result Prediction in Sports. Advances in Computer Science: an International Journal,
2(5.6), 7-12.

Hastie, T., Tibshirani, R., & Friedman, J. (2008). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (2nd ed.). Springer.

Heumann, J. (2016). An improvement to the baseball statistic “Pythagorean Wins.” Journal of
Sports Analytics, 2(1), 49-59.

Hunter, J., Dale, D., Firing, E., Droettboom, M., & the Matplotlib development team. (2020,
March 19). Matplotlib, Release 3.2.1. https://matplotlib.org/Matplotlib.pdf

Hvattum, L. M., & Arntzen, H. (2010). Using ELO ratings for match result prediction in
association football. International Journal of Forecasting, 26(3), 460-470.

Ives, Zachary G., Davidson, S. B., Ungar, L. H., Greenberg, C. (2018, September 10). CIS 545:
Big Data Analytics - Representing and Manipulating Data. [PowerPoint slides].
University of Pennsylvania.
https://drive.google.com/file/d/1w7d8tWuaB5RMoMqDAGX_Zk3KPbrfCOPr/view

Jain, A. (2016, March 1). Complete Guide to Parameter Tuning in XGBoost with codes in
Python. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2016/03/complete-
guide-parameter-tuning-xgboost-with-codes-python

A. Cui 59

James, G., Witten, D., Hastie, T., & Tibshirani, R.. (2013). An Introduction to Statistical
Learning - with Applications in R. Springer.

Jensen, S. T. (2020, January 16). STAT 442: Bayesian Statistics - Introduction to Bayesian
Statistics [Course lecture]. University of Pennsylvania.
https://canvas.upenn.edu/courses/1494969

Jia, R., Wong, C., & Zeng, D. (2013). Predicting the Major League Baseball Season
[Unpublished project report; CS 229]. Stanford University.

Koehrsen, W. (2018, June 24). A Conceptual Explanation of Bayesian Hyperparameter
Optimization for Machine Learning. Towards Data Science.
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-
hyperparameter-optimization-for-machine-learning-b8172278050f

Koseler, K., & Stephan, M. (2017). Machine Learning Applications in Baseball: A Systematic
Literature Review. Applied Artificial Intelligence, 31(9-10), 745-763.

Lahman, S. (n.d.). Download Lahman’s Baseball Database. Sean Lahman.
http://seanlahman.com/baseball-archive/statistics

Lahman, S. (2019, May 2). Package ‘Lahman.’ CRAN: The Comprehensive R Archive Network.
https://cran.r-project.org/web/packages/Lahman/Lahman.pdf

Lee, C., & Landgrebe, D. A. (1997). Decision Boundary Feature Extraction for Neural
Networks. IEEE Transactions on Neural Networks, 8(1), 75-83.

Li, J., Cheng, J., Shi, J., & Huang, F. (2012). Brief Introduction of Back Propagation (BP)
Neural Network Algorithm and Its Improvement. In D. Jin & S. Lin (Eds.), Advances in
Computer Science and Information Engineering (2nd ed., pp. 553-558). Springer.
https://doi.org/10.1007/978-3-642-30223-7_87

Lokker, B. (2020, April 6). History of MLB Expansion and Franchise Moves. HowTheyPlay.
https://howtheyplay.com/team-sports/major-league-baseball-expansion-and-franchise-
relocation.

Marcus, D. J. (2000). New table-tennis rating system. The Statistician, 50(2), 191-208.
McKinney, W., & the Pandas development team. (2020, March 18). pandas: power Python data

analysis toolkit, Release 1.0.3. https://pandas.pydata.org/docs/pandas.pdf
McWilliams, J. (2019, February 27). The A’s won’t shy away from the opener and neither will

the rest of baseball. The Athletic. https://theathletic.com/842534/2019/02/27/the-as-
wont-shy-away-from-the-opener-and-neither-will-the-rest-of-baseball.

Miller, B. (Director). (2011). Moneyball [Film]. Columbia Pictures.
Miller, S., & Rogers, J. (2019, May 21). Why PECOTA projections were so wrong about the

Cubs. ESPN. https://www.espn.com/mlb/story/_/id/26788792/why-pecota-projections-
were-wrong-cubs

MLB. (n.d.). Isolated Power (ISO). Major League Baseball.
http://m.mlb.com/glossary/advanced-stats/isolated-power

Moawad, A. (2018, February 1). Neural networks and back-propagation explained in a simple
way. Medium: DataThings Analytics. https://medium.com/datathings/neural-networks-
and-backpropagation-explained-in-a-simple-way-f540a3611f5e

A. Cui 60

Movieclips. [Movieclips]. (2019, July 28). Moneyball (2011) - The New Direction Scene (4/10)
[Video]. YouTube. https://www.youtube.com/watch?v=AKXKkeLQWac

Nakano, R. S. (2018, August 19). Scikit-plot Documentation.
https://readthedocs.org/projects/scikit-plot/downloads/pdf/stable

Natekin, A., & Knoll, A. (2013, December 4). Gradient boosting machines, a tutorial. Frontiers
in Neurobiotics. https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full

NumPy Reference, Release 1.17.0. (2019, July 26). https://docs.scipy.org/doc/numpy/numpy-
ref-1.17.0.pdf

Park, W. I., & Garcia, P. (1994). Aggregate versus Disaggregate Analysis: Corn and Soybean
Acreage Response in Illinois. Review of Agricultural Economics, 16(1), 17-26.

Pharr, R. D. (2019, August 3). Predicting MLB Game Outcomes with Machine Learning.
Towards Data Science. https://towardsdatascience.com/predicting-mlb-game-outcomes-
with-machine-learning-594eac9484e9

Retrosheet. (n.d.-a). The Event File. Retrosheet. https://www.retrosheet.org/eventfile.htm
Retrosheet. (n.d.-b). Game Logs Fields. Retrosheet.

https://www.retrosheet.org/gamelogs/glfields.txt
Retrosheet. (n.d.-c). Game Logs, Updated December 10, 2019. Retrosheet.

https://www.retrosheet.org/gamelogs/index.html
Retrosheet. (n.d.-d). Play-By-Play Data Files. Retrosheet.

https://www.retrosheet.org/game.htm
Roulston, M. S. (2007). Performance targets and the Brier score. Meteorological Applications,

14, 185-194.
Schiff, A. (2008). Henry Chadwick. Society for American Baseball Research.

https://sabr.org/bioproj/person/436e570c
Scikit-Learn User Guide, Release 0.22.2. (2020, March 4). https://scikit-

learn.org/stable/_downloads/scikit-learn-docs.pdf
Shah, T. (2017, December 6). About Train, Validation and Test Sets in Machine Learning.

Towards Data Science. https://towardsdatascience.com/train-validation-and-test-sets-
72cb40cba9e7

Sharma, A. (2018, November 3). Algorithms for hyperparameter optimisation in Python.
Towards Data Science. https://towardsdatascience.com/algorithms-for-hyperparameter-
optimisation-in-python-edda4bdb167

Sharma, N. (2020, April 1). Understanding the Mathematics Behind Decision Trees. Heartbeat
by Fritz AI. https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-
trees-22d86d55906

Slowinski, S. (2010, February 15). FIP. Fangraphs. https://library.fangraphs.com/pitching/fip
Smola, A., & Vishwanathan, S. V. N. (2008). Introduction to Machine Learning. Cambridge

University Press.
Soicher, P. (2019, May 12). Can you accurately predict MLB games based on home and away

records? Towards Data Science. https://towardsdatascience.com/can-you-accurately-
predict-mlb-games-based-on-home-and-away-records-8a9a919bad29

A. Cui 61

Statsmodels, v0.11.1. (2020) https://www.statsmodels.org/stable/index.html
Stick, J. D. (2005). A regression analysis of predictors on the productivity indices of Major

League Baseball: 1985-2003 (Publication No. 1) [Doctoral dissertation, University of
Nebraska]. https://digitalcommons.unl.edu/cehsdiss/1

Surowiecki, J. M. (2004). The Wisdom of Crowds. Doubleday.
Tait, J. R. (2014). Building a Predictive Model for Baseball Games (Publication No. 382)

[Master’s thesis, Minnesota State University]. https://cornerstone.lib.mnsu.edu/etds/382
Tolbert, B., & Trafalis, T. (2016). Predicting Major League Baseball Championship Winners

through Data Mining. Athens Journal of Sports, 3(4), 239-252.
Tylicki, D. (2011, November 21). The 50 Greatest Individual Player Seasons in Baseball

History. Bleacher Report. https://bleacherreport.com/articles/946387-the-50-greatest-
individual-player-seasons-in-baseball-history

UCI. (n.d.). Iris Data Set. UCI Machine Learning Repository; Center for Machine Learning and
Intelligent Systems. http://archive.ics.uci.edu/ml/datasets/iris

Valero, C. S. (2016). Predicting Win-Loss outcomes in MLB regular season games – A
comparative study using data mining methods. International Journal of Computer
Science in Sport, 15(2), 91-112.

van Wieringen, W. (n.d.). Lasso regression [PowerPoint slides]. VU University.
http://www.few.vu.nl/~wvanwie/Courses/HighdimensionalDataAnalysis/WNvanWiering
en_HDDA_Lecture56_LassoRegression_20182019.pdf

Vu, K., et al. (2019). The index lift in data mining has a close relationship with the association
measure relative risk in epidemiological studies. BMC Medical Informatics and Decision
Making, 19(112), 1-8.

Vuk, M., & Curk, T. (2006). ROC Curve, Lift Chart and Calibration Plot. Metodoloski zvezki,
3(1), 89-108.

XGBoost Python API Reference. (n.d.).
https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-
xgboost.sklearn

XGBoost, Release 1.1.0-SNAPSHOT. (2020, April 27).
https://buildmedia.readthedocs.org/media/pdf/xgboost/latest/xgboost.pdf

Yang, T. Y., & Swartz, T. (2014). A Two-Stage Bayesian Model for Predicting Winners in
Major League Baseball. Journal of Data Science, 2, 61-73.

Zaillian, S. & Sorkin, A. K. (2011). Moneyball. The Internet Movie Script Database.
https://www.imsdb.com/scripts/Moneyball.html

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society, 67(2): 301-320.

