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Abstract 
 
When two Major League Baseball (MLB) teams meet, what factors determine who will win? 
This apparently simple classification question, despite the gigabytes of detailed baseball data, 
has yet to be answered. Published public-domain work, applying models ranging from one-line 
Bayes classifiers to multi-layer neural nets, have been limited to classification accuracies of 55-
60%. In this paper, we tackle this problem through a mix of new feature engineering and 
machine learning modeling. Using granular game-level data from Retrosheet and Sean Lahman’s 
Baseball Database, we construct detailed game-by-game covariates for individual observations 
that we believe explain greater variance than the aggregate numbers used by existing literature. 
Our final model is a regularized logistic regression elastic net, with key features being percentage 
differences in on-base percentage (OBP), rest days, isolated power (ISO), and average 
baserunners allowed (WHIP) between our home and away teams.  
 
Trained on the 2001-2015 seasons and tested on over 9,700 games during the 2016-2019 seasons, 
our model achieves a classification accuracy of 61.77% and AUC of 0.6706, exceeding or 
matching the strongest findings in the existing literature, and stronger results peaking at 64-65% 
accuracy when evaluated monthly. Further refinements in game-level pitcher covariates, team 
statistics such as errors, and Bayesian hyperparameter optimization are likely to strengthen our 
overall predictive accuracy and model lift. With continued improvement, this model has 
applications for baseball team strategy, sports predictions, and personal fan interest. 
 
 
Keywords: sports analytics, baseball, machine learning, feature engineering, computer science 
 
 
Note: All code associated with this thesis has been uploaded to GitHub and has been solely done 
for the purposes of EAS 499, Senior Capstone Thesis, Spring 2020. The repository can be found 
at https://github.com/andrew-cui/mlb-game-prediction 
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1. Introduction and History 
 

Every year (at least between 1995 and 2019), 30 Major League Baseball teams each play 162 
games. Official game statistics have been kept in America since the mid-1800s, when Henry 
Chadwick developed systems for keeping records, modernizing the game towards its present-day 
form (Schiff, 2008). Player records evolved into statistics such as home runs, batting average 
and slugging percentage, which allowed fans and team managers to differentiate superior 
performance within the team of players. Even today, historically famous baseball achievements 
are interlocked with their quantitative measures: Babe Ruth’s 14-WAR 59-home run monster; 
Ted Williams being the last man to hit .400 (.406, specifically); Steve Carlton’s 30 complete 
games; Bob Gibson carrying an live-ball era low 1.12 season earned-run average (Tylicki, 2011).4  

The inherent variance in baseball games, such as the players on the field, game 
conditions, and momentum, make it challenging to forecast the results of individual games. 
However, the sports analytics world provides us with multiple approaches to forecast games. 
The most basic models use aggregate statistics to compute values such as Pythagorean expected 
W-L percentage (Heumann, 2016), evaluating a team over the course of a season. On the other 
hand, the most complex models (and likely the proprietary ones used by teams) can update win 
posterior forecasts based on singular events in the course of a game. For instance, consider 
Fangraphs’ win probability chart during Game 7 of the 2019 World Series, which evaluates win 
probability in greater detail or speed than the human brain can catch up with: 
 

 
Figure 1: 2019 World Series, Game 7, Win Probability Graph (Fangraphs, n.d.)5 

 
 
4 Seasons ranked in the article as follows: 1. Ruth (1942), 5. Gibson (1968), 17. Williams (1941), 19. Carlton (1972) 
5 Y-axis ranges from 0 (Washington Nationals win) to 100% (Houston Astros win). We see a bias in favor of the 
home-team Astros at the beginning of the game, which grows as they take the lead, but rapidly vanishes when the 
Nationals hit a go-ahead home run (swinging from 68.7% Astros win to 34%), and progressing similarly as the game’s, 
and Houston’s, time runs out. 
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Due to the quantity of widely available baseball data, we are curious to create a model 
that sits in the middle of these extremes: machine learning-based approaches that incorporate 
game-specific data (such as roster ability or pitching) but provide prior predictions of which 
team will win a game. 

In this paper, we seek to understand the game of baseball better through applying 
machine learning models, as the culmination of four years of study in computer science, 
engineering, and data science methodology. Through analyzing the existing literature about 
baseball prediction and machine learning models and using data from historical seasons (post-
2000), we seek to construct a binary classifier that can predict, using only data available before 
a game is played, which of the two teams is more likely to win. In addition to understanding the 
modeling approaches, we apply practical data wrangling and feature engineering skills to create 
game-level covariates for each observation, which allow us to identify team strengths, hopefully 
in turn explaining part of the variance in baseball game results. 
 
 
Note: we abbreviate many MLB statistics and terms in this paper. A full glossary is found in 
Appendix 1. 
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2. Literature Review 
  
We begin by understanding the body of literature available for baseball analytics and 
specifically prediction of baseball game results. In order of increasing statistical and 
computational complexity, we discuss, in the context of game result classification (win/loss): 
aggregate evaluations of team performance such as Pythagorean W-L expectation; machine 
learning (ML) approaches including logistic regression and generalized linear models, tree-based 
classifiers such as random forests, support vector machines (SVMs/SVCs) and gradient-boosting 
ensemble classifiers; Bayesian and Markov-Chain statistics models; and artificial neural nets 
(ANNs). Several of these methods can be applied to tracking in-game events as well, achieving 
instantaneous predictions. While we mention examples of these latter models, they are meant to 
highlight the machine-learning techniques rather than focus on the sports-analytics question at 
hand, since our goal is to understand these methodologies as we build a model to predict games.  
 
 
2.1 Aggregate predictions for a baseball season 
 

Baseball’s analytical revolution gained velocity and salience notably during the early 
2000s, when the 2002 Oakland Athletics used statistical models for on-base percentage and 
expected run-scoring to discover undervalued players, winning 103 games6 and qualifying for the 
playoffs with one of the lowest payrolls and least ability to sign top players (Brown et al., 2017). 
Since then, a spectrum of ways to predict baseball outcomes, with varying computational 
complexities, have emerged. On the basic end, we have backwards-looking forecasts based on 
aggregate team statistics. The most prominent is Bill James’s Pythagorean W-L expectation; 
arguing that successful teams tend to outscore opponents, this computes an expected win 
percent based on the ratio of run-scoring and prevention (Heumann, 2016) as follows:7 

 

This approach is intuitive to understand and compute and can be improved slightly 
through tuning the exponent hyperparameter, which through back-testing provides an RMSE-
minimizing adjusted exponent of 1.83 instead of 2 (Davenport & Woolner, 1999; Heumann, 
2016). More complicated analytical approaches include Davenport and Woolner (1999), who 

 
 
6 103 wins in a season is no small feat; since MLB moved to the modern 162-game season, only 28 teams out of 1520 
have won 103+ games, equivalent to a 98th percentile (Baseball Almanac, n.d.; Lokker, 2019). See Appendix 2. 
7 Note: many of the equations have been formatted externally in LaTeX  
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apply Poisson models to forecast win ratios, and Heumann (2016), who tests weighted pairwise 
Pythagorean W-Ls, factoring in the number of times two teams have played against each other. 
These refinements improve model flexibility, which means the model is able to adapt to a 
greater variety of potential function surfaces that map the input (runs scored and allowed) to 
the response (win-loss ratio), improving accuracy at a cost of interpretability (James et al., 
2013). However, the models provide only incremental RMSE benefits: with the exponent set to 
1.83, Heumann (2016) improves just 1.3% over James and 1.0% over Davenport and Woolner -- 
while these enhancements have solid theoretical approaches (from statistics, game theory, and 
baseball), the improvement in predictive accuracy is not meaningful enough to justify the slight 
loss of interpretability, which is why James’ simple formula remains relevant. 

Individual player forecasts are also used to project MLB seasons in advance, unlike the 
Pythagorean approach that requires existing data from the season. For instance, PECOTA8 is a 
nearest-neighbor based proprietary method that identifies similar player attributes from baseball 
history, forecasting future performance through a combination of the comparable players and 
the individual’s prior seasons (Koseler & Stephan, 2017; Druschel, 2016). Fangraphs’ Steamer 
and ZiPS methods are alternative regressions of past performance, league performance, and 
advanced statistics such as BABIP, which are intended to isolate the signal from a player’s own 
abilities in order to project their performance in the season (Druschel, 2016). However, while 
these projections have credibility -- Bailey et al. (2020) use PECOTA and batted-ball statistics 
to strengthen batting average predictions -- and are used in the industry widely, they still apply 
a Pythagorean approach to forecasting team results, which limits its usefulness for game-to-
game predictions and can misvalue teams before a season starts despite having predictions for 
each player on the roster (Miller & Rogers, 2019). 

The Pythagorean W-L is limited by the aggregated data (runs scored/allowed over 
multiple games combined) used in these metrics; the models lack the flexibility and parameters 
necessary to capture micro-level variations (in this case, individual games) that are important in 
further improving prediction accuracy, and as a result are mean-reverting by smoothing out 
variations in the underlying events/games (Park & Garcia, 1994). For instance, a team that 
wins many close games will be naturally mathematically overrated relative to their Pythagorean 
W-L, ignoring potential fundamental characteristics (such as good situational, or “clutch,” 
pitching/hitting that allows teams to gain the slight edge) and increasing prediction error. 
Nonetheless, these approaches are important as the underlying strategy that our more complex 
machine-learning approaches build up from and highlight the importance of explanatory power -
- particularly in communicating to fans and non-quantitative sports executives. 

 
 
8 “Player Empirical Comparison and Optimization Test Algorithm” 
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2.2 Game-level prediction strategies 
 

Machine learning techniques are more mathematically complex and able to fit variations 
in baseball game outcomes better. Baseball’s wealth of data makes the computational needs of 
ML models feasible, such as pitch-by-pitch data collected in games today allows for researchers 
to classify pitches thrown and forecast pitcher ERAs (Koseler & Stephan, 2017). Here, we want 
to predict the winner of games in advance. There are two ways to do this: first, by binary 
classification to identify the winner of a game based on features; second, regression-based 
analysis such as tracking the “performance” of a team over time and forecasting predictions, like 
Elo ratings (Koseler & Stephan 2017; Valero, 2016; Elo, 1978). The latter models, such as 
continuous responses like Elo, can be incorporated as independent variables as well.  

In this case, we are primarily interested in understanding which team wins a baseball 
game (ignoring result components like the final score), which makes this a binary classification 
problem that considers the impact of features that can explain variance in the result of games. 
We limit the discussion of literature primarily to understanding binary classification of baseball 
games and series below; however, there still exists a breadth of machine learning applications to 
this problem, between sources from academic literature as well by sports writers. We outline the 
prominent examples below. 

Valero (2016) compares four machine learning methods -- k-Nearest-Neighbors classifiers 
(KNN), support vector machines/classifiers (SVM/SVC), tree-based models (specifically, 
decision trees), and artificial neural networks (ANN) -- using prediction accuracy (proportion of 
accurately predicted games divided by the total games) to evaluate them, using aggregate 
features such as Pythagorean expectation, win percentage, OBP, and SLG percentage season-
wide differences between the teams. Valero’s features line up with research by Stick (2005) 
found through regression analysis that OPS and WHIP accounted for 26% of variance in all 
baseball productivity indexes alone; although Stick’s findings were not in the context of 
predicting games specifically, they demonstrate the importance of factors like OPS. In Valero’s 
(2016) analysis, the KNN model performed worst in game result classification, followed by 
pruned (to reduce overfitting) classification trees and artificial neural nets at 58% accuracy, and 
the SVM model had 59% accuracy.  

These analyses outperform naïve baselines such as a guaranteed “home-team advantage” 
-- where the home team is always predicted to win -- that scored a 53.01% accuracy in the 2016 
season (Elfrink & Bhulai, 2018). In another study, SVMs with 10-fold CV and varying kernel 
polynomial specifications (linear, quadratic, and cubic), predicted major league baseball playoff 
championship outcomes at similar accuracies of 57.1-67.9% (Tolbert & Trafalis, 2016). Tolbert 
and Trafalis (2016) likely selected SVMs due to their flexibility and predictive accuracy, as 
Valero (2016) found, while still maintaining some interpretability -- such as identifying which 
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attributes were most important in each model, even if without evaluations of how they 
influenced chances of winning. Despite the similarity in measures used, in comparing these 
models’ accuracies, we must note that while Valero (2016) evaluated outcomes of individual 
games, Tolbert and Trafalis (2016) were predicting winners in the playoffs -- where “winning” 
was defined as winning the majority of games in a best-of-7 series in all cases, and variance in 
individual games is smoothed out more over a series. 

Seeing the SVM and ANN have little difference, despite the latter’s complexity (Valero, 
2016), suggests an upper bound in the ability to predict baseball games from potentially two 
factors: first, quantitatively measured improvements in competitive balance through luxury 
taxes that reduce the separation between teams’ skills, making contests more likely to go either 
way (Ajilore & Hendrickson, 2007); and second, variance inherent to sporting events since they 
depend on players’ performances in a given day.  

Meanwhile, Elfrink and Bhulai (2018) add less flexible methods such generalized linear 
regression models and logistic regression in addition to a tree-based random forest and gradient 
boosting, but despite targeting the same classification problem, have similar, but poorer, model 
classification accuracies of 53.75% to 55.52% compared to Valero (2016)’s 55.98% to 58.92%.9 
Comparably, Pharr (2019) used gradient boosting methods through LightGBM and XGBoost to 
find results of 59.3% and 60.7% respectively, even though he only ran a 30-day back test, where 
his strongest predictions occurred when only considering consensus models (where all models 
agree). Like FiveThirtyEight (2015), he uses an Elo-esque covariate, team and pitcher rest, and 
pitcher statistics; however, he also adds match differences such as the spread of errors between 
the home and away team (Pharr, 2019).  

Jia et al. (2013) used adaptive boosting or AdaBoost, a similar boosting algorithm, in 
addition to logistic regressions and random forests, finding aggregate accuracies of around 56-
60%. Like Pharr (2019), they also include team-level covariates such as team RBIs, batting 
average, and ERA; however, they choose to include the team’s existing win percentage, similar 
to Valero (2016), whereas Pharr excludes it, and use aggregate season information instead of 
rolling statistics, which devalues “team momentum” (Jia et al., 2003). Interestingly, they chose 
to fit models over each month to test, arguing that baseball games are harder to forecast at the 
beginning of the season when there is less information about the team’s skill, finding average 
accuracies of 52.7-57.6% in April and May, but of 59.7-64.1% by August and September (Jia et 
al., 2003).  

 
 
9 Both Valero (2016) and Elfrink and Bhulai (2018) consider results from the question as a regression problem as well. 
However, if the result is to predict which a team will win rather than a continuous response (such as the score), I see 
it more appropriate to use the binary classification situation. 
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Gradient boosting methods and random forests can sacrifice explanatory for predictive 
power; as is discussed below in MODELS, logistic regressions allow for log-odds coefficients that 
relate observable characteristics (ex: home team; team ERA; ERA difference) to their impact on 
the forecasted probability of winning that specific game observation, while decision trees’ 
partitioning based on rules about the dataset characteristics (ex: ERA difference < 0.2) work 
like the way humans classify objects and events (James et al., 2013). Subsequently, these models 
are quantifiable and easier to explain to non-computer scientists, which is valuable when they 
need to be accepted for more than just quantitative measures.  

Anecdotally, consider managerial decisions, like for Oakland manager Billy Beane as 
depicted in Moneyball, who needed to win the faith of his scouts and team ownership in order to 
trade for new players (Miller, 2011); lacking interpretable models would dampen his confidence 
and persuasiveness, rendering the models eventually useless in practical context, even if they are 
theoretically sound and accurate. Although predictive power is incredibly important, we must 
recognize that baseball prediction models may be used in contexts that demand more than just 
numerical excellence. 

Bayesian statistics methods extend the basic conditional probability law of Bayes’ Rule 
and treat parameters as random variables from probability distributions, which demands 
computational intensity but allows the resulting models to reduce assumptions about the data 
while making direct probability statements about parameter intervals and future sample 
predictions (Jensen, 2020). Soicher (2019) uses a simple Bayes classifier based on home vs. 
away-team status, which achieved a 55% accuracy despite its lack of features and outperformed 
rudimentary machine learning approaches, particularly at the beginning of the season lesser 
prior data hurts ML algorithm accuracy, as Jia et al. (2003) show.  

Meanwhile, Yang and Swartz (2014) implement a hierarchical model comparing relative 
strength through comparing team records, batting averages and ERAs between opponents; their 
two-stage model accounts for greater variation in the data, computing season-long win-loss 
differences to within 2-3 raw percentage points for the majority of teams, but do not report 
individual game prediction accuracy, making it challenging to compare. Bukiet et al. (1997) 
apply Markov chain statistics to estimate conditional values of each offensive player to their 
team, which may be useful in a model that considers the impact of lineup order to game 
outcomes; however, they do not make this extension on their own.  

Across these approaches, we see consistent themes. First, almost all the models focus on 
game-level features, believing they can help explain variance in the game-to-game results. 
Second, the game-level predictions emphasize the use of prior data only, to avoid data 
contamination (Valero, 2016). Finally, most models come in under 65% accuracy, with a 
baseline around 50-53%, indicating potential limitations in capturing baseball game variance.  
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2.3 Consensus and averaging methods in ensemble models 
 

Several works (Elfrink & Bhulai, 2018; Valero, 2016; Pharr, 2019) use ensemble 
classification methods including boosted classifiers and random forests. Since ensembles use 
multiple individual classifiers, the eventual prediction from the model is often conducted by a 
majority vote (whichever label is predicted most often) by the individual classifiers (James et 
al., 2013).  

However, for observations that are less obviously classified into either label (in the 
context of Major League Baseball, games where two teams are of similar skill levels), majority 
vote may not be the ideal solution. Pharr (2019) found an increase from 59.9% to 61.1% in 
boosted regression model accuracy when applying consensus instead of averaging ensemble 
methods, which require all ensemble learners to agree on the prediction (for example, that the 
home team will win) in order to make a classification. In both bagging and boosting models, 
averaging or majority-voting methods can hurt classification accuracy (Alzubi et al., 2018), as 
Pharr observed. 

To remedy this, Alzubi et al. (2018) propose “consensus-based combining methods” 
(CCM) that iteratively adjusts each classifier’s weights based on other classifiers until they 
converge to a consensus decision, and demonstrate superior accuracy of up to 2-5% when tested 
on standard pattern recognition datasets, like the Iris flower dataset (UCI, n.d.). However, 
Pharr (2019) combats this by only acting and placing bets on games when his models show 
consensus with stronger prior probabilities of winning, which makes the 9% of cases without 
predictions less relevant and omits needing to integrate Alzubi et al. (2018)’s approach.  

For the purposes of our analysis, we are interested in understanding the entire set of 
game predictions across seasons, so the majority or averaging/majority classifications are less 
important. However, particularly in cases of potential sports bets (not the purpose of this paper, 
but a potential application for certain readers), mimicking Pharr (2019)’s use of consensus 
models may prove profitable, in line with considering model lift as we mention in Discussion 
later on.  
 
 
2.4 Literature summary 
 

In the prior section, we discuss examples of existing publications and their data science 
methodologies. To avoid making the assumption of prior knowledge about each of these models, 
but for brevity above, we include brief descriptions about the modeling approaches mentioned, 
with citations for machine learning and statistics textbooks that carry the mathematical 
derivations; while these are important to understanding the modeling approaches and 
conducting the analysis, the overview should be sufficient for comprehending this applied-science 
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paper. Afterwards, we aggregate information about the models, their strengths/weaknesses, and 
cited literature in “Comparison of analytical methods.” The models discussed are (in order): 
generalized linear and logistic models (GLM), K-Nearest Neighbors (KNN), tree-based models 
(and random forests), gradient boosting methods (XGBoost), SVMs, and neural nets (ANN). 

Several statistics and machine learning techniques from the field of sports analytics have 
been presented above but carry their own strengths and limitations. It is important to note the 
surprisingly limited literature in our problem of prior predictions for MLB games, similarly, 
noticed by Bunker and Susnjak (2019) who cite only Valero (2016) in a paper of key machine 
learning approaches in sports result predictions. Although online writers like Soicher (2019) and 
Pharr (2019) also document model examples, our research question demands further publicized 
study. It is important to note that many predictive strategies (ex: PECOTA, ZiPS, and any 
MLB-team-built models) will be proprietary for competitive advantage -- and are likely to be 
superior to the published works (Druschel, 2016).  

However, despite the limited scope, we compare the analytical methods used to forecast 
baseball results. Since each model differs in statistical theory, use case, and interpretation of 
results, we can compare them using several components. These evaluations are also based off of 
Hastie et al. (2008) and shown on the next page. We evaluate: 

 
● Flexibility: the degree to which a model can account for variation in the relationship 

between features and response variables within individual observations, where greater 
flexibility allows models to be predictive, at the risk of overfitting (James et al., 2013) 

 
● Complexity: considers both the statistical (theory) and computational (operational) 

difficulty of running such models (subjectively evaluated, since is no purely objective 
measure) 

 
● Interpretability (abb. “Interp.”): how easy it is to communicate the modeling, such as 

identifying coefficients, or even just key features used in the prediction, which make the 
model useful in baseball context.  
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Table 1: Comparison of machine learning techniques in the literature 

Interp. 

High 
 

High 
 

Low 
 

High 
 

Medium/ 
high; lower 
for random 
forests 
 

Medium; 
feature 
importance 
 

Low 
 

Medium 
 

Negligible: 
"black box" 
 

Complexity 

Minimal 
 

Low 
 

Variable; high 
dimensional 
data is costly 
 

Low 
 

Medium 
 

Medium 
 

High; nonlinear 
kernels  
 

High 
 

High;  back-
propagation 
needed to train 

Flexibility 

Low; aggregate 
data only 
 

Medium; if 
covariates are 
used 
 

Medium; 
higher K can 
overfit 
 

Medium 
 

Medium 

High; many 
weak learners 
 

High 
 

High 
 

Very high 
 

Applications in Baseball 

Computes an expected W-L% based on teams' run-
scoring and run-prevention abilities 
 

Tracks ratings as team skill levels that determine 
prior probabilities of winning a game; updates ratings 
based on the result and other team's rating 
 

Computes conditional probability of a win or loss 
based on Bayes' Rule relative to the K nearest other 
observations by Euclidean distance 

Computes a linear relationship between features to 
evaluate an output that can be a continuous response 
or a probability that can be classified into wins/losses 
 

Recursively partitions data into sections based on 
information gain, classifying each section; random 
forests consider bootstrap subsets of features at each 
split to reduce overfitting 
 

Combines a series of weakly predictive models, such 
as trees, by sequentially adjusting weights, improving 
the predictivity in aggregate. Ex: XGBoost  

Creates polynomial kernel decision boundaries in the 
hyperspace of games, classifying as wins or losses  
 

Models individual outcomes as random variables, uses 
joint/conditional distributions to forecast posterior 
and predictive results using Bayes' Rule and MCMC 
 

Mimics the human brain's decision process through 
sequential layers of "neurons" with varying edge 
weights. Weights are trained through complex back-
propagation for highest flexibility and accuracy 
 

Literature 

Davenport & Woolner, 1999; 
Heumann, 2016; PECOTA (in 
Druschel, 2016) 

Elo, 1978; Glickman & Jones, 
1999; FiveThirtyEight, 2015; 
Marcus, 2000; Hvattum & 
Arntzen, 2010 
 Valero, 2016; PECOTA (in 

Koseler & Stephan, 2017); 
ZiPS (in Druschel, 2016) 
 

Elfrink & Bhulai, 2018; Tait, 
2014; Jia, Wong & Zeng, 2013 
 

Valero, 2016; Elfrink & Bhulai, 
2018; Jia, Wong & Zeng, 2013 
 

Elfrink & Bhulai, 2018; Pharr, 
2019; Jia, Wong & Zeng, 2013 
 

Valero, 2016; Tolbert & 
Trafalis, 2016 
 

Tait, 2014; Yang & Swartz, 
2004; Soicher, 2019 
 

Valero, 2016 
 

Method 

Pythagorean 
expectation 
 

Elo ratings 
 

K-Nearest 
Neighbors 
 

Logistic regression 
(GLM) 
 

Decision trees and 
random forests 
 

Gradient boosting 
 

Support vector 
machines 
 

Bayesian models 
 

Artificial  
neural nets 
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3. Motivation and Relevance 
 
Baseball is a complicated sport and has a wealth of detailed game data. Moreover, “America’s 
pastime” is popular and remains lucrative, with MLB teams constituting seven of the most 
valuable sports teams worldwide (Badenhausen, 2019). Consequently, there are many positive 
implications of studying baseball game prediction, and sabermetrics, through applying data 
science and computer science techniques as this paper does. they include: 
 

1. Academic value in studying complex modeling questions: identifying and 
engineering the key components that can understand complicated, high-variance events 
such as sporting events is challenging but rewarding, as it contributes to our knowledge 
of data science applications. 
 

2. MLB long-term franchise management: a model that explains variance in game 
outcomes can be leveraged to selectively sign or draft players who show strong 
performance among certain statistical categories, providing better return for team 
managers and success for the franchise; this is the “Moneyball” strategy that popularized 
sabermetrics (Miller, 2011). 
 

3. MLB game-to-game strategy: baseball is constantly changing as teams look to 
increasingly analytical domains for a competitive edge. Identifying drivers of winning 
games can be used to change the way a team plays, such as the “opener” strategy re-
invented in the last two seasons (McWilliams, 2019). 
 

4. Sports betting: where legal, a model that can forecast results of games consistently 
better than average has potential to be profitable on Las Vegas sports gambling blocks, 
beating gambling spreads. Several papers, including Jia et al. (2013) and Pharr (2019) 
compare results to gambling outcomes; however, this is not a core goal of this thesis. 
 

5. Personal interest: just as teams are becoming more analytical, so too are fans. 
Understanding the dynamics of how a team can win is intrinsically valuable to fans, who 
love the game. It allows fans to appreciate nuances in baseball strategy (ex: certain 
player substitutions or pinch-hitting) that improve odds of winning, deepening their 
relationship and interest in the sport. This was the primary motivation for this paper, 
and for many works written about baseball analytics from the Literature Review. 
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4. Models 
 
4.1 Elo ratings with covariates 
 

Baseball games are zero-sum events, played until one team definitively wins, and the 
other loses; therefore, Elo ratings have been used to track teams’ relative strengths over time to 
build prior predictions for baseball game outcomes (FiveThirtyEight, 2015). Devised by Arpad 
Elo in 1978 to compare chess players, the Elo system has ratings that represent the comparable 
strengths for a given team or individual, which are updated due to the result of the match as 
follows, in this case for some team/individual A after playing a match against B (Elo, 1978; 
Glickman & Jones, 1999): 

 
With the variables defined as follows: 

 A’s prior rating 

 A’s updated rating after the match 

 Scaling constant; determines how significantly to weight match outcomes 

 Binary response, 1 if team A wins; 0 if team A loses (no ties in baseball) 

 Elo logistic expectation for the outcome of a game vs. B (rating 𝑅!), s.t.: 

 
The Elo update method and expectations are set formulas, but otherwise the formula is 

interpretable and flexible. First, 𝐸" parallels the form of the logit function we commonly see in 
logistic regressions (James et al., 2013; Couronné et al., 2018), and due to scales of 𝐸", 𝑆"for 
wins and losses (draws are impossible here), represents a probability of A winning the match; 
𝐸" ≈ 1 indicates greater likelihood based on the difference between A and B’s Elos.  

Second, although this uses the same or a smaller number of variables as Pythagorean 
expectation formulas, the base Elo model allows us to make statements about individual 
matches that can be aggregated into a summary season-based prediction, providing us with 
similar insights but greater granularity (Davenport & Woolner, 1999; Heumann, 2016). Third, 
Elo allows us to introduce covariates that influence individual match outcomes, which allows us 
to integrate machine learning analysis through covariates that adjust teams’ ratings; for 
instance, the best starting pitchers in the league will improve their team’s odds of victory 
(FiveThirtyEight, 2015). For example, linear regressions or tree models could compute covariate 
weights and boundaries at which Elo adjustments are made, influencing the prior Elos similar to 
FiveThirtyEight’s (2015) model, ideally improving accuracy (Valero, 2016).  
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Finally, Elo can be tracked over time, since it is a constantly updating mode, whereas a 
Pythagorean W-L system has to be reset every year (after all, there are no runs scored or 
against to begin with!),10 adding to the reasons why it has been applied to chess (its original 
purpose), table tennis and soccer as well (Marcus, 2000; Hvattum & Arntzen, 2010). 
 
 
4.2 GLM and Logistic Regression models 
 

Generalized linear models are some of the mathematically simplest machine learning 
approaches, based on linear-combination relationships between observations, feature coefficients, 
and a response variable. One of the most popular linear models for classification problems is the 
logistic regression, which relates observations 𝑋with feature covariates 𝛽to a response variable 
𝑌(in our analysis here a binary response variable using the logistic function, defined as (James 
et al., 2013): 

 
Logistic regression is popular because its variable coefficients can be translated into 

probabilities, where observation features and log-odds probabilities are directly correlated 
(James et al., 2013). Its simpler algebraic form, relative to other machine learning models, 
makes it convenient for any binary classification problem involving probabilities. For instance, 
Elfrink and Bhulai (2018) as well as Jia et al. (2013) both use logistic models to predict the 
result of MLB games.  

Typically, linear models are suspect to overfitting on their own since they often use 
optimization strategies such as ordinary least squares (OLS) to identify coefficients best-suited 
for the training data (Brownlee, 2019). However, both cross-validation (including scikit-learn’s 
LogisticRegressionCV package that we use in this paper) and regularization methods combat 
overfitting. Regularization methods either shrink the coefficient weights or remove certain 
features from consideration entirely, which reduce the risk over overfitting even at a slight cost 
to training dataset model accuracy (James et al., 2013). We use three of the most common 
regularization methods: 
 

 
 
10 In fact, FiveThirtyEight has used their model to do precisely that. As seen in this link, they have back-tested their 
Elo algorithm over the last 130 years, plotting every team’s day-to-day Elo to identify franchises’ peaks and relative 
strengths over time.  
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1. Lasso regression, known as a “L1” or linear penalty due to its exponent of 1 on the 
coefficients, which minimizes the equation’s residual sum of squares like OLS, but adds a 
penalty term to make its objective function as follows (James et al., 2013; van 
Wieringen, n.d.): 

 
Here, the first term is RSS, residual sum of squares, for the logit model; the penalty term 
has a tuning parameter 𝜆 for all k coefficients 𝛽# (van Wieringen, n.d.). 
 

2. Ridge regression, known as a “L2” or quadratic penalty due to an exponent of 2 on 
the coefficients, similarly behaving like Lasso but being well-fit, but will not shrink 
coefficients exactly to 0 unlike Lasso (James et al., 2013; Hastie et al., 2008): 

 
3. Elastic net, which combines the lasso and ridge regularizations to optimize the 

following objective function (Zou & Hastie, 2005) -- for simplicity, on the right hand side 
we have used RSS, 𝐿1(𝜆$, 𝛽), 𝐿2(𝜆%, 𝛽) to indicate the aforementioned regression residual 
sum of squares, and each of the penalty terms from above (van Wieringen, n.d.; James 
et al., 2013): 

 
 
4.3 K-Nearest Neighbor Classifiers (KNN)  
 

KNN is a simpler classification approach designed to mimic what the decision boundaries 
on a native Bayes classifier would be like (James et al., 2013). In context of our baseball 
prediction problem, a KNN algorithm would identify, for each given game 𝑥&, the 𝐾 “closest” 
(Euclidean distance in a multi-dimensional plane) other observations, and averages their 
response values (if the team won or not) to estimate a Bayesian conditional probability for 
𝑥&being a win or loss for the team, selecting whichever result had the higher conditional 
probability (Hastie et al., 2008). Its mathematical probability can be computed as, for a binary 
problem, we can view the chance of being a home-team win, 𝑃(𝑌 = 1), for some observation can 
be derived (James et al., 2013): 
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where 𝑦' are the response variables for each of the K-nearest neighbors, by Euclidean distance. 

 
However, since it takes in little prior information about the data, it is likely to overfit if 

the hyperparameter 𝐾 is too large, due to the flexibility of this model (James et al., 2013). 
Furthermore, they can be computationally intensive for high-dimensional datasets; it has to 
evaluate distances for all observations and KNN lacks a direct objective function to optimize 
such as that of our linear and logistic models (Smola & Vishwanathan, 2008). 
 
 
4.4 Decision Trees and Random Forests 
 

Tree-based models recursively linearly partition the space of observations based on 
conditions in the data (for example, ℎ𝑜𝑚𝑒𝑡𝑒𝑎𝑚	 = 	1	𝑣𝑠. 0; 	𝑡𝑒𝑎𝑚𝐴𝑉𝐺Δ > 	0.04011), evaluating 
different options via conditions like Gini index or entropy, eventually assigning a classification 
or regression value to each of the final partitions of observations (James et al., 2013).  

The Gini index is a measure of variance across our classes, here our binary options that 
the outcome variable can take on as shown below, where �̂�(,' indicates the proportion of our 
observations in each partition that have outcome value i -- simplified for our two-class win/loss 
model (James et al., 2013). Meanwhile, entropy measures information gain, which reduces the 
amount of future depths and splits needed to partition tree elements (Sharma, 2020). These two 
methods behave similarly in practice, where both Gini and entropy will be very low if a 
partition’s games are more homogeneous -- which makes sense when we have very low variance 
in that segment, and hence defining that partition does not help us define the overall tree much 
better (James et al., 2013). 

 

Trees have a unique advantage of being both flexible (since hyperparameters can be 
tuned to control how detailed the splits should be) and interpretable (since their classification 
methods are similar to how humans evaluate decisions or classify objects based on attributes) 

 
 
11 These are hypothetical examples. “teamAVGΔ” would be how much greater the predicted team in question’s 
batting average is than the opposing team; positive difference being better for winning odds, all else equal. 
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(Hastie et al., 2008). Unfortunately, they tend to be less stable and potentially less accurate on 
new data, because they make binary linear splits within the data (James et al., 2013). 
Techniques such as cross-validation or pruning must be used to carefully reduce overfitting, 
since in theory, a tree could recursively partition all elements to get perfect training dataset 
accuracy (Hastie et al., 2008; Sharman, 2020). 

Random forests, also called bootstrap random forests, are constructed through numerous 
decision trees, and build to improve accuracy while reducing overfitting, explaining their 
popularity (used by Elfrink and Bhulai (2018); Jia et al. (2013); Couronné et al., 2018, among 
others). At each split, each decision tree only evaluates a bootstrap-sample vector of predictors 
(typically a minority), which prevents trees from all using the same predictors; through this, 
random forest prediction error rates are empirically lower that trees, and the model is more 
robust to outliers in the data (Breiman, 2001; James et al., 2013).  

As with most ensemble methods, such as bagged trees (which are also a collection of 
trees, but evaluate all predictors when making splits), the prediction of the forest as a whole 
depends on the predictions of each individual tree, of which there may over 100, typically 
through a majority vote (James et al., 2013). However, since each of the components of a 
random forest is a classifier in itself, methods such as consensus-based combining (CCM) can 
vary classifier weights until there is an eventual convergence, further improving classification 
accuracy (Alzubi et al., 2018). 

Yet, one downside of random forests is explanatory power. Although the importance of 
features in random forests can be extracted (Gregorutti et al., 2013) -- and modern code 
packages include this ability -- the complex nature of random forests makes it more difficult to 
understand the decision mechanism for each classification. With many individual classifiers and 
different subsets of predictors in each case, although we can extract the most “important” 
features, it is not possible to understand a broader decision framework for classifying games in 
the way a linear model such as logistic regression, or the simpler but less stable decision tree 
provides. 

 
 

4.5 Support Vector Machines/Classifiers (SVM/SVC)  
 

SVMs are a non-linear extension of support vector classifiers (SVC) -- models that use 
hyperplanes that separate the observation space, creating a kernel to , while creating a “soft 
margin” of classification that allows errors  (James et al., 2013). Mathematically, through 
adding a slack variable 𝜉 in the optimization constraints, the underlying SVC models allow 
non-linearly separable data to be split by these hyperplanes through allowing for margin errors, 
or points within the classification margin range that will be intentionally misclassified (Smola & 
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Vishwanathan, 2008); by adding higher-order terms and polynomial kernels, a SVM is able to 
represent nonlinear classification boundaries that improve the model’s flexibility in aggregate 
(James et al., 2013), which helped Valero (2016) find optimal performance with SVMs. Despite 
taking longer to train, SVMs are good at combating overfitting, and have also been used in 
basketball sports prediction (Haghighat et al., 2013). 

However, the SVMs pay for the improvement in predictive power; the optimization 
increases sensitivity to scaling of inputs and reduces interpretability, as there are not direct 
evaluations of individual features’ impact on the classification outcome (Hastie et al., 2008), as 
opposed to tree or regression based models which are more advantageous for explaining the 
components behind the classification.  

 
 

4.6 Boosting models and XGBoost 
 

Gradient boosting is an ensemble modeling strategy that combines a series of weak 
learners in sequence; this differs from random forests, which considers many weak trees in 
aggregate and intentionally lowers correlation through samples of predictors at each split 
(Natekin & Knoll, 2013; Breiman, 2001). By iteratively using many small, weaker models, the 
boosted trees tend to perform better, especially since their learning rates and tree 
hyperparameters can all be tuned for increased cross-validation accuracy, such as with tuning 
methods like grid search and randomized search -- which we eventually use (James et al., 2013; 
Bergstra & Bengio, 2012; Bergstra et al., 2011). 

Specifically, we look at XGBoost for this analysis, which is faster yet accurate gradient 
boosting method for tree-based classifiers (Chen & Guestrin, 2016). XGBoost is popular among 
data science competitions due to its accuracy and implementation speed -- even though boosted 
methods tend to learn more slowly -- which makes it well-suited to large datasets and complex 
relationships between many features and outcome variables (Chen & Guestrin, 2016).  
 
 
4.7 Artificial Neural Nets (ANN) 
 

Much like SVMs, ANNs are powerful predictive models that sacrifice understandability 
for predictive accuracy. Using a collection of neurons that are designed to simulate the decision 
framework of a human brain, each ANN perceptron takes in multiple inputs (such as team 
batting average difference, starting pitcher ERAs, etc.), using a non-linear bias term and 
activation function (ex: ReLu, sigmoid) to activate certain neurons, and passing the relevant 
weights and outputs to further layers that eventually lead to the output, a classification of the 
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win or loss (Chauhan, 2019). To fit the model, neural networks use a technique called gradient 
descent (Hastie et al., 2008), which minimizes a loss function (error sum of squares between 
trained model output layer and actual classifications in this case) and iteratively do this from 
the output layers back through each layer of perceptrons, adjusting weights, in what is known 
as back-propagation (Li et al., 2012; Moawad, 2018).  

The accuracy to which neural nets can be tuned through this back-propagation 
algorithm is NNs have become popular even despite their computational requirements (often 
needing GPUs). However, the multi-layered mathematics behind these algorithms create “black 
boxes” of computation, which makes it difficult to determine the inputs considered and their 
relative importance in determining the final classification; comparatively limited progress has 
been made to understand feature and information extraction, such as by Lee and Landgrebe 
(1997). We discuss ANNs in this section since they are a relevant classification model; however, 
since our goal is to have an interpretable model, we refrain from fitting one because it is harder 
to extract qualitative meaning from neural networks. 
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5. Methodology 
 
5.1 Problem definition 
 

Our goal is to make prior forecasts of win-loss results in MLB games. Since we are only 
interested in the win-loss result, rather than the score, this becomes a binary classification 
problem (Valero, 2016; Elfrink & Bhulai, 2018). Most MLB games are zero-sum because games 
are extended until one team wins,12 and each game always has a home/away team, so we define 
our binary y-variable (named “outcome”) similarly to Pharr (2019): 

 
For our model, we will use team and player stats as features, such as rolling batting 

averages, which we believe will explain greater variance in computing the probability of being 
classified as a win or not for the home team (most models we explore allow for the latter). For 
this, we do have to assume that win determinants in baseball have not changed meaningfully 
over the period we are building our model on; namely, that the relationship between 
observations/covariates and outcome response is stationary.  

This is not realistic over the course of baseball history. For instance, starting pitchers’ 
average innings per start mattered far more in the 1960s, when complete games were frequent, 
than now, where the game’s later innings are dominated by relief pitchers (S. T. Jensen, 
personal communication, February 3, 2020). As a result, we restrict our data to observations 
post-2000, which allows us to train and test on datasets from similar data-generating 
distributions of baseball play -- allowing us to be more accurate and make realistic predictions.13 
 
 
5.2 Software stack 
 

We used Python and Jupyter Notebook to compute the majority of this analysis. 
Primary packages used include pandas (the Python data analysis library), numpy (matrix 

 
 
12 In fact, after a 2007 rule change, ties can only occur at the end of the season if the game does not impact the 
postseason; there has only been one tie since, on September 29, 2016, when the Chicago Cubs (8 games ahead of any 
other team) drew against the Pittsburgh Pirates (9 games short of playoff qualification), where the outcome did not 
impact season standings (Baseball Reference, n.d.-c; Baseball Reference, n.d.-f). 
13 Note: recent changes like “openers” can impact this game, such as by devaluing starting pitchers (McWilliams, 
2019). However, we ignore this because it is challenging to forecast in advance. 
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computation), matplotlib.pyplot (used for visualizations), xgboost (Extreme Gradient Boosting), 
scikit-learn (machine learning), scikit-plot (model visualization), statsmodels (statistical 
modeling and tests). Citation for their documentations are found in the Bibliography; we cite 
each package’s documentation and reference the functions/models used with the package name. 
 
 
5.3 Reducing overfitting: train/test splits and cross-validation 
 

One key problem in machine learning is overfitting. This is also referred to in context of 
the bias-variance tradeoff: the more attuned our model is to characteristics of the training 
dataset, the lower our bias (difference in error), but similarly the greater our variance on fitting 
unseen datasets -- leading to higher error rates and “overfitting” (James et al., 2013). We 
simulate this in machine learning modeling through the use of training and testing datasets, 
where we only fit the model on the “training” portion of the dataset, and then see its 
performance on the remaining “test” dataset, which should confirm our models do not overfit. 
Standard training and testing splits randomly assign observations to either the training or 
testing data at common ratios of 80/20 or 75/25 (Shah, 2017). 

Yet, this standard approach does not work as well for our classification problem. As we 
also discuss in Analysis, we want to avoid data contamination (Valero, 2016) and only train 
our model on both features/observations that it would have access to in advance of predicting a 
given game. This is stricter than just demanding independent samples. The rationale: if we used 
a standard training and testing data split, we could have games in the training set that are 
played before games in the testing set. Since we are using features that are customized to each 
day, this independent testing and training split would be statistically appropriate; however, this 
does not emulate how we could train models in practice, making it less valid (S. T. Jensen, 
personal communication, April 22, 2020). As a result, we train on the 2001-2015 seasons, and 
use the 2016-2019 datasets as hold-outs individually.  

Cross-validation strategies help combat overfitting in the training process, where the 
model is evaluated on different samples of the training dataset to estimate an out-of-sample 
error for unseen data; low differences/biases between cross-validation and training dataset error, 
as well as low cross-validation accuracy variances, suggest lesser overfitting (Hastie et al., 2008). 
In this paper, we use k-fold cross validation to do this, where the training dataset is partitioned 
k ways, and for each “fold,” our model trains on the remaining k - 1 partitions, evaluating that 
fold’s cross-validation error as the testing error on the held out partition (Hastie et al., 2008). 
This gives us estimates of prediction error through the mean and variance of the fold estimates 
(James et al., 2013): 
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We use 5-fold cross validation, scikit-learn’s default CV setting for many algorithms. In 

fact, cross validation for the bulk of our models is performed automatically by our Python 
modeling packages, where models like LogisticRegressionCV or RandomForestClassifier 
automatically cross-validate parameters using a specified number of folds. Through this, we 
minimize our overfitting and improve eventual performance on our holdout data for evaluation. 
 
 
5.4 Analysis roadmap; Code and GitHub repository 
 

Table 2: Data science approach  

Modeling Step Relevant Thesis Section 

1. Define the problem Methodology 

2. Identify models and testing metrics that will be used 
to compare them 

Models; Model Evaluation 

3. Acquire datasets and perform data cleaning Preprocessing: Data Cleaning and 
Feature Engineering 

4. Perform feature engineering and split data for test 
and training sets  

Preprocessing: Data Cleaning and 
Feature Engineering 

5. Train models on training datasets and tune 
hyperparameters to minimize cross-validation 
overfitting 

Analysis 

6. Evaluate models based on the testing metrics and 
select one or several best models to use 

Results 

7. Quantitatively and qualitatively interpret the model’s 
features in context of the analytical problem 

Discussion 

  
The Python notebooks, some copies (when space permitting) of data files, Python scripts, and 
some charts’ raw image files are included on a public GitHub repository under my name, 
username @andrew-cui. This code and associated work were done solely for the purposes of EAS 
499, Senior Capstone Thesis, Spring 2020. 
 
The link is here: https://github.com/andrew-cui/mlb-game-prediction 
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6. Model Evaluation 
 
Machine learning is valuable for its ability to evaluate future observations, after “learning” the 
patterns in existing data, which is why we use hold-out and validation datasets to combat 
overfitting. However, since we have many variables of features, models, and patterns in the 
hold-out datasets, we must consider multiple methods to evaluate our classifier, where our best 
model should perform well across all of these metrics. 
 
 
6.1 Prediction/Classification Accuracy 
 

The most frequently used evaluation criteria, found in every single MLB game prediction 
paper or article in the literature review, is classification accuracy, defined as (Ferri et al., 2009): 

 
This computes the rate of correctly predicted baseball games, both home team wins and 

losses. Due to its simple computation and clear meaning, prediction accuracy is used widely by 
cross-validation techniques, which compare accuracy across each validation set to minimize bias 
and variance relative to the training data accuracy (Hastie et al., 2008). 

Since we are looking at the 2016-2019 seasons, which are individual entities, it makes 
most sense to compute prediction accuracy over each season individually. Although we do not 
expect drastic differences between seasons, this parallels our use of such a model in practice, and 
also gives us more data points to consider. In addition, both Soicher (2019) and Jia et al. (2013) 
describe time-dependence of game predictive accuracy, since earlier games with less data may be 
less predictive of a team’s true quality. So, we also will evaluate our model on a monthly scale 
(only 1-2 seasons) to compare its results to Jia et al. (2013) as well as validate their findings. 
 
 
6.2 Brier score for weighted MCE 

 
We want to reduce severity of inaccuracy. To do this, we use Brier scoring, which for 

each estimate, computes squared deviation from the outcome (Czakon, 2019; Roulston, 2007): 

 



A. Cui 26 
 

Brier scoring has been used by prediction engines such as the Good Judgement Open 
(Good Judgement Open, 2019). Smaller Brier scores are good, because they indicate that 
inaccurate evaluations were less severe (for example, a P(outcome = 1) probability of 0.56 is 
better than a probability of 0.95 if the home team actually lost, since the lower probability 
represented a lower prediction confidence). We can compare Brier scores directly, or evaluate 
them relative to a baseline (in our case, a model where the home team wins every game; a naïve 
classifier), using a Brier Skill Score (Roulston, 2007; DWD, n.d.): 

 
In this case, a positive Brier skill score close to 1 indicates a much lower Brier score for 

our model than the baseline, which would suggest our model is stronger (Roulston, 2007). 
 
 
6.3 ROC Curve and AUC 
 

Another popular metric for evaluating classification model quality is the ROC curve, or 
receiver operating characteristic -- which plots true positives (games where our model predicts 
the home team wins, which it does) against false positives (games where we predict the home 
team wins, but it loses) across different probability classification thresholds (Vuk & Curk, 2006). 
Note that in our modeling, we still use the standard 0.5 classification rule, since we are 
indifferent to wins and losses.14 

The quantitative component of ROC is known as AUC, or “area under the curve,” a 
metric that can be used to compare ROC curves of different models (James et al., 2013). We 
compare the ROC of our models to each other as well as a reference diagonal line with AUC = 
0.5; the farther our model’s ROC curve bows away from this reference line, and correspondingly 
the higher our AUC is, the better fit this model is for the data (James et al., 2013l; Vuk & 
Curk, 2016). 
 
 
6.4 Lift 
 

Elfrink and Bhulai (2018) highlight the value of having higher-confidence predictions be 
more likely to be accurately forecasted (such as probability that it is a win for the team); while 
they propose it in the context of betting, they do not explore this metric extensively. Inspired 

 
 
14 See Analysis. 
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by their discussion, we will examine events with a higher response probability (greater prior 
likelihood of a team winning) to see if they are indeed more likely to be accurately classified, 
known as the “lift” of the model (Vu et al., 2019; Vuk & Curk, 2006). 

For games labeled as a high probability of a win, lift measures the ratio of actual wins. 
Ideally, a classification model would be more accurate for these high-likelihood events (Soicher, 
2019), being up to several times better at classifying the top percentage of observations for a 
given outcome (Czakon, 2019). While some games in an MLB season will be very close and 
challenging to forecast in advance, being able to identify certain higher-probability outcomes 
improves the usefulness of our model even if we are capped at 55-60% accuracy due to improved 
competitive balance in the sport (Ajilore & Hendrickson, 2007) and game-idiosyncratic variance; 
a model with strong lift would be useful for betting on baseball games, making plays only on 
games forecasted as high-likelihood wins to maximize returns (Elfrink & Bhulai, 2018). 
 
 
6.5 Summary 
 
Through considering these metrics and others discussed in statistics and computer science 
literature, we use the following order of evaluating our models. We include qualitative 
consideration as discussed in our Literature Review 
 

1. Classification accuracy scoring on our holdout “test” dataset, from 2016-2019, and 
monthly measures 

2. Brier scoring to penalize models with lower lift (greater misclassification severity) 
3. ROC curves of false positive vs. true positive classification rates, and AUC measures 
4. Interpretability of model as a tie-breaker, since we want to understand the 

determinants of a baseball game, in addition to gaining prediction quality 
 
The open-ended nature of this final characteristic gives us strong flexibility in how we choose to 
apply it. For instance, comparing models that have different measures of feature importance 
(regressions and direct coefficients on one hand; neural nets with little information on the other) 
can be useful. In addition, running our model over specific team-seasons or years would let us 
compare our forecasts to truth. Finally, we could use the model for individual games, bringing in 
personal knowledge about the sport to judge the sensibility of our predictions.   
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7. Preprocessing: data cleaning and feature engineering 
 
7.1 Data acquisition 
 

Our primary dataset -- including game logs and in-game events -- comes from 
Retrosheet’s baseball database and includes all events from 2000 to 2019, inclusive, (Retrosheet, 
n.d.-c; Retrosheet, n.d.-d). Since each of 30 teams plays 162 games, and each game has two 
teams (home and away), this is a total of 20	𝑠𝑒𝑎𝑠𝑜𝑛𝑠	 ∗ 81	ℎ𝑜𝑚𝑒	𝑔𝑎𝑚𝑒𝑠/𝑡𝑒𝑎𝑚	 ∗ 	30	𝑡𝑒𝑎𝑚𝑠	 =
	48,600games of data, at both game-level (game results) and event-level (individual hitting and 
pitching at-bats/outcomes) granularity.  

Our secondary dataset comes from Sean Lahman’s15 baseball database (Lahman n.d.), 
specifically using his People and Pitching CSV datasets to compute covariates for our pitchers. 
The preprocessed datasets had a combined size of 291.9 MB. Although these datasets originally 
come with many features, a large portion of our work here involves data cleaning and feature 
engineering. As a result, we withhold more detailed descriptions of the columns until after this 
portion has been completed. 
 
 
7.2 Data cleaning: game logs 
 

The game log data (Retrosheet, n.d.-c) provides metadata (Retrosheet, n.d.-b) about the 
date, teams, result, and information about data quality. We preprocessed it as follows: 
 

● Removed games that did not finish on the same day they started, since this is 
challenging to model, and it is a small proportion of the dataset16 

● Combined records for teams that had name-changes (ex: the Florida Marlins and Miami 
Marlins), to leave us with 30 teams in total 

● Created our response variable “outcome”: 1 if home team wins; 0 if away wins 
 

We are left with 48,556 games across 20 seasons, with 26 columns in game date, team 
names, starting pitchers, starting lineups, and our response variable. Our response variable 
mean was 53.87%, corresponding to the overall percentage of games won by the home team. 

 
 
15 Coincidentally, I discovered that Sean Lahman is an active reporter in my hometown of Rochester, NY. 
16 Official baseball scoring has these games played later but retroactively updated in the standings/statistics; however, 
since games might be played months later, the actual team on the field often differs, hence making it challenging for 
us to model. As less than 3/4 of a percent (32/48600) of the data, it is a reasonable omission. 
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7.3 Data cleaning: team/game-level data 
 

We are interested in using team-level performance covariates as observed in the 
literature, where performance gaps between teams such as home-run differences should provide 
signals for win-loss outcomes (Valero, 2016; Pharr, 2019; Yang & Swartz, 2014). Using 
Retrosheet event files and metadata (Retrosheet n.d.-a; Retrosheet n.d.-d), we scraped each 
relevant at-bat and its corresponding statistical outcomes (since there is no native tabular 
format, necessitating manual data wrangling) across all seasons from 2000 to 2019. 

We tracked at-bats, hits, total bases, walks, home runs, runs, and sacrifice flies at a player-
game-level, so that we can compute rolling means for team performance such as AVG, OBP, 
and SLG. Similar to Valero (2016), we omit information about the actual game outcomes, such 
as the number of outs, home and away runs scored, game protest, or time of game, since they 
would contaminate the data we are modeling. Out of the remaining features though, since 
Retrosheet’s comma-delimited text files include many edge cases, despite counting for stolen 
bases, sacrifice hits, and wild pitches, we miss the following scenarios that impact the aggregate 
statistics counted: 
 

● Balks 
● Double-plays that lead to a run scoring (coded differently by Retrosheet) 
● Errors by the fielding team that lead to runs scoring (such as errant throws on a pickoff 

attempt) 
 

In aggregate, our scraper performs reasonably accurately, extracting nearly 4.5M rows from 
the CSV structure across 600 files. For a large-scale, “big-data” wrangling problem, with a 
complicated text-encoding, is non-tabular, and physically large, these error rates are reasonably 
low (Ives et al., 2018), at less than 1-2% differences for the 2000 Los Angeles Angels’ aggregate 
statistics (Baseball Reference n.d.-a) for instance: 

 

Table 3: Evaluating data cleaning quality (ex: 2000 Los Angeles Angels) 

 AB RS H HR TB BB SF 

Cleaned Data 2767 447 797 130 1364 339 23 

Actual 2742 447 788 130 1346 339 23 

% Difference 0.91% 0 1.14% 0 1.34% 0 0 

 
We also omit doubleheader games, since our eventual modeling iterates over dates, 

which becomes problematic to update information for if we have multiple entries on the same 
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date; however, this affects only 452 (~0.01%) entries in the dataset. Though tracking player-
level rolling averages is most detailed -- and we have the foreign keys to do so in the tables -- it 
is computationally impractical. This is a limitation of our analysis, as instead, we aggregate by 
day and team to compute ~20,000 rows for each team’s performances.  
 
 
7.4 Data cleaning: pitching-level data 
 

Retrosheet’s event file dataset (Retrosheet, n.d.-c) includes event-level information that 
can be used to identify a game’s starting pitchers and their statistics for the game; however, the 
metadata format (Retrosheet, n.d.-b) requires tabulating over each dataset while tracking the 
active pitchers to a 𝑂(𝑛%)complexity in addition to being algorithmically challenging to set up, 
which makes tracking game scores (FiveThirtyEight, 2015) harder to do even though they 
directly evaluate starting pitcher performance. Instead, we use a proxy for pitcher data, 
assuming their performance matches the prior season’s average performance. For instance, for 
some statistic Y in year t, game observation i in the data, our prior estimate for the pitcher’s 
performance is: 

 

Lahman’s database (Lahman n.d.) includes pitcher aggregate statistics over each season, 
which we match to our Retrosheet database using the foreign key retroID (Lahm 2019). We 
select starters as pitchers that make more than 12 starts in a given season.17 We kept summary 
statistics like ERA and WHIP (Stick, 2005), computed measures such as K/BB, K/9, and BAA, 
and added a feature for FIP (Valero, 2016), or Fielding-Independent Pitching.  

Sabermetricians created FIP to evaluate MLB pitcher “quality,” all else equal to 
teammates' defensive performance and random chance, arguing that a pitcher with ERA in 
excess of FIP may be “unlucky” and their ERA is expected to improve in time (Slowinski, 
2010). We normalize FIP so each year’s average is equal to the league ERA (Slowinski, 2010): 

 
 
 

 
 
17 We compute the number of pitchers who make a given number of starts per year; finding a cutoff that leads to 
around 30 * 5 = 140-160 starting pitchers, since, conventionally, a team has five starting pitchers in its rotation. A 
graph can be found in the Appendix 6. 
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7.5 ELO model 
 

Our first feature was inspired by Elo models (Elo 1978; Glickman & Jones 1999) such as 
FiveThirtyEight’s baseball predictor (2015), which track a team’s underlying “quality rating” 
based on wins and losses against opponents, where the ratings create their own, albeit limited, 
forecasts of probabilities of future matches. FiveThirtyEight’s model is shown in Appendix 4. 

Elo models are fantastic for understanding performance over time but were built to 
compare chess players when their primary statistics were wins and losses (Elo 1978) rather than 
the detailed data available in MLB predictions -- in fact, FiveThirtyEight’s model includes very 
few features. This is a binary classification, so instead of Elo being used to determine the 
probabilities themselves, we instead use it to account for “momentum,” hoping to capture some 
variance in pitching, relief pitchers, or streaks of good play that other covariates do not. 

We start all Elos at 1500 (FiveThirtyEight, 2015) in 2000, and track over time, with 
hyperparameters tuned to reduce variance in teams as the season goes on. For future years, we 
start the Elo on the prior year’s final Elo rating. Since our data is sorted by date and the teams 
in each game are mutually exclusive, we can run an 𝑂(𝑛) Elo algorithm. Our basic model, over 
2001-2019, has an accuracy of 0.5442 with 95% proportion confidence interval (since each season 
has the same number of observations) of [0.528, 0.560]. This interval contains our baseline p = 
0.5387 of home team wins. 
 
 
7.6 Feature engineering 
 

Using a team’s season-wide statistical performance, as Jia et al. (2013), Valero (2016), 
and Tolbert and Trafalis (2016) do, provides signal, and would be appropriate if we restrict the 
data used to only games previously played. For example, tracking a game on August 1, 2018 
using the entire 2018 season would not be appropriate because the team’s aggregate statistics 
are influenced by nearly two months’ data that is yet to come and would not be available if 
forecasting in practice, causing data contamination (Valero, 2016). Subsequently, we use 7-day 
rolling periods for each hitting statistic and set the prior values at the beginning of the season to 
be the team’s average from the entire previous year.  

For pitchers, as described, we use their previous year’s average data, setting the 
information to be 0 in any cases where we do not have their previous year’s data; this is a weak 
estimate, but our best possible since we do not have the game-level data that FiveThirtyEight 
(2015) uses to track game scores. 

We also bring in our Elo momentum tracker, and include the number of rest days a 
team has (FiveThirtyEight, 2015), similar to how Valero (2016) uses the team’s current 
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Pythagorean expectation to model team strength so far in the season, or how Yang and Swartz 
(2014) use a team’s existing W-L record as a feature. In addition, while betting lines for baseball 
games can be strong predictive factors for the actual result (Pharr 2019), the predictive 
accuracy of diverse individuals in aggregate is an observed phenomenon known as the “wisdom 
of crowds” (Surowiecki 2004) -- hence, it is neither a novel signal nor a fundamental baseball 
component that impacts the game’s outcome, so we do not include it.  

We also create a feature for ISO (MLB n.d.), or isolated power to separate the impact of 
power from getting on base. We remove features including AVG and SLG (since ISO is a linear 
combination of the two), ERA (since FIP can be used to track this performance) and IP 
averages per start (due to low correlation). We use 2000 to set prior estimates for our features, 
so we exclude that year’s games from the final dataset. Our final set of features has dimensions 
(46128, 9), with a tenth column for the outcome: 
 

● Team hitting: OBP, ISO 
● Team starting pitching: FIP, WHIP, K/9, HR/9, K/BB 
● Additional metrics: ELO, rest days between games 

 
For each statistic, we computed differences and percent differences between our feature 

statistics for the home and away teams, with the home team as our baseline. A positive value 
means a higher statistic (not necessarily good, such as FIP) for the home team. 

 
𝑌*+,, = 𝑌-./0 − 𝑌"1"2  

 

𝑌%*+,, =
𝑌*+,,
𝑌-./0

× 100% 

 
We used the raw differences for models that require scaling, since it is complicated to 

interpret a model based on standard-scaled percentage differences between two statistics, and 
scaling puts all the feature values on the same mathematical scale. We used percent differences 
for scale-invariant algorithms since a more extreme difference, hence stronger signal -- while also 
avoiding scaling the data and add a layer of interpretation complexity. 
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8. Analysis 
 
8.1 Exploratory data analysis 
 

We begin by looking at our features, and some basic distributions of our data. 
Examining the distributions of several features as percentage differences between home and 
away teams,18 we find that most appear normally distributed, with limited primarily seen in the 
ISO and K/BB graphs. This is promising for our analysis; data with a heavily skewed 
distribution could mask the signal from our features, particularly on the linear models such as 
our regularized logit regressions.  

 

 
 

Figure 2: Histograms of % difference features 

 
Our data shows correlation between factors such as HR9 and FIP, which is sensible since 

home runs are considered in the calculation of FIP. We have weak correlations with our 
response variable, with OBP and ISO the highest (r = 0.27, 0.19 respectively) -- indicating no 
single factor can predict games: 

 
 
18 We also use raw differences and standard-scale them in preprocess. We do not show these plots here; however, they 
appeared all normally distributed.  
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Figure 3: Correlation plot of % difference features 

 
Summary statistics of our features using Δ% are seen here: 

Table 4: Descriptive statistics for Δ% features (Δ% implied in feature names)  

 OBP ISO  FIP WHIP K9 HR9 K/BB Elo 

Mean -0.361  -7.749 -2.283 -1.104 -3.551 -8.090 -10.008 -0.057 

SD 14.753  46.718  22.182 14.868 46.676  54.387   54.387 3.150 

Min  -83.206  -690.004 -233.875  -129.224 -269.458 -663.718 -1048.39 -12.587 

50%  0.641 0.976 0 0 0 0 0 0.018 

Max  45.785  86.971  69.886 54.189 73.482 88.837 90.411 12.373 
 

We also use the differences themselves as features, but standard scaled so they fit a 
standard Normal distribution and allow us to work with scale-sensitive models (James et al., 
2013); their summary statistics are shown here. The median for the pitching statistics is 0 due 
to two factors: 1), the normal distributions we saw in the histograms for the raw differences 
(although not plotted); 2) additional values 0 caused by our data wrangling, which occurred if 
both pitchers did not have any prior data. 

These statistics’ distribution looks less promising to analyze because almost all the 
means are around 0, where there would not be a strong signal with feature coefficients. 
However, it provides valuable insight into what baseball games look like in terms of statistical 
spreads. For instance, means all around 0 indicate that the “average” game has balanced out 
more (Ajilore & Hendrickson, 2007), even with the presence of outliers such as a 5.0 difference 
in FIP (indicating one pitcher is a top-line ace and the other is far below average). 
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Table 5: Descriptive statistics for Δ features (Δ implied in feature names)  

 OBP ISO  FIP WHIP K9 HR9 K/BB Elo 

Mean 0.002   0.001 -0.001  -0.001  0.002 ~0 0.005 -0.113 

SD 0.462   0.058  0.838 0.195 1.807 0.382 1.353 47.109 

Min -0.178  -0.275  -4.167 -1.155 -8.682 -2.028 -14.008 -176.251 

50% 0.002  0.001   0 0 0 0 0 0.267 

Max 0.196  0.215 5.000 0.999 9.586 2.208 13.964 193.659 
 
 
8.2 Modeling approach 
 

The most straightforward way to train our models is to randomly set a training and 
testing split, with cross-validation to reduce overfitting. However, in an actual MLB season, we 
do not have the luxury of randomly splitting up games, because they occur sequentially, but a 
train-test split could have us training on data from September 2019 even if our test samples 
include games from April 2002. Statistically, since all the feature values are game-specific and 
would not be affected by our approach here, there is no difference; however, a true baseball 
model would be fit on prior seasons and then applied to an entirely new season (S. T. Jensen, 
personal communication, April 22, 2020). Since we want to make our model applicable in an 
actual baseball setting, it is appropriate to behave as if we are in such a setting. 

Lacking a 2020 season19 due to COVID-19, we set our training sample for the overall 
models to be the 2001-2015 seasons, and our test sample to be 2016-2019. As part of our 
evaluation, we will also track performance over the months in a given season, as suggested by 
Jia et al. (2013). Our training dataset includes 36,417 games while our holdout/test dataset 
includes 9,711 games, a 79-21% split (approximately 80-20). 
 
 
8.3 Models considered 
 

We evaluated a series of machine learning models by training on the 2001-2015 seasons 
and evaluating their test accuracies each year over the 2016-2019 seasons separately. For 
consistency, we set random_state = 499 and used 5-fold cross-validation in testing, to combat 

 
 
19 Our initial goal was to train the model and live-track its performance during this season to see how it behaves on 
completely unexplored data. 
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overfitting. We fit the following models and tested against a “naïve” model where the home 
team always wins.  
 

Logistic regression 
• Lasso (L1) penalty regularization 
• Ridge (L2) penalty regularization 
• Elastic net (L1+L2) penalty regularization 

Support vector machine  
K-Nearest Neighbors classifier 
Tree-based models and ensemble methods 

• Decision tree classifier 
• Random forest ensemble 
• XGBoost classifier 

Stochastic gradient descent classifier 
 

We chose these models based off the ones included in the literature. The exception is the 
stochastic gradient descent classifier; the scikit-learn SGDClassifier implementation includes a 
loss function specification that can model either an SVM or logistic regression, increasing 
flexibility of our models. While we reviewed Bayesian models and neural nets briefly, we do not 
discuss them here. Certainly, a Bayesian model that can update its posterior distributions per 
game and capture greater variance (Jensen, 2020) or a complex neural net (Valero, 2016) would 
provide strong predictive power, but sacrifice interpretative ability (and as Valero (2016) finds, 
does not appear to provide a meaningful increase in predictive strength).  

We use several classifiers that compute probabilities, both P(y = 0) (away wins) and 
P(y = 1) = 1 - P(Y = 0) (home wins), for each game. By default, these classifiers assign any 
probability less than 0.5 to a response value of 0, and any above 0.5 as a response value of 1. 
However, we have no interest in home teams specifically; rather, this framing is a byproduct of 
the data we have available. This indifference allows us to accept the default 0.5 classification 
rule across all models to which it applies. 
 
 
8.3 Model tuning and evaluation 
 
For simple models, particularly the logistic regression variants, hyperparameter tuning can be 
done manually through adjusting cross-validations or built-in packages such as 
LogisticRegressionCV. In each case, we ran the models, adjusted hyperparameters, and 
compared each iteration’s cross-validation results to identify ideal parameters.  
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Meanwhile, for our tree-based ensemble models (random forests and XGBoost), since 

there are a set of continuous hyperparameters, we cannot do this tuning by hand. Our solution 
is automated hyperparameter optimization, which runs iterations quickly and produce the 
strongest set of hyperparameters through 5-fold cross-validation. Since our final dataset, after 
aggregation, has 9 features and is trained on 36,000 rows, its size is reasonable for a randomized 
search (implemented as RandomizedSearchCV) which runs many cross-validation iterations on 
randomly selected sets of hyperparameter values within specified ranges and is empirically more 
efficient than a standard grid-search approach (Sharma, 2018; Bergstra & Bengio, 2012). 
Moreover, the lower complexity of our engineered features, especially compared to the original 
data we began with, reduces the gain that a Bayesian method like SMBO or Python’s hyperopt 
(Bergstra et al., 2011; Koehrsen, 2018; Sharma, 2018) would provide, since our models’ objective 
functions are easier to evaluate. 

The parameter grids are set through a combination of initial manual searches, adjusted 
depending on observed results -- such as for XGBoost’s learning rate (Brownlee, 2016; 
Cambridge Spark, 2017; Jain 2016) -- and are meant to be excessive to give the randomized 
search a greater space to examine due to the feasible size of our data. Cross-validated 
randomized search results are as follows: 
 

Table 6: Hyperparameter grid for RandomizedSearchCV 

Model Parameter Range Selected 

DecisionTree criterion [Gini, entropy] entropy 

 max_depth [1..5, 7] 3 

 max_features [auto, sqrt, log2, None] None 

RandomForest criterion [Gini, entropy] entropy 

 n_estimators [30, 40, 50, 60] 60 

 max_depth [2, 3, 4] 4 

XGBoost max_depth [3, 5] 3 

 learning_rate 
 

[0.001, 0.01, 0.025, 0.05, 0.08, 
0.1, 0.15] 

0.05 

 n_estimators [55, 100, 200, 300, 400] 300 
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9. Results 
 
9.1 Comparing models with scaled and unscaled data 
 
For comparing our models, we looked at four key factors discussed in Model Evaluation: 
 

1. Model accuracy scoring on our holdout “test” dataset, from 2016-2019 
2. Weighted Brier scoring to penalize models with lower lift (greater misclassification 

severity) 
3. ROC curves of false positive vs. true positive classification rates, and AUC measures 
4. Interpretability of coefficients as a tie-breaker, since we want to understand the 

determinants of a baseball game more than just predictive power 
 

In general, the models using scaled-difference features performed worse in classification 
accuracy and Brier score, in addition to interpretability, than the unscaled-percentage-difference 
ones -- not a product of the scaling but rather the appropriateness of the models to the 
classification situation. For example, SVC and KNN models are less interpretable naturally than 
tree-based models like decision trees. This is in line with what Valero (2016) discovered when 
using KNN-classifiers.  

Comparing the ranges here from our testing data, we see that the scale-invariant models 
almost universally perform better than the scale-sensitive models.  
 

Table 7: Performance comparison between our models that required scaled data 
vs. models that are scale-invariant  

Metric Scaled models Unscaled models Best 

Classification accuracy 53.2% - 60.5% 61.2% - 62.77% Unscaled models 

Brier score 0.234 - 0.605 0.227 - 0.230 Unscaled models 

ROC/AUC 0.614 - 0.671 0.666 - 0.6706 Comparable 

Interpretability Low/Medium Medium/High Unscaled models 
 

The exception to this rule is the stochastic gradient descent classifier (SGDClassifier), 
which had the highest AUC of all models at 0.6710 and a classification accuracy of 60.5% on the 
data to the best Brier score of 0.234 out of the scaled models. However, this was on a classifier 
fit with log-loss, which gives an underlying logistic regression. Since the unscaled logistic 
regression is more interpretable (directly comparing impacts of percent differences), and the 
unscaled logit models perform arguably better (mean classification accuracy 62.4%, AUC 0.6706, 
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and Brier score of 0.227), we discard it in favor of our logit models and other models fit on the 
unscaled dataset with percentage differences. 
 
 
9.2 Selecting our final model 
 

Out of these models, the three logistic regressions performed similarly well likely because 
our dataset did not have high dimensionality. As a result, we selected the Elastic Net out of 
these variations since it converged fastest empirically on smaller datasets, whereas the Lasso and 
Ridge did not, which would be problematic if we were training a model using a smaller set of 
observations (such as only 3-5 instead of 15 seasons). The benefits of the regularization do not 
appear to be as salient in this problem, since we do not have many feature variables (especially 
not in excess of our number of observations) for instance, but the regularization nonetheless 
helps us reduce overfitting (Zou & Hastie, 2005). 

The random forest classifier similarly outperformed the decision tree on new data, since 
the bootstrap random samples and multiple classifiers help increase robustness to overfitting. 
Similarly, our gradient-boosted XGBoost, particularly after tuning our learning rate parameter 
through RandomSearchCV, had strong predictive power as expected. So, we make our final 
evaluation between the logistic regression with elastic net regularization, random forest 
classifier, and XGBoost classifier. 

The majority of our models perform similarly on AUC from the ROC curves, which 
demonstrate why having multiple metrics to distinguish between them is important.  

 

 
Figure 4: Model ROC curves and AUC comparisons  
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Out of the elastic net, random forest, and XGBoost, the Brier scores (respectively 

0.2270, 0.2290, 0.2274) were very similar but slightly favoring the elastic net. For the sake of 
interpretability, we select the logistic regression with elastic net regularization as our final 
“best” model, because its coefficients can directly compute impacts of feature values on the prior 
forecasted probability of a team (in this case, our home team) winning. This makes it easiest to 
understand as well as explain to others -- particularly useful in a baseball front office, for 
instance -- without sacrificing predictive power.  

Its mean classification accuracy is 61.77%. The hyperparameters used are: 
 

Table 8: Logit elastic net model hyperparameters 

C CV Penalty L1 Ratio 

0.01 5 elasticnet 0.5 
 

C is an inverse regularization strength, so picking a lower C (default = 10) results in a 
stronger regularization and shrinkage of our parameters. We used 5-fold cross-validation in 
fitting the model, standard stopping criteria and appropriate solver (“saga” to use an elastic 
net), and an elastic-net mixing L1 ratio of 0.5. These were selected by manual tuning due to the 
lower number of combinations of hyperparameters.  
 
 
9.3 Logit elastic net regression analysis 
 

For this model, our coefficients are generally tiny, expected since the coefficients are 
multiplied against percentages and then used as exponents in the logit function and are 
additionally regularized.  

 

Table 9: Regularized logit elastic net coefficients  

OBPΔ% ISOΔ% FIPΔ% WHIPΔ% K9Δ% HR9Δ% K/BBΔ% ELOΔ% restΔ 

0.0286 0.0065 -0.0004 -0.0046 0.00099 -0.00069 -0.00075 ~0 -0.0106 
 

However, we can only evaluate what the magnitude of the coefficients means through 
statistical tests, which we do using the statsmodels package.20 Unfortunately, the statsmodels 

 
 
20 Surprisingly, scikit-learn, despite being the default for machine learning analysis in Python, does not have a single 
means to compute statistical significance of parameters. 
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package’s elastic net regressions and summary tables are (somehow) not implemented, which 
means we have to examine a regression output of a regularized Lasso, a close comparison (given 
our earlier model analysis). However, this runs into the same issues that caused us to choose an 
elastic net; the Lasso logit regression does not converge fast enough, even after parameter 
tuning. Nonetheless, this proxy model’s coefficients and hypothesis tests are below: 
 

Table 10: Regression hypothesis tests for logit elastic net model 

 β SE(β) z P(Z >|z|)  [0.025 0.975] 

OBPΔ% 0.0347 0.001 37.591 < 0.001 *** 0.033 0.036 

WHIPΔ% -0.0059 0.001 -4.809 < 0.001 *** -0.008 -0.003 

K9Δ% 0.0012 0.000 2.495 0.013 * 0.000 0.002 

HR9Δ% 0.0003 0.000 0.738 0.461 n.s. -0.001 0.001 

K/BBΔ% -0.0016 0.000 -5.329 < 0.001 *** -0.002 -0.001 

FIPΔ% -0.0069 0.001 -4.806 < 0.001 *** -0.010 -0.004 

ISOΔ% 0.0039 0.000 14.235 < 0.001 *** 0.003 0.004 

ELOΔ% -0.0112 0.004 -2.892 0.004 ** -0.019 -0.004 

restΔ 0.0042 0.005 0.853 0.394 n.s. -0.005 0.014 

 
Although many of these small features are statistically significant, we see that OBP is by 

far the largest coefficient -- suggesting that the biggest determinant of a team winning is not the 
fancy pitching, or even home run hitters that draw crows to the ballpark, but rather the ability 
to, as Billy Beane says, “get on base” (Miller, 2011). We compare our top three models’ 
performance on the test dataset (2016-2019) versus a baseline where the home team wins: 
 

Table 11: Final evaluation of model performance  

 Accuracy Brier Score AUC 

Elastic Net 61.77% 0.2278 0.6706 

Random Forest 61.48% 0.2383 0.6657 

XGBoost 61.19% 0.2300 0.6687 

Naïve 53.16% 0.4684 -- 

Best Model Elastic Net Elastic Net Elastic Net 
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Our final model, the logistic regression with elastic net, outperforms a naïve predictor 

(assuming the home team always wins, accuracy 53.16%) by 8.61 raw percentage points, an 
increase of 16.2% in predictive power on the holdout dataset. Moreover, computing our Brier 
Skill Score (Roulston, 2007; DWD, n.d.) against the same naïve forecast’s 0.4684 gives a Brier 
Skill Score of: 

 
A positive BSS indicates an improvement in predictive power (DWD, n.d.). Examining 

these statistics compared to the baseline further validate the strength of our model and viability 
in predicting baseball games, and selection of the elastic net.  
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10. Discussion 
 
10.1 Feature importance 
 

For our logistic regression, feature analysis can be evaluated by looking at the strength 
of the coefficients. Since all of our models are on a percentage basis, a greater coefficient 
magnitude indicates generally greater impact on the impact of the game (although we do have 
slight differences in the distribution of our statistics). For XGBoost, we use the “total_gain” 
metric out of XGBoost’s five different options since we are looking for the aggregate prediction 
importance of each feature (Abu-Rmileh, 2019). 

Plotting feature importance for our three models, we find that OBP is consistently the 
most important feature across all our models, with ISO typically coming in second, in line with 
Stick (2005) who demonstrates the importance of OPS in predicting productivity indexes.  

Notably, the pitching covariates show similar but generally weak feature importance, 
which is sensible since they are aggregate numbers from the prior season; hence, this does not 
contradict Stick (2005). We would expect that, if we used live rolling game scores 
(FiveThirtyEight, 2015), we would see pitching increase in importance, since the information 
from that feature would be more relevant to each game. 
 

 
Figure 5: Feature importance for Elastic Net, XGBoost, and Random Forest Models 

 
 
10.2 Lift 
 

Another evaluation criterion we discussed was “lift” where a model should be better for 
the most extreme forecasted predictions (Czakon, 2019). We look at “lift” two ways, first 
through a standard lift chart, and second by bucketing our win probabilities and looking at the 
conditional chance of being a true positive. 
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On the left, our logit elastic net model shows around a 1.5-2x greater predictive strength 
for the most extreme 10-20% of games; on the right, all three models show positive correlation 
in conditional probability of being true positives, which means we could also act similarly to 
Pharr (2019) and count on our extreme values being more accurate in either direction. 

 
Figure 6: Lift curves and conditional TP plot 

 
 
10.3 Monthly predictions 
 

Jia et al. (2013) discussed how the beginning of a season is harder to predict due to a 
lack of data about a team’s true performance, which is why they broke up their predictions by 
month. Similarly, for the 2019 season, we plotted predictive accuracy by month, omitting the 
few games played in March since we are looking at percentages, and the other months have 20-
30 games apiece per team (March usually has no more than 1-3). 

 
Figure 7: Monthly out-of-sample prediction accuracy (Jia et al., 2003) 
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This chart validates Jia et al. (2013)’s findings, as we do see a slight increase over time 
from April to September, an increase from 60.57% in April to 63.52% accuracy in September. 
However, while their models sat in the 53-57% range (hardly above the baseline) at the 
beginning of the year, ours begins much stronger, hence the smaller apparent increase. This 
suggests that our local covariates (7-day rolling periods) are a good fit, as they are more 
predictive than the season-to-date cumulative measures that Jia et al. (2013) among others use -
- which fluctuate more at the beginning of the season. 
 
 
10.4 Qualitative validation 
 

Briefly, we can also qualitatively examine overlays of our model against prior team-
seasons, because we can model individual team-years. Although our model’s limitations 
(discussed below) prevent it from being a perfect fit, and we are only modeling the chance of 
winning, it stands that we could see some overlap between our probabilities of winning and the 
actual win-loss scores from Baseball Reference.  

In each comparison, the top chart (green/red) is the actual win-loss margin for the team 
across the entire season, from Baseball Reference; the bottom (in team colors) is our model’s 
forecasted probabilities of the team of interest winning, or P(y = 1). We have to perform a 
slight adjustment of the model to calculate this, instead of just calculating home team win 
probabilities. Also, the likelihoods are only meant to compute the home team’s expected 
probability of winning; they are not meant to line up with the margins of victory. 
 
 
Case Study 1: The 2017 New York Yankees 
 

I am an avid Yankees fan, and loved watching a young team that was not expected to 
make the playoffs nearly reach the World Series. Hence, this first comparison. 
 

 
Figure 8a: 2017 New York Yankees W-L chart (Baseball Reference, n.d.-d) 

 

 
Figure 8b: 2017 New York Yankees model-predicted win probabilities 
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The model overemphasizes streaks, but generally predicts batches of results well. Since it 

does not rapidly adjust to game-to-game variations fast enough (likely due to the lack of 
pitching data, or just inherent variance in baseball), hot streaks for the team led to 
overestimated wins, with the model predicting 99 wins to New York’s 91 -- but almost exactly 
nailing New York’s 100-win Pythagorean W-L projection (Baseball Reference, n.d.-d).  
 
 
Case Study 2: The 2002 Oakland Athletics 

 
The Oakland A’s in 2002 were the first poster child of sabermetrics, proving statistical 

understanding of the game rather than home runs and financial muscle were key to winning.  
 

 
Figure 9a: 2002 Oakland Athletics W-L chart (Baseball Reference, n.d.-c) 

 

 
Figure 9b: 2002 Oakland Athletics model-predicted win probabilities 

 
This comparison makes our model look stellar, primarily due to the Oakland A’s enjoyed 

a 20+ game win. However, looking more closely we see that our model also tracks the team’s 
early struggles, midseason recovery, and faltering towards the playoffs relatively well, giving low 
probabilities of winning forecasted on the games around the all-star break (the star in the top 
chart) where Oakland alternated wins and losses by slim margins. Our model projects 104 wins, 
slightly more than Oakland’s actual 103 and its Pythagorean expectation of 96 wins (Baseball-
Reference, n.d.-b). 
 
 
10.5 Limitations 
 
There are several limitations in the analysis that we discuss in order of actionability. 
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1. We use an aggregate proxy from the pitcher’s prior year performance, rather than live-
tracking game scores (FiveThirtyEight, 2015) 

 
As previously mentioned, we model a pitcher’s performance on some statistic Y in year t, game 
observation i in the data as distributed 𝑌'4 ∼ 𝑁V𝑌45$WWWWWW, 0X. This simplified our analysis and allowed 
us to use some level of pitcher information in the models but lacks the granularity we hoped to 
get. Specifically, players have variance even across seasons, so a pitcher who has a considerably 
better or worse campaign (either due to young pitchers improving their game, older pitchers 
declining, injury, etc.) will be mis-modeled over the duration of the season. A rolling game score, 
or other metrics of pitching performance like the ones we used for hitting data would be most 
accurate in capturing variance and is far more likely to match professional teams’ models. 

 
2. We track team aggregate performance and do not consider day-to-day lineup changes 

 
It is certainly reasonable that a lineup change (for example, replacing a minor-league substitute 
player with an MVP after a day of rest) would impact a team’s chances of winning, which we 
could capture by including our player-level performance based on what players are in the lineup. 
Research such as Bukiet et al. (1997) demonstrates potential impacts of batting order 
optimality, although the complexity of their model makes it infeasible for us to integrate on a 
game-by-game setting (notably, their batting orders are season-wide and backwards-looking, 
which runs the risk of data contamination (Valero, 2016) if we take their findings and directly 
apply them); however, our aggregate features as previously mentioned can reduce variance and 
signal. Moreover, it is computationally infeasible to track rolling means across all games and 
over 4.5M instances of player data, given the limited computational resources at our disposal. 
 

3. Variance in the game of baseball 
 
All sports include variance, which makes them fun to watch and coveted to be a part of. As a 
result, there is a lot of variance due to in-game performance and events that impacts the win-
loss outcome of a game, which we cannot capture with prior statistics. In fact, inconsistencies 
are why “consistent” players are regarded highly, and help explain why the models evaluated in 
other studies (Jia et al., 2013; Valero, 2016; Koseler & Stephan, 2017; Elfrink & Bhulai, 2018; 
Pharr 2019) all find predictive results for MLB games in the range of 55-61% predictive power 
(up to 63-64%, if we consider Jia et al. (2013)’s monthly analysis), which suggests a natural 
limit to how well baseball games can be forecasted in advance. In fact, our models appear to be 
at the top end of these accuracy measures. 
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4. Other minor limitations to take note of, but of lesser severity: 
 

● Use of randomized search (Bergstra & Bengio, 2012) in tuning rather than Bayesian SMBO, 
which identifies the next hyperparameters to test based on the results of prior cross-
validation tests (Koehrsen, 2018; Bergstra et al., 2011); this may select better 
hyperparameters choices 
 

● Omission of fielding features such as errors, which are removed by FIP but impact the 
results of the game. Valero (2016) and Pharr (2019) both include differences in errors 
committed. 
 

● statsmodels lacks functionality for elastic-net/regularized regression statistical test 
summaries, so we have to assume that, given similar coefficients, the statistical significance 
carriers over to our regularized model with shrunken weights. This is not fully rigorous. 

 
Altogether, we have built a strong model that matches if not exceeds the top predictors found in 
the literature through applying a novel idea of rolling statistics. Extensions of our model include 
adding in these covariates, Bayesian models that adjust weights (similar to Yang and Swartz 
(2014)) and game distributions as the season goes on, or machine learning analysis to 
supplement our basic Elo model. 
 
Furthermore, an interesting supplementary analysis could be to build a betting strategy and 
back-test on the betting lines. This would be not for money, as much for seeing if we beat the 
concept that Surowiecki calls the “wisdom of the crowd” (2004). For example, we could identify 
at what confidence cutoffs would our model be able to out-predict Las Vegas spreads, and place 
positive-EV bets even with the uneven betting lines (a game that has a heavy favorite, for 
instance, might be less profitable to bet on because the comparative payout is small), as Tait 
(2014) demonstrates with a Bayesian approach. Succeeding here would be interesting and 
potentially profitable validation of our modeling approach and decisions. 
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Conclusion 
 

We set out to understand the factors that influence Major League Baseball game 
outcomes with a goal to build a predictive model for future games. Using data from over 45,000 
games from the 2001-2019 seasons, we engineered detailed covariates for team abilities, such as 
day-by-day rolling means of hitting performance, creating far stronger granularity than the 
features seen in the literature. As a result, we achieved classification accuracies above 61% 
above three models, including our elastic net logistic regression’s 61.77% on the 2016-2019 
seasons, which exceeds the classification accuracies found by cited works in the literature: 
Valero (2016), Elfrink & Bhulai (2018), Pharr (2019), Jia et al. (2013), and Soicher (2019).  

In addition, we evaluated our model’s performance over each month in the 2019 season, 
confirming the hypothesis by Soicher (2019) and empirical results from Jia et al. (2013), peaking 
at 64-65% classification accuracy in the latter months of the 2019 season. Our model also 
demonstrates good lift, where the top decile of predictions for both home wins and losses are 
accurate around 2x as often as other lower-confidence predictions are. As a result, our model 
could be leveraged in a baseball front office, at the Las Vegas books, or at home, streaming the 
next MLB season, when it does resume post-COVID-19. 

This analytical process was not perfect, between data wrangling issues and concerns 
about omitted feature bias. Moreover, there is the broader looming question about from sports 
analytics: how much variance in baseball game results can be actually captured by prior 
statistics and features like ours?  

Nonetheless, through this our work demonstrates the importance of feature engineering 
in problems like this, where the aggregate statistics that are easy to pull off of a database -- and 
used by other works -- explain less variance in results. This traces back to an underrated 
computer science and problem-solving lesson I learned from Professor Steve Zdancewic on my 
first day of CIS 120: define and understand the problem before you start. We defined our 
classification problem, supplemented it with literature and background knowledge gained from 
watching 100+ MLB games annually, before applying the relevant data science techniques to 
extract our datasets. The machine learning models are still the pièce de résistance, but they are 
only possible because of the deep understanding from the earlier sections of this paper, through 
the ways of thinking and technical skills built up over four years at Penn. 

Looking back, I am so grateful to have been given this opportunity by the University of 
Pennsylvania and the School of Engineering and Applied Sciences to study here, opening 
intellectual doors I did not know even existed back in 2016.  

Thank you to everyone who has made this journey -- culminating with this thesis today 
-- both possible, and invaluable. 
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Appendix 
 
1. Glossary of MLB Terms/Statistics 
 
This is a list of common MLB terms and their definitions. Events that are relevant to 
pitchers/batters respectively can be identified through cross-matching with the glossary of 
statistics below. We also define the following statistics that are used extensively in the paper. 
These definitions are all written using our background knowledge of the sport, or formulas from 
Baseball Reference (n.d.-e), MLB (n.d.), and Clark (2016) when applicable.  
  
Table 12: Definitions of common MLB terms 
Term Abb. Definition 
Hits H A ball put in play where the runner reaches base and the inning 

does not end.  
At-bats AB A plate appearance that does not end in a walk or sacrifice hit. 

 
Walks/base on 
balls 
 

BB When a pitcher throws four balls in an at-bat that are not 
called strikes, the batter advances to first base.  

Hit by pitch HBP A thrown pitch that hits the batter. The batter is granted first 
base, but this is not counted as a walk. 

Sacrifice fly/hit SF/SH A ball in play where the runner is called out, but a teammate 
currently on base either advances or scores. 

Home run HR A ball that exits the field of play, scoring the hitter as well as 
all current baserunners. 

Total bases TB A weighted sum of the bases a hitter reaches. 2B (double), 3B 
(triple), and HR (home run) are worth 2, 3, and 4 respectively. 

Earned run ER For pitchers, a run that scores not due to errors or a wild pitch; 
the runner cannot have reached on an error or wild pitch either.  

Innings pitched IP 3 * the number of outs a pitcher records. 
 
 

Table 13: Formulas for common MLB statistics 

Term Abb. Formula Measures 

Batting average AVG H/AB Batter’s hitting ability 

On-base percentage OBP 

 

Batter’s ability to get on base, even 
without hits 
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Slugging percentage SLG TB/AB Batter’s power and contact hitting  

Isolated power ISO SLG – AVG Batter’s power only 

Earned-run avg. ERA 9·ER/IP Pitcher’s ability to prevent runs 

Fielding-
independent 
pitching 

FIP See 7.4 Pitcher’s ability “independent” of team 
and chance. 𝐶,+6 calibrated so the league 
average FIP = average ERA 

Strikeout/home  
run rate 

K/9, 
HR/9 

9·K/IP, 9·HR/IP Pitcher’s strike out and home run rates 

Walks/hits per 
inning pitched 

WHIP (HR + BB)/IP Pitcher’s ability to prevent baserunners 
(lower = better) 

Strikeout-walk ratio K/BB K/BB Pitcher’s strikeout to walk ratio.  
 
 
2. Computation of 2002 Oakland A’s wins percentile in MLB history 

 
Since MLB switched to a 162-game season in 1962, we found all team seasons with at least 100 
wins (Baseball Almanac, n.d.) and subtracted the number of 103+ win-seasons before 1962 from 
the total (53; 102 wins is ranked 54th) to get a total of 28 instances. From Lokker (2019)’s 
article, we can compute the total number of 162-game team-seasons, excluding the strike-
shortened 1994* season: 

 

Table 14: Computation of the “Moneyball” Oakland A’s percentile 

First Last Years Event Teams Seasons 

1962 1968 7 162-game season 20 140 

1969 1976 8 Expansion to 24 teams 24 192 

1977 1992 16 American League expands to 14 teams 26 416 

1993 1997 4* National League expands to 14 teams 28 112 

1998 2019 22 Expansion to 30 teams 30 660 

Grand Total 1520 

Number of seasons with 103 or less wins, |	𝑊 ≤ 103	|21 1504 

Percentile, 𝑃(𝑊 ≤ 103) 98.15% 

 
 

 
21 While there are 28 teams of 103 or more wins, percentiles are calculated as the proportion of occurrences “equal to 
or lesser than” the given value, so we exclude the 12 teams who also won 103 games. 
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3. Transcript from Moneyball  
(Zaillian & Sorkin, 47-51; Miller, 2011) 
 
Context: Billy Beane (BILLY) and Peter Brand (PETER) are leading a meeting with the 
Oakland Athletics’ scouts, looking to replace players on their roster. Brand has engineered 
statistical models to forecast W-L records for the team; however, the old-school scouting staff is 
skeptical. While the scene is dramatized, it illustrates the conflict between computational 
modeling and intuition-based “knowledge of the game” that demands explanatory power in 
order to accept the models. This excerpt is scripted as follows (Zaillian & Sorkin, 47-51): 
 

“BILLY: ‘He can get on base.’ 
POLONI: ‘Alright, so he walks a lot.’ 
BILLY: ‘He gets on base a lot, Rocco. Do I care if it's a walk or a hit?’ 
PETER: ‘You do not.’ 
BILLY: ‘I do not.’ 
GRADY: ‘Billy, I got 37 free agents who are better than those guys.’ 
(...) 
POLONI: ‘You’re not buying into any of this Bill James bullsh*t are ya?’ 
BILLY: ‘This is the new direction of the Oakland A’s.’” 
 

(Zaillian & Sorkin, 47-51; Miller, 2011) 
 
 
4. FiveThirtyEight’s ELO model for baseball 
(FiveThirtyEight 2015) 
 
According to FiveThirtyEight’s website, their model tracks each team’s underlying team Elo 
team rating over time. For each game, FiveThirtyEight computes prior likelihoods of winning 
by adding factors of home-field advantage (+24 points; baseline 1500), days of rest (+2.3 points 
per day, max of three days), and a penalty for travel (𝑚𝑖𝑛(−4,−0.31 ∗ (𝑚𝑖𝑙𝑒𝑠	𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑)$/8)). 
They also factor in starting pitcher ratings based on rolling game scores. All this computes a 
“pregame team rating” that predicts the expected win/loss outcome and probabilities between 
the two teams. After each game, the Elos are adjusted accordingly (FiveThirtyEight 2015). 
 
The full model can be found on their website, cited in the Bibliography and linked here: 
https://fivethirtyeight.com/features/how-our-mlb-predictions-work 
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5. Elo model for the Seattle Mariners’ 2001 season 
 
This is an example of our Elo model validated across the 2001 Seattle Mariners season. We have 
chosen this as the example since the Mariners set the all-time record with a 116-46 W-L, and we 
should see significant changes in their Elo over the course of the season. Accordingly, their Elo 
quickly spikes as high as 1600. This makes sense for a team that won over 70% of its games -- 
based on our Elo formula, a Elo of 1596 (the peak observed here around June) would have an 
expected ~75.12% chance of beating a team with an Elo of 1500, and a 90.5% chance of beating 
a team with an Elo of 1400.  
 

 
Figure 10: Elo for the Seattle Mariners, 2001 

 
Although a 90.5% chance may be high, we observe from our data that most teams’ worst Elo on 
any given day between March 2001 and October 2019 is at lowest just below 1400; hence, a 
peak-strength team in the modern era should be strong favorites against a team at its weakest 
in two decades, should this matchup ever occur. Summary statistics for several teams’ Elos 
across the 19 seasons are shown below. 
 

Table 15: Elo summary statistics 

 ANA ARI ATL BAL BOS CHA CHN CIN CLE COL 

Mean 1517 1493 1508 1490 1525 1500 1497 1487 1506 1487 

Min 1436 1393 1387 1390 1434 1423 1408 1406 1419 1422 

Max 1596 1584 1592 1577 1601 1580 1595 1569 1614 1561 
 
The team names here come from our game logs (Retrosheet, n.d.-c). Some of the abbreviations 
are no longer used since the data goes back to 2000; particularly “ANA” which is now “LAA.”  
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6. Analysis and filtering of starting pitchers 
 
From top to bottom in the graph, these are plotted as the number of pitchers in each year who 
make 8, 10, 12, 15, 20, and 25 starts in a given season. The standard 5 starting pitchers per 
team times 30 teams gives around 150 expected starting pitchers; due to injuries and roster 
changes, we expect there may be slightly more in a given season, setting our filter to a minimum 
of 12 starts per year for starting pitchers. 
 

 
Figure 11: Number of pitchers (descending order) that made 8, 10, 12, 15, 20, and 25 starts per season 
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Bibliography 
 
Notes and Disclaimers 
 
All code was done in Python (www.python.org) using Jupyter notebooks (jupyter.org). The Git 
repository can be found at https://github.com/andrew-cui/mlb-game-prediction. However, there 
are several packages we used, some of which’s documentation we reference. They are, with 
documentation cited below in our bibliography: pandas, numpy, matplotlib, scikit-learn, scikit-
plot, statsmodels, xgboost. Our datasets came from Retrosheet game logs/event files 
(Retrosheet, n.d.-c; Retrosheet, n.d.-d) and Sean Lahman’s database (Lahman, n.d.).  
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