
 

 

 

 

 

 

The Pursuit of Machine Common Sense  
 

 

By Joseph Churilla 

Advisor: Chris Callison-Burch 

 

 

 

 

 

 

 

 

 

EAS499 Senior Capstone Thesis 

School of Engineering and Applied Science 

University of Pennsylvania 

April 29, 2020  



 

 

Churilla 1 

 

Abstract 

Despite widespread innovation in artificial intelligence (AI) over the past several 

decades, machines have yet to develop the ability to understand the basics of communication, 

physics, and psychology that humans take for granted, also known as “common sense”. For 

machines to achieve human-like intelligence and move past the current niche-specific 

applications of AI, machines must develop this common sense/general intelligence. Previous 

approaches to achieving machine common sense (MCS) can be separated into the following 

categories: knowledge-based, web mining, and crowd sourcing [1]. Knowledge-based systems 

include mathematical methods (i.e. situation calculus [2], naïve physics [3], etc.), less formal 

methods (i.e. scripts [4], etc.) and large-scale approaches (i.e. logic ontologies such as Cyc [5], 

etc.) [1]. However, knowledge-based methods are limited by the fragility of codified, symbolic 

knowledge that fails to encompass the scope and subtlety of human common sense. On the other 

hand, web mining and crowd sourcing approaches (i.e. KnowItAll [6], NELL [7], etc.) are more 

efficiently scalable but fail to possess deep semantic understanding [8]. Going forward, 

researchers have proposed two categories of research strategies for achieving MCS in hope of 

further progress: first, constructing computational models that learn from experience, perhaps 

replicating a child’s cognition for objects, agents and places (“bottom-up”); and second, 

constructing a common sense knowledge archive learned from reading the Web for answering 

natural language and image-based questions (“top-down”) [8].   

 

Introduction: What is Common Sense? 

The goal of this literature review is to perform an in-depth analysis of previous research 

regarding machine common sense (MCS), to discuss currently developing research strategies for 

achieving MCS, and to explore future applications and benefits of developing artificial 

intelligence with MCS capabilities, Artificial General Intelligence (AGI). Artificial Intelligence 

is often used “as an umbrella term to describe the overall objective of making computers apply 

judgment as a human being would” [9]. Over the past several decades, technological innovation 

has intertwined artificial intelligence capabilities with day-to-day human life. Today’s AI 

research can be roughly broken down into several distinct research areas: “Search and 

Optimization,” “Fuzzy Systems”, “Natural Language Processing and Knowledge 

Representation”, “Computer Vision”, “Machine Learning and Probabilistic Reasoning”, and 

“Planning and Decision Making” [9]. Despite the numerous capabilities of AI across these areas, 

machine reasoning remains “narrow and highly-specialized”, mandating cautious training and 

programming of every possible scenario [8].  

Given these limitations, AI technologies, such as machine learning models, have been 

developed based upon historically observed data and thus often fail to account for unobserved 

data and its associated impact. Current AI functionality lacks what can be described as “human 

common sense” or “human general intelligence”. The dictionary defines “common sense” as 

“sound and prudent judgment based on a simple perception of the situation or facts” [10]. 
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Humans are gifted with the ability to retain and apply a certain level of knowledge/information 

about the world to unique, potentially unseen problems. This common, unspoken internal 

knowledge base is composed of “a general understanding of how the physical world works (i.e., 

intuitive physics); a basic understanding of human motives and behaviors (i.e., intuitive 

psychology); and knowledge of the common facts that an average adult possesses” [8]. For 

example, “common sense” tells us that, when one person states that he/she is traveling from New 

York to Paris tomorrow for vacation, the individual is likely traveling via plane rather than foot, 

bike, or boat. Without access to this uniquely human understanding of the surrounding world, 

machines are limited in their ability to perform basic human tasks such as rational decision-

making under unique environmental conditions, learning from new situations, and 

communicating naturally with people [8]. Another elusive aspect of common sense is that it is 

multimodal (necessitating the use of several human senses), and thus does not fit well into 

existing AI research disciplines. “Common sense” is not solely learning from fewer examples, 

constructing a common knowledge database, or recognizing images/signals, but all these things 

working together in a joint system. As Davis and Marcus state, the “great irony of common 

sense” is that its information everyone knows but is unable to define it exactly or create 

machines with it [15].  

 

Theory of Knowledge and its Representation 

 We can begin examining the literature on machine common sense by first understanding 

some of the classical theories surrounding knowledge and its representation by machines. The 

earliest work proposing commonsense representation by machines came in 1959 with John 

McCarthy’s paper “Programs with Common Sense”. McCarthy highlights the lack of progress in 

machine basic verbal reasoning processes that nearly any human can do quite easily [11]. This 

unique human ability, common sense, is achieved by a system that “automatically deduces for 

itself a sufficiently wide class of immediate consequences of anything it is told and what it 

already knows” [11]. Any programs aiming to achieve human-like intelligence ought to 

internally represent behaviors, express changes in these behaviors, have an improving 

mechanism for behavior that itself is improvable, be able to evolve and handle partial success on 

difficult problems, and lastly “create subroutines which can be included in procedures as units” 

[11]. Specifically, McCarthy proposes an “advice taker” program that solves problems via formal 

logic [11]. Rather than incorporating heuristics in the program, the “advice taker[‘s]” rules “will 

be described as much as possible in the language itself” [11]. McCarthy’s representational 

language of choice is formal logic, likely predicate calculus, allowing a system to perform 

deduction from a set of logical premises. [11].   

 In 1973, Eugene Charniak presented a theory of knowledge for understanding basic texts 

such as children’s stories, noting that an individual must have commonsense background 

knowledge to answer questions about them [12]. Charniak uses an example of a short story about 

a girl shaking a piggy bank (PB) and money falling out of it. Next, he poses questions such as 
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“Why did Janet get the PB?” and “Why was the PB shaken?” [12]. Although it is obvious to any 

human that one shakes a piggy bank to retrieve money, likely to use the money for some 

purpose, it is technically impossible to “deduce an answer from the statements in the story 

without using general knowledge about the world”, such as “shaking helps get money out of a 

PB” [12]. This example highlights the essential role commonsense knowledge plays in humans’ 

understanding of stories and the need for machines to have access to this knowledge if it is to 

achieve human-level narrative understanding. Furthermore, Charniak proposes that any such 

model would translate text into some internal representation composed of assertions, which 

would then “try to ‘fill in the blanks’ of a story on a line by line basis” [12]. To assist in the 

deduction process during question answering, the system would label the extracted facts and 

beliefs with “topic concepts,” and “fact finder” theorems could “establish facts which are 

comparatively unimportant” [12].  

 Despite these early attempts at formulating theories of knowledge, much less-optimistic 

research exists, suggesting that attempts to duplicate human cognition could be futile. McCarthy 

himself acknowledged the difficulties in understanding human nature and noted scientists’ 

trouble to explain how the great diversity of animal life can be expressed by small genetic 

variations, noting that “the problem of how such a representation controls the development of a 

fertilized egg into a mature animal is even more difficult” [11]. Others, such as Christopher 

Cherniak, state that “from a resource-realistic approach to cognitive science” a program of the 

human mind is impossibly cumbersome and unknowable: “The mind’s program would be an 

impossibility engine in that it would be practically unfeasible for us fully to comprehend and 

evaluate it” [13]. Any “computational approximation of the mind” would be massive, “branchy”, 

“quick-and-dirty”, and unpolished, implying that any such program is “fundamentally dissimilar 

to more familiar software” [13]. Similarly, Hubert Dreyfus argues that attempts at machine 

simulation of cognition “in digital computer language systematically excludes three fundamental 

human forms of information processing (fringe consciousness, essence/accident discrimination, 

and ambiguity tolerance)” [14]. For example, human and machine pattern recognition differ 

drastically. Humans can ignore noisy data and label it as unimportant and have an ability to 

“distinguish the essential from the inessential” [14]. Humans have “tolerance for changes in 

orientation”, imperfect and distorted information, and “background noise” that machines lack 

[14]. Moreover, humans “need not conceptualize or thematize” common traits to identify 

patterns, while machine recognition takes place “on the explicit conceptual level of class 

membership” [14]. Dreyfus also casts doubt on the “associationist assumption” that human 

thought can be broken down into easily understood, explicit processes, adding that even if the 

mind’s processes could be quantified into equation, there would be time constraints [14]. With 

the human brain still not fully comprehended, it clear that many differences between machines 

and humans and unknown unknowns pose further challenges for those attempting to duplicate 

human intelligence. 
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Although many researchers cast doubt on the manageability of replicating the human 

mind in full, the possibility of a much simpler structured program that could produce human 

intelligence is not ruled out [13]. In Cherniak’s view, progress in AI applications was “outpacing 

theory” of how such programs worked [13]. In order to combat this incongruence, Cherniak 

suggests a shift in research focus to include “neuroanatomy and neurophysiology” and that 

“cognition, after all, is accomplished with a brain”, paralleling today’s research agenda of 

studying human cognition in infants (discussed later). Other theories suggest that a machine will 

only be able to achieve natural language understanding if it can “learn about the world,” given 

the omitted facts and context-dependence comprehension requires [14]. Systems aiming to reach 

human cognition must be able to “distinguish the essential from the inessential features” of 

pattern instances, understand context clues, and “use cues which remain on the fringes of 

consciousness” [14].  

In more recent commentary, Gary Marcus and Ernest Davis lay out a high-level theory 

for attaining deep understanding as follows: (i) begin with representing human core knowledge 

(discussed later), (ii) plant these representations into an architecture that can incorporate all types 

of knowledge, (iii) create reasoning processes that can handle complexity, incompleteness, and 

uncertainty, (iv) integrate these with “perception, manipulation, and language” to “build rich 

cognitive models of the world”, and lastly (v) combine the AI’s knowledge acquisition and 

reasoning features to build a human-like system that interacts with the outside world, learning 

and improving upon its existing knowledge just as in human development [15]. In order to begin, 

researchers must decide what type of knowledge is to be possessed by the intelligent machine 

and how this will be represented internally. Although much research in psychology has focused 

on developing frameworks for human’s understanding of the world, few of the current big-data 

AI techniques have yet to take them into account [15]. Overall, although replicating the human 

mind from scratch seems implausible, creating systems with the ability to learn new information 

at a “conceptual and causal level” and learn theories beyond simple facts ought to lead to more 

promising, versatile and powerful AI [15].   

 

Machine Common Sense Use Cases: Why is it important? 

 Today’s artificial intelligence systems are overly sensitive and fragile. The development 

of machine common sense would allow researchers to apply AI technology beyond the current 

boundaries of niche environments. Such achievement would grant machines a deeper 

understanding and awareness of the world, human-like adaptability to the unexpected, and the 

ability to more naturally communicate with humans [8]. Some broad use cases for MCS that 

apply to AI systems are “sensemaking” (interpreting sensor/data from its external environment), 

checking the reasonableness of machine decision-making (monitoring actions and their safety in 

unfamiliar or new situations), “human-machine collaboration” (effective communication 

between machines and human users), and “transfer learning” (reapplying common sense for 

adaptation under new circumstances without hyper-specialized training) [8].   
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 More specifically, other key areas that would benefit from MCS include natural language 

processing, computer vision, and robotics [1]. Consider the problem of machine translation and 

the lexical ambiguities humans can easily understand but persistently evade the grasp of software 

such as Google Translate. Translation software is often successful in using nearby words to 

predict simple translations with statistics, avoiding the task of true understanding [1]. However, 

when certain phrases and clauses are added between such words, the “statistical proxy for 

common sense” that was correct on the simple examples runs into problems as the complexity 

increases [1]. For example, as of 2015, Google Translate could handle the ambiguity of the word 

“working” when translating the following sentences into German: “The electrician is working” 

and “The telephone is working” [1]. However, the system used the German word for “laboring” 

when translating more complex sentences such as “The telephone on the desk is working” [1]. 

Although the statistical prowess of such systems will increase over time, perfect disambiguation 

will only realistically be achieved when systems attain true understanding of the text with the 

correct domain knowledge [1]. With respect to computer vision, similar challenges exist. 

Movies, for example, require the audience to piece together several different scenes, make 

inference about people’s intentions, understand physical objects, relationships between 

characters, etc. [1]. Lastly, in robotics, if machines are to be trusted in uncontrolled 

environments, systems must be able to reasonably and safely handle unexpected situations 

without having been trained upon them. For example, an assistant robot asked to pour out a glass 

of wine by its owner ought to be able to think for itself and realize that if the wine glass pulled 

off the shelf is cracked, scratched, or dirty it ought to select another [1].  In other words, current 

robots are “literalists,” that only perform based upon exact specifications and lack the flexibility 

of the human mind [15]. Only until machines can achieve the adaptability and reasonableness of 

human thought will robots be suited for complicated, open-ended environments (i.e. public 

stores, crowded streets, private homes, etc.), significantly increasing their usefulness in society 

[15].  

What are the challenges to overcome? 

 

Tackling Human-like Reasoning 

 The list of machine commonsense challenges remaining unsolved is numerous, spanning 

topics such as planning, physical and spatial reasoning, natural language understanding, intuitive 

psychology, etc. [16]. Certain reasoning challenges such as temporal reasoning, causality, and 

cross-domain understanding must be solved to achieve general intelligence capabilities and are 

relevant across most AI applications (vision, NLP, etc.). For example, robots instructed to 

perform some task (such as cooking a dinner) must understand the sequence of sub-tasks 

involved (i.e. mixing ingredients before placing in the oven). This sort of “temporal logic can 

allow the robot to construct a cognitive model” of events and combine the model with 

commonsense knowledge to develop a well-organized plan over time [15]. Understanding 

causality across time and space is also crucial, allowing machines to predict consequences of 
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their actions and help formulate plans under novel circumstances [15]. Further, machines will 

need to be able to apply and combine learned knowledge across domains to solve real-world 

problems. Take healthcare robots, for example. If a hospital robot is to help elderly patients get 

into their beds, they must understand the patients’ psychology, biology, the physics involved, 

and more to ensure safe completion of the task (i.e. just moving a patient’s center of mass over a 

bed could result in great injury if the robot doesn’t understand the orientation of the patient’s 

body and how the patient is feeling) [15]. Although machines will need to have access to 

commonsense knowledge in order to tackle many of these challenges, this alone is not enough. 

Machines will need to possess human-like reasoning systems integrated with such commonsense 

knowledge in order to be of use in the dynamic, unsupervised real world.    

Inherent Difficulties in Human Language 

 Although researchers have found success in image recognition techniques and other 

pattern matching systems, natural language processing has been more of a challenge due to the 

nature of human communication. Catherine Havasi explains that text is “precise and 

abbreviated”, leaving out the boring basics in order to demonstrate creativity and make writing 

interesting [17]. For example, when one tells another about a trip to Starbucks, there’s no need to 

explain that a hot drink comes in a mug or that one must pay a cashier before receiving the 

beverage. As such, much of the ‘important glue” is left out of the data sets machines will 

encounter [17]. Simply put, humans are incentivized not to be boring: Grice’s maxims suggest 

that humans generally only provide as much information as needed to stay on topic and relevant 

in a clear and concise manner but enough to avoid vagueness and ambiguity [17] [18]. Another 

troubling aspect of human language is what Geoffrey Nunberg calls “the social differentiation of 

knowledge”: essentially a given word can mean different things to different people due to their 

unique backgrounds [19]. Nunberg poses the following questions: how does one determine what 

information a speaker associates with a word and, moreover, what is one able to infer about the 

speaker’s “internal state” from this? [19]. In fixed domains without “social differentiation of 

knowledge” formal semantics can perform well, but without this constraint commonsense 

inference is crucial to language understanding.  

 

Representation vs. Reasoning 

 Among the most important decisions researchers need to make is how best to represent 

knowledge internally so that programs can access it efficiently and reason with it effectively. 

Many of the classical theories suggest starting with formal, first-order logic [11] [20], but this 

approach is also widely critiqued [21] [22]. Robert Moore argued that many “important features 

of commonsense reasoning can be implemented only within a logical framework”, such as those 

“involving incomplete knowledge of a problem situation” that require “deductive inference” 

[20]. Other problems requiring checking if “an existentially quantified proposition is true” and 

case-based reasoning all require some sort of formal logic [20]. Formal logic has no bound for 
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what can be handled as an object, allowing for representation of the non-physical: “times, events, 

kinds, organizations, worlds, and sentences” [20]. Unrestricted by domains, first-order logic may 

always prove useful in dealing with reasoning about topics for which there is incomplete 

information [20].  

 Formal logic may be useful in deduction, but humans use a wide array of reasoning 

techniques that mathematical logic cannot handle as simply. Humans also rely on personal 

experience, analogy, anecdote, and probabilistic thinking, all of which logicists seem to ignore 

[21]. Some logicists even go to the extreme, claiming that inference does not generate new 

knowledge since it is already solved, which implies that logicism fails to characterize cross-

domain knowledge application [21]. When applied to language, formal logic faces more 

challenges since meaning is context-dependent and often ambiguous. With the goal of logical 

forms to represent sentences more clearly than the text itself in a context-independent fashion, 

logical systems probably must maintain “distinct representations for the different reading of 

ambiguous natural-language expressions” [22].  Opposing logicism, Birnbaum calls for a 

“functional semantics” that only attributes meaning to words based on its use in practice, stating 

that, although knowledge and its use go hand-in-hand, knowledge from one application can be 

applied to several others [21].  

 More broadly, rather than fixating on formal logic as the representational language, there 

is a broader tradeoff between any machine’s internal representation of knowledge and its 

reasoning capabilities. As the expressivity of the chosen representational language increases, so 

do difficulties in tractability of reasoning [23]. To combat this issue, Levesque suggests to “push 

the computational barrier as far back as possible” and to loosen the “notion of correctness” [23]. 

Regardless of the chosen representational language, the knowledge representation system must 

have a compatible reasoning mechanism for question answering and the integration of new 

knowledge, reaching enough reliability in both resource-use and correctness [23].  

 Some researchers go so far as to hypothesize that “representation is the wrong unit of 

abstraction” [24]. When AI systems rely on interaction with the real world through sensory data 

and interaction, “reliance on representation disappears” [24]. Rather than diving deep into niche 

subproblems of AI, Rodney Brooks suggests building up intelligent creatures in layers and 

maintaining complete systems at each step to guarantee proper connectivity between sub-pieces 

[24].  Brooks critiques the decomposition of AI research into subfields such as “knowledge 

representation” and “qualitative reasoning”, claiming that human intelligence is not well 

understood enough to decompose into the correct sub-systems, let alone to tie them all together 

[24]. Overall, Brooks places doubt on researchers’ ability to determine the exact requirements of 

a truly intelligent system and concludes that research should “use the world as its own model” 

[24]. Along a similar vein, Dan Roth proposes a “Learning to Reason” framework that assumes 

no exact knowledge representation for the system but rather that the system would create its own 

as it interacts with its external environment [25]. Roth presents the example of a “baby robot, 
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starting out its life” and compares it to a human infant, stating that “nature would have provided 

for the infant a safe environment in which it can spend an initial period of time” to interact and 

learn from its environment before being expected to have “full functionality” [25]. This approach 

avoids placing constraints on the knowledge representation language and emphasizes the 

importance of integrating reasoning with learning from the start [25].  

 

Limits of Deep Learning 

 Although deep learning has allowed for progress in areas like image recognition and 

helped machines beat experts at board games, the question arises whether these systems are just 

powerful statistical engines and glorified pattern matchers or if they actually understand and 

reason about topics as humans do. Unfortunately, the state-of-the-art neural systems fit more into 

the former category. Even the best deep neural networks can be fooled by images, confidently 

labeling certain unrecognizable pixels completely wrong (i.e. mistaking “white noise static” for a 

lion) [26]. Appendix Figure 1 provides several examples of these “fooling images” that are 

unidentifiable to the human eye but predicted with over 99% certainty to be discernable objects 

[26]. Nevertheless, there is hope that future neural networks will be furnished with 

commonsense, causal reasoning, intuitive physics, and other features that will substantially 

improve their capabilities [27]. Brenden Lake et al. suggest incorporating “more structure and 

inductive biases” into neural models to attain more human-like learning [27]. Future neural nets 

could also be programed to “learn to learn” to generalize knowledge across domains, make better 

inferences with less training data, and avoid starting from scratch [27]. In summary, current 

machine-learning typically aims at taking some hyper-specific, niche task and tries to “bootstrap 

it from scratch” [15], but, without generalization and the ability to build up on previously learned 

knowledge, achieving general artificial intelligence is unlikely. 

Classical Benchmarks for Achieving Common Sense 

 In 1950, Alan Turing proposed an “imitation game,” now widely known as the “Turing 

Test,” to replace the question “can machines think?” [28]. The game is simple and involves two 

humans and a machine. One human is the interrogator, who asks the other human and the 

machine a series of questions and after some time must decipher which respondent is the 

machine and which is the other human. If the interrogator is unable to consistently distinguish 

between the human and computer, it is believed that the computer can think like a human [29]. 

However, this classical test depends upon unstructured conversation that can “facilitate deception 

and trickery” [29].  

More recently in 2011, Hector Levesque proposed the Winograd Schema Challenge as a 

substitute for the Turing Test that avoids these problems [29]. This test is composed of a series of 

binary choice reading comprehension questions, with each question involving a pair of 

individuals or items and a pronoun/ possessive adjective referencing one of the parties that is 
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also suitable for the other object [29] [30]. Consider the following example: “The town 

councillors refused to give the angry demonstrators a permit because they feared violence. Who 

feared violence? Answer 0: the town councillors Answer 1: the angry demonstrators” [29]. 

Levesque explains that in order to solve this problem one must possess and reason with 

background knowledge, a process that necessitates thinking [29]. To humans, the set of schemas 

are so easily solvable that the answerer may not even realize the ambiguity; however, there is 

“no obvious statistical test over text” that will provide consistent accuracy in its answers [30]. A 

list of other currently outstanding, relevantly applied commonsense reasoning problems exists on 

Stanford’s “Common Sense Problem Page” [16]. 

Attempts at Machine Common Sense To-Date 

Previous approaches to achieving machine common sense (MCS) can be separated into 

the following categories: knowledge-based, web mining, and crowd sourcing [1] (See Appendix 

Figure 2 for a visual representation). Knowledge-based systems include mathematical methods 

(i.e. situation calculus [2], naïve physics [3], etc.), less formal methods (i.e. scripts [4], etc.) and 

large-scale approaches (i.e. logic ontologies such as Cyc [5], etc.) [1]. Below, each of these 

categories is described in more detail. 

Knowledge-based Systems 

 Knowledge-based attempts at commonsense reasoning involve creating representations to 

handle different types of knowledge and reasoning with these representations [1]. The earliest 

example of such attempts is attributed to AI pioneer John McCarthy who suggested using formal 

logic to handle commonsense reasoning [1] [11]. Since then, researchers have pursued a variety 

of formal and informal logic-based frameworks and logic-based ontologies [8].  

i.  Mathematical and Logic-Based Attempts 

 While several “technically demanding” mathematical frameworks for common sense 

reasoning have been developed, little work has been done to implement these “purely 

theoretical” and “technically demanding” foundations into practice [1]. One such example is 

situation calculus, which employs first-order logic to model states and actions. Often used in 

planning, situation calculus utilizes a “branching model of time” and analyzes alternative actions 

[1] but fails to be of use in areas such as narrative understanding since “it treats events as 

atomic” and mandates knowledge of event sequence [1].  An example of situation calculus is 

STRIPS (STanford Research Institute Problem Solver) that uses large sets of predicate calculus 

formulas as a world model and “employs a resolution theorem prover to answer questions of 

particular models and uses means-ends analysis to guide it to the desired goal-satisfying model” 

[2]. 
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 Logical frameworks have also been formulated to handle commonsense challenges such 

as default reasoning [31], circumscription and non-monotonic reasoning [32], and descriptions 

[33]. Commonsense reasoning in humans frequently includes default reasoning when making 

inferences with incomplete information that are later subject to change by later observation [1]. 

These inferences are often of the form “in the absence of any information to the contrary, 

assume…” [31]. With negative conjectures greatly outnumbering the positive about any given 

environment, some claim that only positive information need be specified as negative inferences 

are assumed by default (i.e. the closed-world assumption) [31].  Similarly, McCarthy proposed 

first-order-logic for dealing with circumscription, the conjecture rule humans often use when 

“jumping to certain conclusion” [32]. For example, a “qualification problem” arises when 

someone is to complete a certain task (such as taking a rowboat across a river): there are nearly 

infinite qualifications that could be formulated that must be satisfied for success task completion 

(the oars are in the boat and well-functioning) [32]. Circumscription makes concrete the informal 

human assumption that a “tool can be used for its intended purpose unless it can’t” [32]. 

Additional work has gone into developing logical methods for expressing concepts and the 

relationships between them (“description logics”) [1]. For example, KL-ONE is a knowledge 

representation system that supplies “a language for expressing an explicit set of beliefs for a 

rational agent” [33]. Lastly, logic has also been theorized to be able to express domains such as 

naïve physics [3]. Most famously, Pat Hayes proposed a theory for formalizing all of naïve 

physics “in a declarative symbolic form” that would be broken into concept clusters such as 

“forces and movements,” “energy and effort,” and many more [34].  

ii. Informal Attempts 

Other less formal knowledge-based approaches have contributed to the field by 

theorizing about a wide array of specific inference techniques [1]. One notable attempt is 

Minsky’s concept of frames [36]. Minsky argues that mathematical logic focuses too heavily on 

consistency and thus ignores that human thought starts with “suggestive but defective plans and 

images” that are modified over time [36]. Frames are proposed as a type of “data structure for 

representing a stereotyped situation” that humans pull from their memory and adapt to novel 

circumstances to reason about attributes of and expectations for a given event [36]. This 

framework for inference seems quite relevant to commonsense thought as humans draw upon 

templates for certain events (i.e. a football game) and actions (i.e. entering a kitchen) to consider 

characteristics and potential outcomes of situations (routine and novel) in everyday life.  

Schank’s theory of scripts [4] parallels the idea of frames but is specifically applied to the 

“case of structured collections of events” [1]. Additionally, Schank proposed the concept of 

plans that uses commonsense knowledge to order events so that individuals can achieve some 

goal [4]. This theory has proven useful in not only understand the attributes of certain situations 

but also how complex behavior is organized, assisting inference about unique situations and the 

complexities human behavior more broadly [36]. 
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Furthermore, there has been mild success in developing frameworks for qualitative 

reasoning about the physical world [37]. More generally, qualitative reasonings involves 

“direction of change in interrelated quantities” such as the relationships between price and 

demand of a product [1]. However, most work in this area has succeeded in specific domains but 

as complexity increases these systems lack usefulness and cannot generalize across domains [1].   

Of note, several modern software applications, such as “text editors, operating systems 

shells, and so on,” are all rather informal in nature and do not rely on deeply mathematical and 

statistical architecture [1]. Thus, informal attempts at commonsense AI are not necessarily far-

fetched if application catches up to theory. 

 

iii. Large-scale Attempts 

 The last broad category of knowledge-based approaches to comes in the form of massive 

databases containing what humans would classify as commonsense information (i.e. cars drive 

on roads or the sky is blue). In 1984, Doug Lenat started building Cyc [5], one of the largest 

attempts at a logic ontology to-date. Lenat proposes Cyc “as an expert system with a domain that 

spans all everyday objects and actions” [5]. Most of Cyc’s commonsense assertions are obvious 

to any human: “you have to be awake to eat” or “you can usually see people’s noses, but not 

their hearts” [5]. The Cyc system structures its assertions around a variety of contexts, creating 

an organizational architecture “reminiscent of Schankian scripts” [5]. Rather than focusing on a 

solution to general intelligence, Lenat explains that Cyc was developed to “build a set of micro-

theories that together cover the common cases of each problem”, sacrificing full inference 

functionality for “expressiveness and efficiency” [5].  

 The underlying idea behind Cyc is that machines need the information at hand not only to 

complete assigned tasks but also predict future actions, which requires vast amounts of world 

knowledge [38]. Several proposed applications of Cyc include functionality as a “semantic 

backbone” to connect data sources, improving text editors with advancements in grammar 

checking, and enhancing the authenticity of objects and agents in simulations [5]. Nevertheless, 

after several decades of work, critics claim that the proposed benefits of Cyc have failed to come 

to fruition [15]. Little information about the true contents of the system have been made public 

and usability concerns have arisen regarding the dependability of the system and its interfacing 

with other applications [1].  

 Over the last several decades, a collection of more specialized ontologies has arisen for 

specific domains.  For example, researchers created WordNet as a lexical database for 

applications in linguistics and natural language processing [39]. WordNet is a thesaurus-like 

network in which “sets of synonym form the basic building blocks” [40]. In order to build off of 

WordNet’s focus on semantic relations, researchers later created VerbNet as verb-centric lexical 

database that integrate with WordNet but that also make use of syntactic information [41].  
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 As previously noted, one of Cyc’s criticisms is its public unavailability. In 2001, 

researchers with the goal of creating an easier-to-use version of Cyc introduce the SUMO 

ontology, “merging publicly available ontological content into a single, comprehensive, and 

cohesive structure” [42]. Next, the YAGO ontology emerged as an enhanced version of WordNet 

that pulled common information about the world from Wikipedia [43]. Other notable 

contributions include DOLCE [44] to further refine WordNet and the proposal of the Semantic 

Web which aimed to use ontologies to improve the World Wide Web.  

Over the past decades, there have been numerous attempts at constructing logic 

ontologies built upon commonsense facts, but still there is criticism that having access to such 

information is not enough for true comprehension of “how these ‘facts connect’” [15]. Machines 

ought to not only record particular facts but also incorporate them into a broader framework. For 

example, rather than just knowing that Picasso painted The Old Guitarist or that Beethoven 

composed the “Ode to Joy,” systems ought to fit observations “into a larger framework that 

makes clear that a creator owns a work until he/she sells it, that works by a single person are 

often stylistically similar and so on” [15].  Ontologies tend to define knowledge in “black or 

white symbols, which never quite match the subtleties of human concepts they are intended to 

represent” [8]. Moreover, there are even further challenges in usability for many of the 

ontologies that developers seek to interface with [8]. Researchers aiming to use Cyc for web 

query expansion report several issues spanning API failures, redundancy in content, and 

insufficient information in certain domains, etc. [46]. Overall, logic ontologies have successfully 

been created in specific realms, but much progress remains in order to reach widespread 

applicability and any deeper grasp of human-like commonsense.  

Web mining 

 Another broad category of commonsense research comes in the form of machine learning 

techniques implemented to search the Web for and extract information [8]. Web mining could 

allow for a more scalable approach to commonsense database creation as it is automated, as 

opposed to the manual input required to create many previous ontologies. One such automated 

information extraction program is KnowItAll, which collects information from text based off 

various syntactic patterns it can recognize [6]. For example, KnowItAll can successfully gather 

“instances of categories by mining lists in texts” [1]. KnowItAll is composed of an “extractor” 

that handles the rules relating to the syntactic patterns, a “search engine interface” that creates 

queries, an “assessor” that utilizes a naïve Bayes classifier to produce an estimate of correctness 

for the extracted knowledge, and lastly stores all of this in a database [6]. DBpedia [47] is 

another extraction program aimed at generating structured data from Wikipedia and other 

datasets online in hopes to spur progress towards further development of the Semantic Web.  

 Additional progress has been made in the field with the creation of NELL (never-ending 

learning language) [8] [48]. The NELL program runs 24/7 on the Web and has accumulated a 
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massive knowledge base of “confidence-weighted beliefs” [8]. Its developers also use 

crowdsourced feedback for quality checks and system improvement [8]. The system not only 

extracts semantic categorization and relationship information but also learns to improve its 

extraction over time [48]. NELL has even learned to extract knowledge from untraditional 

structures, like tables and lists, and to use “probabilistic horn clause rules” to make additional 

inferences from previously collected knowledge [48]. As opposed to common supervised 

learning models, NELL’s program is based off semi-supervised learning that “couple[s] the 

training of many different learning tasks” so that the program can learn “thousands of functions 

from only a small amount of supervision,” resembling a more human-like learning procedure [8]. 

Regardless, NELL is not flawless. The program has trouble self-monitoring progress, contains 

certain immutable methods unable to self-improve, and has no ability to handle temporal and 

spatial aspects of knowledge [8]. The outputted taxonomy is also reportedly quite lopsided with 

vast amounts of information in some domains but nearly none in other [1].  

  In summary, web-mining has shown promising improvements in efficiency over manual 

data accumulation, but these methods have yet to improve upon their “relatively shallow 

semantic representations,” limiting their usefulness in reasoning beyond basic question 

answering via querying through data [8]. Like logic ontologies, web-mining approaches have 

limited understanding of their contents and a shortfall of any human-like reasoning capabilities. 

Crowd Sourcing via the Web 

 The last subcategory for attempts at commonsense reasoning is crowdsourcing 

commonsense facts from individuals. The idea is that since essentially all humans have this 

knowledge, commonsense knowledge can be extracted from them. Launched in 1999, the Open 

Mind Common Sense project is the first of its kind to implement crowdsourcing on the web to 

collect commonsense knowledge [49]. Open Mind uses a variety of crowdsourcing methods, 

including giving users a short story and then asking the user for text input about implied 

information [50]. An example might be stating “Bob had a cold. Bob went to the doctor” with 

the user responding “Bob was feeling sick” or “The doctor made Bob feel better” [50]. Rather 

than separating knowledge into siloed microtheries as in Cyc, Open Mind users are only required 

“to build topic vectors”, which are groupings of “concepts that are related to a given topic” [50]. 

Constructed over the output of the Open Mind project is the ConceptNet knowledge base [51]. 

Rather than focusing on “lexical categorization” like WordNet or “formalized logical reasoning” 

like Cyc, ConceptNet aims to provide “practical context-based inferences” [51]. The semantic 

network is filled with more in-depth relations, such “EffectOf,” “DesireOf,” and “CapableOf,” 

and can better handle complexities in natural language (analogy, space, time, ambiguity, etc.) 

that other attempts cannot [51].  

 A drawback of crowdsourcing is that collected data can be partial or inaccurate [15]. 

Even though all people understand commonsense knowledge, relying on individuals to input data 
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in a form useful for machines can lead to inconsistencies and confusion [15].  Crowdsourced 

knowledge also lacks the “analysis of fundamental domains” and the differentiation between 

various meanings that are required for well-grounded reasoning [1].  

Recent Approaches to Solving MCS 

In Fall 2018, DARPA announced a new program to provide funding to researchers with 

the goal of tackling the “elusive” Machine Common Sense problem [8].  The program outlines 

four new major research areas ripe for breakthroughs: (i) new representations, (ii) commonsense 

extraction and the web, (iii) experiential learning, and (iv) replicating childhood cognition [8]. 

The corresponding research is highlighted in the following sections. 

New Representations 

 As described earlier, classical attempts with mathematical logic and other knowledge-

based attempts at commonsense reasoning have failed to truly encompass the wide array of 

reasoning capabilities possessed by humans. Recent research has focused on developing new 

representations more suitable for such complexities. One promising trajectory of research in 

natural language processing and computer vision is the rise of semantic embeddings. Neural nets 

can now use word embeddings, mappings of natural language words into numeric vectors, to 

better analyze semantic similarities of words in text based upon their proximity to other words 

throughout large corpora [8]. Most famously, Google’s Word2Vec [52] [54] software is the 

state-of-the-art for word embedding creation [53]. The software uses the extremely efficient 

“Skip-gram model” whose objective is to create word embeddings that better predict nearby 

words in text [52]. The underlying hypothesis of the program is that “words in similar contexts 

have similar meanings”, however this has yet to be proven theoretically rigorous [53]. 

Researchers also found that adding word vectors together and tokenizing phrases allows for 

better representations of longer texts [52]. Further development of the model has been used to 

create paragraph vectors, which have proven for more meaningful than bag-of-words 

representations that completely disregard word order and semantics [54]. With these powerful 

representations, Google has developed a neural “zero-shot translation” model for machine 

translation between multiple languages that can successfully translate language pairs absent from 

the training data [55]. This is significant because it exhibits that neural models can attain human-

like transfer learning. 

 Another success in new language representations is knowledge enhanced embeddings 

(KEE) [56]. These embeddings “combine context and commonsense knowledge” and have 

helped researchers make significant improvements on the Winograd Schema challenge. Trained 

over commonsense “cause-effect word pairs” and large amounts of text, the KEE framework 

treats commonsense information as a “semantic constraint” [56]. Further refinement in 

integrating both semantic and commonsense constraints into embeddings appears promising for 

future improvement in natural language understanding. 
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 Other new representations come in the form of probabilistic models of learning. Despite 

lack of true understanding of the human mind’s inner workings, Tenenbaum et al. suggest a 

“Bayesian approach” to machine inference to move the field closer [57].  Probabilistic learning 

avoids the “either-or dichotomies” that have divided AI researcher for decades [57]. As apposed 

to previous knowledge-based approaches, a system based on probability avoids problems related 

to the rigidity of structured logic and can handle “noisy data of experience” [57]. In 2015, Lake 

et al. proposed the “Bayesian program learning (BPL) framework” that exhibits human-like 

generalization abilities and learn “a large class of visual concepts” from a minimal number of 

examples [58].  

 In computer vision, researchers have made progress using And-Or graphs as a basis for a 

“stochastic and context sensitive” image grammar [59]. This works aims to solve the problems of 

handling several hundred “object and scene categories” while simultaneously allowing for “intra-

category structural variation” [59]. The proposed grammar benefits from the recursive structure 

of the graphs and is integrated with a probabilistic framework [59]. This grammar has been 

applied to videos to extract commonsense knowledge and predict semantics of a given scene 

[60]. Even further, the grammar was applied within a framework to analyze text and video 

jointly, and was able to produce “narrative text descriptions” and answer basic questions (i.e. 

“who, what, when, where and why”) about the multimedia [61].  

 Lastly, researchers have continued to create new and improved knowledge bases for 

commonsense reasoning. One such example is ATOMIC, which is a knowledge graph that 

focuses on inferential (i.e. if-then) relationships between concepts to better capture human-like 

inference capabilities [62]. With training on vast amounts of crowdsourced inferential data in the 

form of free-form text, neural networks are given a certain scenario and can infer about previous 

events that happened leading up to it [62]. Although the ability to infer cause and effect 

relationships is crucial to commonsense reasoning, this is only one aspect of human reasoning 

machines will need to acquire if they are to achieve general intelligence.   

Commonsense Extraction and the Web 

 New research has continued progress in the fields of web-mining and information 

extraction from text, picture, and video data [8]. Similar to NELL but for images rather than text, 

the NEIL system traverses the web and extracts commonsense knowledge by analyzing images 

[63]. Additionally, NEIL can label object categories, scenes, and their attributes [63]. In text 

extraction, researchers have created a “hunting framework” for commonsense information that 

was demonstrated to achieve progress on the Winograd Schema Challenge [64]. This framework 

processes each Winograd Schema question, automatically creates relevant search queries on the 

web, extracts the text, and uses the information to predict an answer [64]. Both of the above 

approaches represent successes in reasoning about commonsense via extraction from text and 
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image data. The following three sub-sections detail more specific historical and recent 

approaches to such extraction and understanding techniques with text, vision, and robotics data. 

  

i. Commonsense and Natural Language 

 Classical attempts at commonsense reasoning with natural language begin with the 

concept of semantic networks [67]. In 1975, W.A. Woods expressed the need to develop such a 

representation for natural language that can handle many practical problems inherent in natural 

language such as “relative clauses,” “degrees of uncertainty,” “times and tense” and many others 

[67]. In 1976, John McCarthy proposed the idea of an “artificial natural language” based in 

predicate calculus that could represent assertions made in text and assist in natural language 

understanding [67], but formal logic has widely proven too rigid to handle these complexities in 

an efficient manner. Over time, researchers highlighted many more challenges intrinsic in text. In 

1985, Mooney and Dejong proposed a new narrative understanding framework for understanding 

different agents’ actions from their goals, which was more broadly an attempt at extracting 

causal inferences from text [68]. Other research, noting that text is often “vague, insufficient, and 

ambiguous,” introduced the concept of naïve semantics, which is the general commonsense 

knowledge every natural language speaker possesses [69]. From the above examples, one can tell 

that early research focused on many unique challenges to understanding natural language and 

gains appreciation for wide array of difficulties current researchers face when trying to extract 

information from and reason over bodies of text.  

 Recent research in commonsense knowledge extraction from and understanding of text is 

also scattered across various sub-challenges. Some have focused on identifying semantically 

plausible events from text by training models on crowdsourced data [70]. For example, 

commonsense reasoning tells us that a human could literally “swallow a paintball,” but this is 

likely not something training data would provide information on [70]. Others have focused on 

new ways to dynamically incorporate common-sense knowledge from ConceptNet and 

Wikipedia into neural natural language understanding models so that additional background 

knowledge can be drawn upon beyond the “static” information collected during training [71]. 

Moreover, other extraction techniques have centered around basic “object-property comparisons” 

by comparing word embeddings (i.e. “elephant and tiger”) of the compared objects to the 

embeddings of the compared qualities (i.e. “big and small”) [72]. Commonsense physical 

knowledge has also been extracted via inference from verbs via Verb Physics techniques [73]. 

For example, one knows that if someone enters a building that the building is bigger than the 

individual [73]. Further, researchers have extracted commonsense inferences “about the mental 

states of people in relation to events” [74], created “temporally aware” embeddings to 

incorporate a time dimension into entity relations [75], and trained models to extract 

commonsense information for action justification [77]. Finally, researchers have also created 

models of state changes to better comprehend the ordering of procedural text [78] and 
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frameworks for understanding and reasoning about people’s emotional reactions to events [79] 

(See Appendix Figure 3 for an annotated example of this emotion/motivation framework).  

 

ii. Commonsense and Vision 

 As image data is now more widely available than ever, computer scientists have turned to 

visual data to assist in the commonsense extraction process. Part of commonsense knowledge 

involves understanding one’s physical surroundings and being able to reason about them. 

Researchers have turned to image and video data to start chipping away at this task. A very basic 

starting point is reasoning about physical characteristics of objects, such as their size. Some 

research has begun by building models that take both textual and image data as inputs to learn 

the relative sizes of different objects in the scenes [80]. Other strategies focus on extracting 

spatial relationships between object (i.e. “‘holds(bed,dog)’” and “‘laying-on(bed,dog)’” [81]) to 

detect new commonsense relations (i.e. “‘holds(furniture, domestic animal)”’) [81]. Additional 

research on spatial knowledge extraction has also been developed to learn spatial relationships 

from annotated images where the spatial information is implicit (i.e. “‘man riding horse’”) [82]. 

In addition, reasoning has been implemented in programs that use vision and text data to reason 

about the plausibility of commonsense assertions [83]. Furthermore, commonsense not only 

involves understanding of general physical relationships but also reasoning about the effects of 

certain actions on physical objects. AI systems will need to “understand basic action-effect 

relations” about real world items if they are to ever collaborate with humans [84]. To assist in 

this effort, models have learned to (i) given an input image, predict actions that likely occurred 

beforehand and (ii) given an action in the form of a verb-noun pair, predict the resulting image 

(See Appendix Figure 4 for some examples) [84]. In summary, several pieces of recent 

commonsense research in computer vision have shown that using both text and image data 

greatly improved learning ability and enabled better commonsense extractions about the physical 

world that text-only systems are less likely to grasp.  

iii. Commonsense and Robotics 

 Every day, humans receive a variety of sensory inputs (sound, sight, touch, etc.) and 

make commonsense judgements with them. Programming robots to collect some of this same 

sensory information could further enhance machine intelligence efforts. Arguing that physical 

interaction is a crucial component of learning, some computer scientists have built robots with 

visual and touch sensors to learn from physical interaction directly [85]. Rather than just 

passively observing images and videos, the robot “pushes, pokes, grasps, and observes objects in 

a tabletop environment” and train a ConvNet with the sensor data for image classification [85]. 

Other technologies have been developed to turn videos into semantically labeled 3D scenes [86].  

The building of 3D simulation environments has also allowed for the creation of new 

commonsense reasoning tests, such as “Embodied Question Answering” in which “an agent is 
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spawned at a random location in a 3D environment and asked a question” about an item in its 

surroundings [87]. 

Commonsense Extraction and the Web (cont.) 

 Rather than creating new representations for extracting commonsense from scratch, 

several researchers have focused on knowledge base completion (KBC) to enhance the use of 

current commonsense knowledge bases. One example of a KBC success involved training a 

model to give quality ratings to novel ConceptNet tuples [88] [89]. Other improvements have 

come in the field of deep neural networks. Some of these examples include augmenting neural 

networks with “explicit memory” [90]. These “memory networks” have access to a “long-term 

memory” that “effectively acts as a (dynamic) knowledge base” [91].  Additionally, some new 

neural network functionality has been developed to “understand procedural text through (neural) 

simulation of action dynamics” [92]. Applied in the “cooking domain,” for example, the model 

successfully used entity embeddings and learned “action transformations” that resulted in 

modifications of the state of entities [92].  

Experiential Learning 

 A key aspect of human learning is learning from experience. Across several different 

domains, humans make inferences about the future based on passed observations. Recent work in 

computer vision has made headway in duplicating this sort of learning. One significant 

advancement came in a 2016 that used video footage to train models to infer what could occur in 

the future [93]. Unlabeled video data proves very useful in training these models because they 

are readily available at low cost and highly scalable [93]. Rather than collecting pixel data from 

each frame, the study extracted semantic “visual representations” [93]. The study exploits the 

“temporal structure in unlabeled video” to “anticipate human actions and objects” [93]. This is 

an important breakthrough because event prediction technology has many applications in 

practice, including integration with product recommendation and security systems [93]. Another 

hypothesis is that from this technology, machines could eventually better understand human 

behavior and psychology, making them more suitable collaborators with humans.  

 Other applications for experiential learning are found in the realm of basic physics. 

Facebook AI researchers recently completed a study on physical relationships in the real world in 

which they trained models to observe falling stacks of wooden blocks [95]. Humans do not need 

to understand complicated mathematical formulae to comprehend elementary physics concepts 

such as gravity, rather humans “rely on intuition, built up through interaction with the real 

world” [95]. As such, in this study, the researchers trained convolutional neural networks to 

predict if blocks would fall and, if they would, what the trajectory of each block would be [95]. 

The research team notes that the learned models could also generalize to novel situations with 

additional added blocks and pictures of real blocks (instead of the 3D models used in training) 

and still achieve human-level prediction accuracy [95]. Although this is just a beginning, future 
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work could revolve around training models on other physical attributes and combining work to 

create a system that truly understands human-level intuitive physics.   

 

Replicating Childhood Cognition  

 

Classical theorists throughout history have brought up the idea of trying to simulate 

human cognition in order to achieve artificial general intelligence. In 1950, Turing stated, 

“Instead of trying to produce a programme to simulate the adult mind, why not rather try to 

produce one which simulates the child's? If this were then subjected to an appropriate course of 

education one would obtain the adult brain” [28]. However, until over the past few decades, there 

was little understanding of cognitive development of humans from infancy to adulthood, let 

alone the inner working and the human brain (still largely unknown). Humans remain superior to 

machines in several reasoning tasks, which has led to a movement to reverse engineer the 

human’s cognitive development.  

This view is seemingly supported by the Theory of Grounded Cognition [96] [97]. 

Grounded cognition theorists believe that “modal simulations, bodily states, and situated action 

underlie cognition” [96] and assume “no central module for cognition” [97] (See Appendix 

Figure 5 for a visualized explanation of grounded cognition [97]).  Gallese and Lackoff 

hypothesize that “understanding of concrete concepts—physical actions, physical objects, and so 

on—requires sensory motor simulation” [98], hinting at value in duplicating human cognition 

processes in machines. Additionally, Lackoff argues that metaphor is essential to human though 

as humans “typically conceptualize the nonphysical in terms of the physical” [99]. When 

considering where to begin, computer scientists have turned to developmental psychologists’ 

Theory of Core Knowledge [100] [101] [102]. The Theory of Core knowledge states that 

children are “endowed with several distinct core systems of knowledge,” including “objects, 

agents, number, and space” [100]. These distinct core systems later serve as foundations for 

more powerful cognitive abilities [101]. For example, one study of preschoolers found that 

“language understanding is intertwined with commonsense psychology” [105]. By reviewing the 

literature in developmental psychology and better understanding the timeline by which human 

infants reach certain milestones in their cognitive processes, researchers can better understand 

the milestones and benchmarks machines must accomplish to replicate the development of 

machine cognition.  

Some of the most recent research in this field builds upon the notion that children 

develop expectations for objects, agents, and places and act “surprise when those principles are 

violated” (i.e. VOE) [8]. One psychological study in this area claims that children’s learning is 

stimulated by VOE events [103]. VOE events encourage young children analyze the defying 

object’s properties further and “test relevant hypotheses for that object’s behavior” [103]. 

Building off this revelation, researchers at MIT Early Childhood Lab have started crowdsourcing 
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babies’ reactions to VOE events and recording them on video to analyze the infants’ facial 

reactions [8] [104].  

A further attempt at replicating human cognition involved probabilistic representation of 

human thought [106]. Battaglia et al. proposed an “intuitive physics engine” model to make 

predictions about physical objects in scenes with incomplete information [106]. The study relies 

on the idea that individuals run quick mental simulations in their head to generate inferences 

about physical scenes and that thus a probabilistic program could be trained to predict in a 

similar fashion [106].  Another study attempted to integrate the VOE concept into deep learning 

models [107]. The study was trained on videos simulations and proved plausible the viability of 

using deep learning “to extract fundamental physical principles” [107]. In summary, several 

approaches have found large breakthroughs in commonsense reasoning via reverse engineering 

human cognition, encouraging further collaboration between computer science and development 

psychology.  

Evaluation of New Commonsense Techniques 

 DARPA highlights two main strategies for achieving a commonsense service: (i) 

replicating the experiential learning of human children with focus on core domains of knowledge 

and (ii) building a web-mining system with adult-like commonsense knowledge and reasoning 

capabilities [8]. The first approach will be benchmarked against the key domains of objects, 

agents, and places (See Appendix Figure 6 [8]). For example, systems will have to understand 

the basics of object motion, how agents can affect an object’s motion, and navigate surfaces [8]. 

The second approach will be tested against The Allen Institute for Artificial Intelligence’s 

crowdsourced commonsense test questions found in the SWAG dataset [108].  

 

Conclusion 

Achieving artificial general intelligence has been a goal of the AI community since its 

founding in the 1950s by John McCarthy. From mathematical theories muddled in technical 

minutiae to ontologies filled with millions of facts, no fully developed system has yet been able 

to parallel the capabilities of the human mind. Recent advancement in deep learning have 

successfully learned to translate languages and make predictions about specific physical 

reasoning tasks: but are these systems really exhibiting human-like reasoning or are they just 

glorified, statistics-powered machines? Will commonsense ontologies and networks ever be able 

to truly understand their contents, or are they just complex lists of facts? It is too early to 

determine. What we do know is that common sense is multimodal (necessitating the use of 

several human senses), and thus does not fit well into existing AI research disciplines. As such, a 

well-integrated approach across domains, inspired by work in developmental psychology, and 

focused on interactions with the real world appears most promising.   

 



 

 

Churilla 21 

 

Appendix 

Figure 1: Flawed labeling of evolved images by state-of-the-art deep neural nets [26] 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Overview of Historical Attempts at Commonsense Reasoning [1] 
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Figure 3: Annotated Example of Emotion and Motivation Extraction Framework from Text [79]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Action-Effect Inference Examples [84] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Churilla 23 

 

Figure 5: Grounded Cognition Visualization [97] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Cognitive Development Milestones [8] 
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