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Introduction 
 
Autonomous-vehicle (AV) is “a vehicle that has the capability to drive without the active physical 
control or monitoring by a human operator” [96]. There are 5 levels of autonomy. Lower level (level 
0-3) of autonomy systems consist of multiple individual ADAS’s (Advanced Driver Assistance 
Systems [98]) that help the driver with specific tasks, such as parking, lane-tracking and braking. Higher 
level (level 4-5) autonomy systems, however, aim to completely replace the human driver, thus 
requiring a higher level of machine intelligence, which is often provided by neural network algorithms, 
and a higher level of information integration and functional coordination capability [97]. The Boston 
Consulting Group estimates that by 2030, fully autonomous vehicles will make up 10% of vehicle 
sales around the world, and 44% of U.S. drivers surveyed in the study plan to purchase a fully 
autonomous vehicle within the next decade [99]. 
 
As the major automotive companies and technology companies (GM, Ford, Daimler, Google, 
Amazon, Uber etc.) race to present the world with mass market autonomous vehicles [1], the 
technologies around autonomous driving have been developing quickly in research institutes as well 
as in industry labs. Specialized disciplines in perception, planning and control systems are being studied 
in depth and the techniques are advancing fast. This thesis, however, focuses not on each specialized 
algorithms, but on the system design aspect of autonomous vehicle as a whole.  

 
The anatomy of an autonomous-vehicle software system is quite different from that of a PC. It usually 
consists of dozens of ECUs (Electronic Computing Units) that are like mini-computers, each in charge 
of a separate functionality, such as vision, radar, steering, braking and infotainment [34]. They make 
decisions either cooperatively through a central “brain” or individually in a distributed manner, 
depending on the level of autonomy and the chosen design pattern [34]. 
 
At the current state, there are usually 60-100 ECUs on a single vehicle, and they often operate on as 
many as 6-8 different operating systems [95]. This makes the code base bloated (>100m lines) and 
incompatible for updates [34]. Therefore, an overhaul of architecture design to increase system 
efficiency is due. In the ideal scenario, it is estimated that there could be as few as 6-10 consolidated 
ECUs on each vehicle, operating on the same software platform in the future [95]. Accordingly, new 
software solutions need to be developed to enable the transformation, such as more versatile OSes 
and service-oriented communication [22].  
 
In this thesis, we will first examine the architecture design from two perspectives: “software 
architecture” [6, 22, 24] and “functional architecture” [1, 45, 48]. Respectively, we will examine the 
development stack design (OS, communication network, middleware, and applications), as well as 
how the top-level applications divide up the required functionalities of an AV system and coordinate 
to work together. Throughout the discussion, architecture designs will be judged on their software 
“quality attributes” [7] such as interoperability and modifiability, and evaluated for their implications 
on the competitive landscape of the industry. After the survey of architecture designs, we will dive 
into the two foundational infrastructure for the AV software system – communication network 
(vehicle bus system [11]) and operating system, to gain a more zoomed-in picture of challenges faced 
by AV software developers on the system design aspect. Product offerings of these two infrastructure 
will be analyzed on their design, impact on the AV industry, and future trajectories.  
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Architecture Design 
 

Overview 
 

The Importance of Architecture 
“Software architecture was introduced as a means to manage complexity in software systems” [45] 
and autonomous vehicles are very complex systems. Industries producing similarly complex 
products with stringent performance requirements usually have standardized software architecture, 
such as Future Airborne Capabilities Environment (FACE) in the aerospace industry, which helps 
increase modularity and portability, so that different teams could parallelly develop components that 
easily integrate together [49].  
 
Besides, though safety standards specifically designed for AVs are not well-established [51], there 
does exist functional safety standards developed for automotive in general, such as ISO26262, the 
compliance to which is mandatory for all road vehicles. Compliance to ISO26262 adds significant 
burden to software developers [50] and such compliance can usually be much more easily proven if 
the industry shares a common functional and software architecture, and can therefore reuse tested 
codes [49].  
 
Therefore, an effort to standardize AV architecture will not only speed up development by allowing 
more parallelization and specialization in between teams, but also helps the industry compound 
safety knowledge in an area where safety is yet undefined. 
 

State of Literature 
The state of literature on AV architecture mirrors that of AV safety standards. Though the specific 
algorithms used for key autonomous driving problems, such as object detection, localization and 
trajectory planning, have been under intensive research for decades, the literature on the architecture 
design aspects of AVs have been lacking. Concern over this lack of attention has been voiced by 
multiple researchers that are beginning to touch upon this field over the past few years [6, 43, 44, 
45].  
 
As the survey for this thesis progresses, it became clear that among the limited existing literature, 
there is also a lack of a common research methodology for architecture design, with varying degrees 
of focus on quantitative experimentation versus qualitative reflection. Granted, two popular 
presentation approaches have been identified by Serban et al. (2018) : (1) “proofs-of-concept from 
experiments … or competition” (2) “high level overview of system components” [45]. For example, 
among the papers discussed in the following section, [6, 22, 23, 44, 46, 47] all presented details on 
competition implementations, and [1, 20, 45] presented high level overviews of components. 
However, even among papers that took the same listed approach, there are significant differences in 
terms of topical focus and use of terminologies.  
 

Discussion Organization 
In an effort to establish structure, this thesis organizes the discussion on architecture around six 
topics identified by the author based on their perceived importance in the surveyed papers -- instead 
of around a commonly agreed component list, which does not seem to exist yet in the early-stage 
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literature. (The component identification differences will be discussed in the “functional 
distribution” section.) 
 
It is also worth clarifying that two groups of issues fall under two orthogonal perspectives of AV 
architecture design -- “functional architecture” [1, 45] and “software architecture” [22, 24] (or 
“software infrastructure” as in [6]). Though these two terms are sometimes used interchangeably in 
the literature, we adopt the following definitions for clarity in this thesis.  
 
“Functional architecture”: Both Behere et al. (2016) and Serban et al. (2018) define “functional 
architecture” in reference to ISO26262 functional safety standard’s definition of “functional 
concept” [1, 45], which is “specification of the intended functions and their interactions necessary to 
achieve the desired behavior” [45, 48]. Therefore, “functional architecture” refers to “the logical 
decomposition of the system into components and sub-components, as well as the data-flows 
between them” [1]. The graph below gives an example of a functional architecture design for AV. 

 
Fig 1. Functional Architecture [23] 

 
“Software architecture”: Software architecture refers to the layout of infrastructure components that 
define their responsibilities and relationships. The infrastructure components usually include I/O 
devices, operating system, middleware and application modules. According to Mcnaughton et al. 
(2008), the functional architecture that defines relationships between the planning, perception and 
world modelling modules, as introduced above, should be considered as built “atop a software 
infrastructure” [6]. The graph below gives an example of a software architecture, which describes the 
same AV as shown in the graph above depicting its functional architecture. 
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Fig 2. Software Architecture [22] 

 
Out of the six issues identified, three fall under the functional architecture perspective: the “functional 
distribution” section and “data flow” section discusses the division of responsibilities into functional 
components and information exchange in between them, while the “fault management” [1] section 
discusses a specific functional components worthy of special consideration. Another two issues fall 
under the software architecture perspective: the “software platform” section and “data 
model/interprocess communication” section respectively discuss the overall software architecture 
and data & communication schemes. The sixth issue, which is outside of the scope of either 
architecture is the “computation platform” section which discusses the hardware selection. 
 

Analysis Framework 
To analyze the quality of a piece of architecture design, we follow the guidelines given in the book 
Software Architecture in Practice by Len Bass, Paul Clements and Rick Kazman at the Software 
Engineering Institute. The book proposes that the most important evaluation is not the functionality 
itself, though functionality does provide a basis for good design, but the “quality attributes”: 
“systems are frequently redesigned not because they are functionally deficient – the replacements are 
often functionally identical – but because they are difficult to maintain, port, or scale…”. These 
“quality attribute” are “measurable or testable property of a system that is used to indicate how well 
the system satisfies the needs of its stakeholders” [7] such as: 
Availability: how often the service is available for use, by preventing or handling the faults effectively 
[7]. In the context of AV, this includes how the system handles module failures and communication 
failures. 
 
Interoperability: how well the system handles expected and unexpected inter-subsystem exchange 
requests [7]. In the context of AV, this mainly pertains to whether unforeseen modules can be added 
onto existing communication networks later in the development stage, or even let new modules join 
at runtime. 
 
Modifiability: how easily the system adapts to new functions, quality, capacity or technology [7]. In 
the context of AV, this includes whether the component sizes are manageably small for quick 
modifications, and how well components are decoupled. 
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Performance: whether the system responds in a timely fashion, measured by throughput and latency 
[7]. In the context of AV, the most commonly used metrics include “images per second” for vision-
processing and end-to-end response time as measured from perception to actuation [21]. 
 
Security: how well the system can counter attacks that aim to compromise “confidentiality”, 
“integrity” and “availability” [7]. In the context of AV, this concerns the separation between 
functionalities with different levels of real-time [24] and access-restriction requirements. 
 
Testability: how easily the developers can test the system by “injecting faults”, “probing states” and 
“run in sandbox” [7]. In the context of AV, this could be the ability to re-create past runs with 
different parameters [6], to view the logs in human-readable format, to test individual modules 
separately, and to test “in the cloud” without a physical hardware [1]. 
 
In the following sections, these quality attributes will be major factors of consideration as we assess 
and compare the architectures proposed by different papers.  
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Functional Distribution 
 

Identification of Functional Components 
Most works in the overall AV literature currently identifies three high-level functional components 
for the AV system: perception, planning and control [1, 21]. This three-part plan emerges from the 
general categorization used in the field of robotics [43]. 
 
Perception extracts environmental information as well as ego-vehicle status from sensors such as 
cameras, LiDAR, GPS and IMU. Its submodules can include ego-vehicle localization [1, 20, 45], 
object detection [1, 20, 45], object tracking [20, 21], semantic understanding (more focus on drawing 
boundaries on drivable areas than object detection) [1, 20] and world model [1, 45]. 
 
Planning makes decisions about behaviors and trajectories based on top-level goal as well as the 
perceived environment. Its submodules can include mission planning (route from current location to 
destination) [21], behavior planning (decide among operation modes such as “school zone”, 
“crosswalk” and “parking”) [1, 23] and trajectory generation [1, 45].  
 
Control refers to the ability to actually execute the planned motion by breaking it down to duration, 
strength and direction of acceleration and implementing them using the vehicle’s actuators [1, 21]. 
Its submodules can include longitudinal control (propulsion and braking) [1, 45], lateral control 
(steering) [1, 45] and reactive control (collision avoidance and emergency braking) [1]. 
 
However, many surveyed papers that specifically examine the functional architecture design sought 
to rethink the three-part structure, and proposed architectures with differing emphases. 
 

Separated Safety System 
Jo et al. (2014) advocates for a five-part component design rather than three-part – perception, 
localization, planning, control, and system management [22]. The separation of localization from 
perception was not well-explained for, but it is worth noticing how this five-part scheme places 
more emphasis on system management, which includes fault management, logging facility and the 
“human-machine interface” (HMI). Design by Behere et al. (2016) represents the other side of such 
choice: they also recognize the fault management functionality, but they only recognize it as a 
subcomponent of decision & control. However, Behere et al. do admit that the fault management 
system actually runs orthogonally and throughout all the other components, including both 
perception and planning components, but chose not to separate it out.  
 
Serban et al. (2018) coincided with Jo et al. in their decision to make the separation, advocating for 
“splitting the control system from the safety operations”, and offered two arguments [45]. First, 
Serban et al. argue that it is an instantiation of the “separated safety pattern” proposed by 
Rauhamäki et al. [52]. The safety system is usually designed for hazardous conditions, and often as a 
last resort to handle faults beyond the capabilities of control modules. Therefore, across industries, it 
is generally required that the safety system be developed according to a stricter standard, which 
could mean using smaller instruction sets or more costly hardware [52]. It is therefore good practice 
in architecture design to develop the safety system separately, avoiding the cost and restrictions 
associated with making the entire control system compliant to the stricter safety code [52].  
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Second, Serban et al. (2018) argues that as the autonomy level gradually goes above 3 in the AV 
industry, OEMs will need to expand the safety system’s responsibilities beyond just handling 
software failure, but also include handling extraneous environment interactions that the control 
module fail to handle [45]. As the vehicle assumes full responsibility for decisions in all scenarios, 
AV will need dedicated “safety reasoning” modules to reason about “self-sacrifice”, and such 
modules will likely be standardized and mandatory [45, 53].  
 
When put under the analysis framework introduced at the beginning of the section, the separation 
design would increase modifiability by decoupling two increasingly divergent functionalities.  
 

World Model 
Besides separating out the safety system, Serban et al. also differs from the three-part component 
design in that it re-divides functionalities that fall under the scope of perception, planning and 
control [45]. Serban et al. divide these functionalities into three different categories: sensor 
processing, world modelling and behavior generation. The sensor processing component 
corresponds to perception. The behavior generation component encompasses both planning and 
control. The world modelling component serves only as “a buffer between sensor processing and 
behavior generation”. The world model contains both current and historic “knowledge about 
images, maps, entities and events, but also relationships between them”. More importantly, it 
provides an easy database interface to downstream behavior generation modules, with query and 
filter APIs [45]. 
 
Similar to Serban et al., the architecture proposed by Behere et al. (2016) also features a “world 
model”. According to Behere et al., The world model is either dynamic or static. A static world 
model is usually implemented as a “layered-map”, with more permanent features such as roads and 
traffic lights in the background layers, and more temporary features such as pedestrians in the 
foreground layers [1]. A dynamic model stores kinetic models of the objects in addition to the 
information in the static model [1]. Either way, the world model would offer “query, add, remove, 
concurrency control and replication” functionalities similar to a database [1]. 
 
Note that the world model component should not be confused with the persistent storage facility, 
which could also store knowledge acquired from the perception modules, but for a different purpose 
(i.e. logging, auditing). Serban et al. separates out the persistent storage to another “data 
management” component, and stresses that the world model is for real-time access by the behavior 
generation modules [45]. 
 
The real-time nature of the world model is important because it makes the world model a part of the 
run-time communication scheme. Among the papers surveyed, only Goebl and Färber (2007) offer 
an implementation of such database for real-time communication in AV [24]. The team decided to 
explore such database because it recognized that there are latency gaps and temporal resolution 
differences in between the “processing levels” from raw data to module outputs. Therefore, a 
“buffer” as mentioned in [45] is needed. This need of a buffer is ignored by other surveyed 
implementations [6, 22, 44]. Their interprocess communication manage send and receive 
functionalities with well-defined rules, but manage the latencies in an ad hoc way (more detail in the 
“data model/interprocess communication section).  
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Therefore, as robustness requirements increase in the future, the architecture design that 
incorporates a world model – either as a separate high-level component as in [45], or a 
subcomponent of perception as in [1] – is more likely to offer more stable performance in terms of 
latency. 
 

Mapping Functional Components to Computing Units 
After the functional components are identified, the next architecture concern we consider is how 
these components should be mapped to “units of execution” [7]. In particular, we consider how 
these components are mapped to physical computing units, because such mapping has direct 
influence over how OEMs’s component suppliers package functionalities into individual products. 
 

Centralization vs. Distributed 
The literature disagrees over whether AV components should be implemented on a centralized or 
distributed architecture. Here, we will review the main arguments for each. 
 
A major proponent of the distributed design is the team that built the winning vehicle, A1, in the 
2012 Autonomous Vehicle Competition held in Korea [22, 23]. The team started with a centralized 
design, but quickly ran into bottlenecks and migrated to a distributed design when the requirements 
of the competition expanded and the central computer’s performance deteriorated [23]. The team 
then made comparisons of the two designs based on this experience. According to [22], the main 
advantages of a centralized design include: 
1) Minimal network complexity as all the information flows to the same destination, and therefore 
easy information sharing [22] 
2) Minimal delay in communication, because there is little pre-processing happening outside the 
central computing unit [22] 
Besides, other sources of analysis identified two additional advantages of centralized design, 
specifically when used for the perception component: 
3) A central machine with direct access to all the raw data has greater flexibility to change and 
upgrade its algorithms [54], because it doesn’t build on any assumption about the filtered format of 
any particular pre-processing module. 
4) The fusion algorithm located at the central machine can assume conditional independence for all 
the incoming data (useful for Bayesian fusion algorithms such as Kalman filter and particle filter), 
because there is no intelligence in the leaf modules and therefore no need/possibility of 
communication between modules prior to reporting to the central machine. [55] 
 
On the other hand, Jo et al. (2014) identified the following advantages of distributed design: 
1) More space to increase “computational complexity” due to stronger parallel computing 
capabilities. A distributed system with computing units dedicated to small sets of tasks requires 
much simpler scheduling algorithm and provides stronger real-time guarantee than a centralized 
machine with multi-core or multi-CPU [22]. The greater execution time stability was also 
demonstrated quantitatively through experiment [23]. The following graph shows increased average 
completion time but reduced tail latency with distributed design (Lower)  



 12 

 
Fig 3. Execution on Centralized vs Distributed Design [23] 

 
2) Greater fault tolerance, as physically disjoint units could back each other up [22, 54]. However, 
the distributed design also requires a more complex health monitoring system to fully enjoy this 
benefit, because it carries a higher risk of partial failure [6]. 
3) Computing units could be placed physically closer to the sensors/actuators they serve, thus 
reducing wire lengths (weight & cost) and noise at the pre-processing stage [22, 23]. 
4) Parallel development and testing. The distributed design reduces the scope of consideration for 
sub-teams responsible for each module, as there is minimal spill-over effect when changing 
configurations or resource requirements [22, 23]. 
 
After weighing the pros and cons of the centralized vs. distributed design, Goebl and Färber (2007) 
[24] reached a different conclusion from Jo et al. (2014, 2015) [22, 23]. In an effort to build an 
accessible research platform, Goebl and Färber prefer a centralized system because it is easier to 
replicate the hardware with “commercial-off-the-shelf (COTS) components” across research labs 
[24]. More importantly, Geobl et al. point out that the distributed design could lead to “an early 
partition of software modules on different PC, prohibiting a later rearrangement of modules and 
shifting cooperation from software to less flexible hardware interfaces” [24]. Jo et al. also recognize 
these two problems with the distributed architecture and proposed solution for each. For the 
hardware replication problem, Jo et al. propose using standardized “software platform” to unify 
development environment despite different hardware choices [22]. This is definitely viable and such 
standardization is currently under progress with the AUTOSAR Adaptive Platform [26]. However, 
compliance to the standards still require more efforts from the developer than simply purchasing the 
same hardware and OS installations off-the-shelf. For the “early partition” problem, Jo et al. 
propose a centralized “Software Component Design” step before the sub-teams head off to work on 
each component parallelly [22]. Such a work flow would be more realistic with a more standardized 
architecture, but less useful in a research project that anticipates large structural changes. 
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In conclusion, the debate over centralized vs. distributed architecture is far from settled [54, 56], 
with diverging views from both the academic research community [6, 22, 23, 24] and the industry 
[54, 55]. However, the debate centers around identifiable issues, including communication speed and 
noise, computational complexity, fault tolerance, collaboration accessibility, and modifiability. Which 
design wins out will likely depend on how well each addresses these issues in the coming years. 
 

Decoupling the “ Vehicle Platform” 
Though fully autonomous driving has not entered people’s life, an increasing percentage of cars are 
not equipped with partial autonomous features called “Advanced Driver-Assistance System” 
(ADAS). These ADAS systems provide functionalities such as Lane Keep Assist and Automatic 
Emergency Braking System, and are available on 92.7% of U.S. cars in the market as of 2019 [57]. 
To minimize re-design cost, it is therefore in the interest of OEMs to pursue an AV architecture that 
allows maximum reuse in the transition from partially autonomous cars to fully autonomous cars. 
Besides cost savings, OEM would also prefer designs that decrease product-line risk, by allowing 
easy degradation back to non-autonomous design if the fully autonomous route proves infeasible [1].  
 
Motivated by this stakeholder need, Behere et al. (2016) believe it is in the industry’s interest to 
pursue a clearer decoupling of “the vehicle platform” from the “cognitive intelligence system”, so 
that the automakers could simply plug-on the cognitive layer when needed [1]. The cognitive 
intelligence only need minimal knowledge of the vehicle’s physical properties, because it doesn’t 
actually “drive” the vehicle – it simply issues high-level “motion requests” (time series of vectors 
describing the desired trajectories) to the vehicle platform [1]. The trajectory execution functionality, 
which needs intimate knowledge of the vehicle and traditionally has been part of the AV intelligence, 
should be entirely offloaded to the vehicle platform [1]. (typo in the cited graph b’s upper 
“Trajectory execution” box, which should be “Trajectory generation”) 

 
Fig 4. Offloading Trajectory Execution to the “Vehicle Platform” [1]  

 
In this way, the only required knowledge for generating these commands are simple static variables 
such as actuation latencies, which can be easily loaded on demand [1]. In this way, it is extremely 
easy to turn a non-autonomous vehicle into an autonomous one and versus versa [1]. Note that this 
model does places a heavier burden on the base vehicle by assuming that the vehicle platform is 
smart enough to execute the requested motion, but this should not be too challenging given that 
what motivated this stakeholder need is the increasingly advanced semi-autonomous features in 
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modern cars, such as ADASes, which already expose longitudinal and lateral controls to software 
control [1].  
 
Behere et al. also point out that since the vehicle platform is usually developed by embedded system 
programmers who use real-time operating systems (RTOS), while the cognitive intelligence system is 
usually developed by computer scientists who use resource-heavy general-purpose operating systems 
(GPOS), such decoupling would also facilitate parallel development using each groups’ preferred 
platform [1]. 
 
This facilitation effect is evidenced by Jo et al.’s (2015) computing unit mapping choice in their 
implementation of A1 [23]. Jo et al. did not follow Behere et al.’s architecture design, but they 
nevertheless concluded through experiment that the ideal allocation is to separate out the actuation 
modules (longitudinal and laternal control) into one RCP-ECU (Rapid Prototyping Electronic 
Computing Unit), the cognitive intelligence modules (sensor fusion, planning, vision) into another 
two industrial computers (Intel Core 2Duo with Windows 7), and the rest of modules into 13 other 
ECUs [23]. (graph below). The choice was motivated by the actuation module’s stricter real-time 
performance requirements, and easy access to cognitive libraries (OpenCV and BOOST) on 
GPOSes such as Windows [23].  

 
Fig 5. Distribution of Functional Components over Multiple Hardware Units for A1 [23] 

 
In conclusion, the decoupling of the vehicle platform seems like a logical step towards greater AV-
software modifiability. Since the actuations and cognitive modules have different requirements for 
computing hardware anyway, it is a relatively low-risk decision. If such decoupling can be soon 
standardized through a well-designed interface, such as the motion-request vector interface 
proposed by Behere et al., it would help component suppliers focus on iteration of either the vehicle 
platform or the cognitive system without worrying too much about influencing the design of the 
other, thus increasing modifiability. 
 

Functional Redundancy 
Full redundancy is sometimes implemented to act as a “catch-all” defense against system failures [1, 
45], such as in the newest model of Tesla Full Self-driving Chip with duplication of all the 
computing units as well as data input and power supply [58]. However, in the AV architecture, 
redundancy is not just about fault handling. It is also an integral part of sensor plan design – 
redundancy is often used to improve accuracy when operating under normal condition. However, 
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the debate over the optimal level of redundancy has become a source of diverging architecture 
designs. 
 
The need for sensor redundancy arises from the complementary nature of the advantages and 
drawbacks of various sensors: 
- The GPS/IMU system couples the relatively infrequent (10Hz), accurate GPS updates and 
relatively frequent (200Hz), inaccurate inertia measurements to provide localization. The system is 
fairly accurate most of the time but can be dysfunctional when GPS signal is obstructed by tunnels 
[20]. 
- The LiDAR system offers high accuracy, and therefore can be used to localize against high-
definition maps, but LiDAR is susceptible to noise caused by rain and dust [46]. 
- The vision system (camera) provides color information that LiDAR cannot provide, but performs 
less consistently “across different illumination conditions” than LiDAR [2]. 
- Sonar and radar can be used as the “last-line of defense in obstacle avoidance” due to their 
superior performance in “short distance detection”, but helps little with object detection and 
tracking [20, 44]. 
 
Therefore, AVs are generally equipped with several of these sensors, and use the fusion of their 
outputs for localization, object detection and tracking. Since the GPS/IMU system and short-
distance radar are relatively cheap and already prevalent in non-autonomous cars, they are generally 
included in the sensor plan. The focus of dispute is therefore whether vision is enough for high-
precision perception, or if LiDAR should also be included in the fusion.  
 
On one side, LiDAR and vision do complement each other in various illumination and weather 
conditions, increasing the system’s availability, and “many successful implementations of 
autonomous driving rely heavily on LiDAR” [46], such as those by Nvidia/Audi and Waymo [21]. 
This LiDAR/vision fusion process could either takes place at the “feature level”, corresponding the 
pixels in the vision image to points detected by LiDAR, or at “decision level”, combining the 
resultant probabilities parallelly calculated from vision and LiDAR systems at late stage [2]. It is also 
possible to design multi-level fusion systems (graph below) that performs fusion in hierarchical 
layers, each taking both sensor data and the previous layer as inputs for even better robustness [59, 
61]. Therefore, there is high variability in architecture even within the realm of LiDAR/vision-fusion 
design. 

 
Fig 6. Hierarchical Fusion Scheme [61] 
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On the other hand, due to the extreme price-tag on LiDAR system ($75,000 per unit [60]), there 
have also been many AV companies that focus on vision-based systems, such as Mobileye, Tesla and 
Mercedes Benz’s Class S 500 [21, 44]. The vision-based design is also touted for its higher 
computational efficiency in localization tasks, because its visual odometry approach consists of 
“highly parallel data-processing stages” and also makes heavy use of easily accelerated vector 
computations, while the LiDAR-based design relies on the sequential Iterative Closest Point 
algorithm [46]. Besides, the reduced availability of high-precision data caused by the lack of LiDAR 
could be partially compensated by software innovations [44]. Zong et al. (2018) propose an 
“environment mapping loop” (graph below). that uses the “rotation and transmission matrix” 
derived from historic frames, in combination with the current detection to cover blind spots in the 
cheap sensor set: with the assumption of constant acceleration between consecutive samples, 
predicted but undetected vehicle position proposals are assumed to be “either out of range or 
misdetected”, so they are overlaid on top of current detections in the form of “probability ellipse” 
with decreasing values from center to boundary [44]. This software innovation helps the vehicle 
achieve a tracking accuracy of “mostly under 10 cm and no more than 20cm deviation” on a 23km 
test route, using only stereo cameras, radars, and sonars as sensors [44]. 

 
Fig 7. “Environment Mapping Loop” [44] 

 
In conclusion, since major AV competitors disagree over the optimal sensor plan, architecture 
designers have to reserve considerable flexibility for sensor changes. Even with the same sensor 
plan, the fusion component could be placed at various junctures of the perception pipeline, and 
could be centralized (“feature level”) or decentralized (“decision level”) [2]. Besides, as shown by the 
“environment mapping loop” design [46], to cope with data availability, sensor changes also have 
rippling effect on the software complexity of downstream modules. The uncertainty in perception 
sensor selection is therefore a major roadblock to building a standardized architecture in the 
industry. 
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Data Flow 
 
In the previous section, we identified functional components and discussed their organization – 
distributed vs. centralized, with or without redundancy – essentially, we are drawing the boxes in the 
functional architecture (refer to graph in “Discussion Organization” section). In this section, we 
discuss how these components collaborate, drawing the arrows in the functional architecture. Since 
most of the surveyed architectures are distinct, it is not very meaningful to compare every data flow 
one-to-one, as some may not exist or make sense in alternative architecture. The following data 
flows are identified because they were discussed by multiple sources for their design benefits. 
 

Perception to Trajectory Generation 
The trajectory generation module is responsible for generating obstacle free trajectories represented 
in coordinates, while keeping in mind energy and directional constraints [1]. It is the often the last 
module in the perception-planning pipeline, feeding directly into control. Therefore, sensor data 
usually takes a long journey before reaching trajectory generation. However, researchers have found 
it beneficial to include a short-cut data flow directly between sensor outputs and trajectory 
generation. 
 
The first argument for such a bypass is speed. When a fast-moving obstacle poses an impeding 
threat, there simply isn’t enough time for the new information to be processed and passed down 
through the usual pipeline [20]. In some designs, this problem is alternatively solved by adding a full 
redundant system (“reactive control”) that separately handles this kind of situation. This extra 
system monitors a few selected sensors, has much simpler logic, and therefore takes much less time 
to process. In this alternative design, instead of feeding the sensor information to the general 
pipeline’s trajectory generation, control signals are directly issued to control modules and override 
those from the main logic pipeline [1]. 
 
The second benefit is computational efficiency. Wei et al. point out that a major problem they 
identified when refining the AV planning framework is that the motion planner needs to 
simultaneously consider “road geometry, vehicle dynamics, surrounding moving objects and static 
obstacles”, which greatly increases the complexity of the planner problem [61]. Wei et al. propose a 
“novel planning framework” that feeds the perception information to downstream modules to re-
evaluate the path consider moving obstacles, so that the high-level planner solves only the static 
problem [61]. Liu et al. (2018) also state a similar idea when analyzing such data flow, that it would 
“serve as a backup for the traffic prediction” [20]. 
 
With regard to the analysis framework, the perception to trajectory generation data flow increases 
the system’s availability to handle extraneous road conditions. 
 

Feedback from Actuations 
The control modules themselves are often based on the principle of feedback -- the control modules 
monitor the completion of past commands and issue new commands in view of the past commands’ 
completion [20]. However, not all architectures allow actuation feedback to further bubble up to 
trajectory generation and behavioral planning modules. Tas et al. (2016) identified this as one of the 
most important corrections that an architecture should make to increase robustness [43]. 
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The feedback mechanism has two benefits. Firstly, it provides instant update to the planning 
modules in case the controllers fail to execute the generated trajectory and cause significant 
deviations from the expected position. A direct feedback to the planners would take much less time 
than waiting for the perception modules to detect it, and in case of extreme environment conditions, 
the perception sensors themselves may not be able to provide reliable information. The planner 
module could then rely on a fallback trajectory to guide the vehicle to safety – but it is only useful if 
feedback from controllers is timely [43]. Secondly, the feedback could be used to let the planning 
modules familiarize themselves with the execution pattern of the controllers. This is especially 
important for an architecture with decoupled vehicle platform – the mounted cognitive intelligence 
system may not assume perfect execution of its plans, and should “learn and adjust the model 
parameters” about the vehicle platform from the feedback [1]. 
 

The “Tee-and-Join” Model 
Though specific data flow choices are heavily dependent on the algorithms used and therefore vary 
from architecture to architecture, there have been efforts to identify generalized patterns that could 
be universally useful for organizing the data flows on a high level. 
 
Serban et al. (2018) propose using the “tee-and-join” model to represent the dataflow [45] (graph 
below). The model assumes that outside information enters through the “sensors abstraction” 
module at the lowest level of hierarchy, and then from each “pipeline” (modules on the left-hand 
side), either travels up to the pipeline with a higher level of abstraction, or travels sideway to the 
corresponding “control loop” (modules on the right-hand side) of the same level of abstraction [45].  

 
Fig 8. “Tee-and-join” Model [45] 

 
Though Serban et al. did not present an implementation of their design, one surveyed paper by 
Goebl and Färber (2007) did come up an implementation that closely resemble this design [24] 
(graph below). Goebl and Färber based their design off an early work by Maurer and Dickmanns 
[63]. Maurer and Dickmanns’ data flow organization echoes Serban et al.’s in that the architecture is 
structured hierarchically according to the data’s level of abstraction – the lower levels process data is 
represented by “differential equations, state space representation, recursive estimation or controllers 
and filters in the frequency domain”, while the higher levels’ data use “computer science 
representations” such as “boolean logic, decision trees and automata” [63].  
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Fig 9. An Implementation of the “Tee-and-join” Model [24] 

 
The vertical data flows up to higher level of abstraction are intuitive to understand, as one of the 
important goals of the AV software’s goal is to represent and reason with the road condition 
abstractly, so that the system could also deal with unknown situations [63]. The horizontal dataflows 
are less obvious. Maurer and Dickmann explain the horizontal dataflows by pointing out that many 
control modules only need input on its same level of abstraction and no deeper insight – the brake 
pressure controller (bottom level actuator) need no further information than the brake pressure 
(bottom level sensor), and the state controllers (middle level control) in lane-following mode need 
no further information than drive area detection and object detection (middle level cognition) [63]. 
Mauerer and Dickmanns also believe that this rough structure should be applicable to most AV 
systems regardless of their tasks [63].  
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Data Model/Interprocess Communication 
 
In the previous section, we examined the data flow between functional components, focusing more 
on the question of what data is being sent rather than how it is being sent. This section will focuses 
on the interprocess communication system (IPC) [6] from the perspective of “software 
architecture”, i.e. how the data is being sent. The purpose of the IPC is to abstract the data 
transmission infrastructure from the module programmers, by taking care of IO threads, 
serialization and addressing in an efficient, reliable manner. Three designs from different researches 
are examined and compared. 
 
As will be shown, these data models are still prototypes and there is quite a lot of uncertainty as to 
which standard the AV industry will converge to. However, the industry does have established 
technology on a lower level – the vehicle bus systems that support these data models. The vehicle 
bus systems are standardized technologies that had been evolving since the 1990s. After the 
“architecture” topic, we will dive into those vehicle bus systems, and explore how their properties 
shape the data models. 
 

Distributed Pub-sub Model 
McNaughton et al. (2008) designed this IPC scheme (“SimpleComms”) to maximize flexibility [6]. 
To make partial failures safer, the IPC is pub-sub based, so that when a sender or receiver node fails, 
the other end wouldn’t have to wait for the reply. The communication is also completely 
anonymous, and pub-sub channels could be created anytime, thus offering greater interoperability 
and allowing new nodes to join even at run-time [6]. 
 
Among all its features, this IPC’s scalability may be its most commendable innovation. Each 
machine in the network hosts a “scs” (SimpleComms server) which serves as a hub handling all the 
incoming and outgoing message for the multiple modules running on this machine [6]. If a message 
is intended for multiple modules on the same machine, it will only be sent over the inter-machine 
TCP connection once, and the scs will subsequently relay it to multiple destination modules [6]. This 
multi-hub distributed design eases the inter-machine bandwidth requirement as the system scales up 
[6]. 

 
Fig 10. SimpleComms’ Distributed Server Scheme [6] 
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McNaughton et al. also designed the IPC to be “stateless” to further increase its flexibility, meaning 
that each message contains all the information one needs to understand it [6]. This feature was 
implemented so that the restarted nodes could catch up the conversation immediately [6], increasing 
the system’s availability. However, it also makes the system vulnerable to security attack, as it only 
requires a brief period of security compromise to get a full picture of the current state. 
 

Single Server Destination Based Model 
Zong et al. (2018) also designed their IPC (“Cocktail”) to decouple nodes, so that the system offers 
greater availability in case of partial failure [44]. However, instead of a channel based pub-sub model, 
a destination based model is used. To enable nodes decoupling in a destination based model, Zong 
et al. employed the UDP instead of TCP, so that packages destined for disconnected modules are 
simply dropped [44]. The connection checking is performed by the virtual server that connects to all 
the nodes and mediates all the messages [44]. 

 
Fig 11. Cocktail’s Server-side Code, with Connection Checking [44] 

  
Testing on this single server design reveals its inferiors scalability compared to the SimpleComms’ 
[6] distributed design. Controlling for the net amount of data transferred, the “all-to-all” mode 
experiences greater latency than the “single-to-single” mode, suggesting that “repeating listening to 
one module should be avoided as much as possible” [44]. In SimpleComms, the message relaying 
workload is distributed across the local servers [6], thus building in crowding avoidance for each 
individual module. 
 

Central Database Model 
Neither of the previous two models manages backlogging systematically. SimpleComms keep an 
incoming and an outgoing queue for each module. Each queue is of a fixed length, so that new 
messages exceeding the count limit will be dropped [6]. This choice is clearly suboptimal as it keeps 
the stale value rather than the latest more relevant value in case of delay. Cocktail keeps the 
departing and arriving messages in the “Packet Base”, but did not specify how backlogging is 
handled [44]. 
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As mentioned in the “world model” section, Goebl and Färber (2007) recognize the prevalence of 
backlogging in AV system, caused by the wide range of “temporal resolution” and cognitive 
complexity of each processing level [24]. Therefore, Goebl and Färber designed a database style IPC 
(“KogMo-RTDB”), where all stored objects are required to declare their frequency, back history 
length and maximum message length, so that other modules could explicitly expect and plan for 
when and how frequently the objects should be polled [24]. Besides, the buffer is circular so that the 
latest information is kept [24].  
 
Though the central database design helps enforce object definition standards and clock 
synchronization, it also introduces locking delays when many modules attempt to access the central 
database at the same time [24]. Goebl and Färber partially mitigated this delay by building the 
database library on top of a real-time framework, Xenomai, which couples with a Linux kernel [24]. 
In the future, data model designs could potentially combine the advantages of SimpleComms and 
KogMo-RTDB by building a distributed database style IPC that manages backlogging systematically 
while spreading the access workload across multiple machines. 
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Software Platform 
 
In this section, we backtrack to look at the bigger picture of the software architecture (defined at the 
“overview” section), in which the IPC systems we examined in the previous section is a part of. The 
main purpose of defining a standardized AV software platform is to increase modifiability: to allow 
the application modules (discussed in the “functional component” section) to be developed and 
modified free of hardware consideration, which can be a major headache due to the heterogeneity of 
computing hardware (see “computing platform” section) used in a distributed AV system [22]. 

 
Fig 12. Software Platform Makes Software Hardware-agnostic [22] 

 
Most of the surveyed literature seem to agree on the three-layer structure of software platform, 
which are the OS layer [44] (Basic Software [22]), the data transmission layer [44] (RunTime 
Environment Layer [22]), and algorithm layer [44] (application layer [22]) from bottom to top. The 
OS layer are closely coupled with the hardware implementation (i.e. computing platform, vehicle bus 
system etc.) and therefore has highly variable implementations [22]. To increase interoperability of 
the application modules, the specific network, operating system, and I/O interface of the OS layer 
must be abstracted away, and this work is done by the RTE layer [22]. Since AV sits at the 
intersection of the automotive field and the robotics field, both fields has offered an RTE solution.  
 

Robotic Operating System  
The Robotic Operating System (ROS) is an RTE solution borrowed from the robotics field. It is not 
an operating system as its name suggests [64]. It is a middleware providing functionalities including 
“hardware abstraction” [64], “device drivers” [64], and pub-sub style IPC [47]. ROS is designed to 
work on a heterogeneous hardware cluster and make them work as “a single entity”, [34] which is 
exactly what the RTE layer is expected to do. Besides, ROS is also highly modular, as each module 
can be encapsulated in a single ROS node and added/removed with minimal impact on other ROS 
nodes [47]. However, ROS’s lack of network security [34] and real-time performance [47] makes it 
more suitable for research and experiment than commercialization. Besides, though ROS offers 
convenience as a rich open source platform, its design is not optimized for AV applications’ 
requirements. For example, the Cocktail IPC examined in the “data model” section exhibits superior 
real-time performance than ROS’s IPC on both latency and throughput when used in an AV system 
[44]. 
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Fig 13. Structure of Software Platform of a ROS-based AV Implementation [47] 

 

AUTOSAR Adaptive RTE 
The AUTOSAR Classic software platform is time-tested, secure, and widely adopted by the 
automotive industry. However, its standardized interface only works with embedded operating 
systems, which are good for real-time applications and are adequate for non-autonomous vehicles 
[26]. However, the increasingly intelligent AV modules require interface to the more versatile APIs 
provided by POSIX-based general-purpose operating systems [22]. In 2014, Jo et al. (2014) 
specifically implemented their own RTE for AV out of this concern [22]. Fortunately, the 
AUTOSAR consortium also recognized the importance of incorporating POSIX OSes, and released 
the first version of RTE interface for the new “AUTOSAR Adaptive Platform” in 2017 [26]. No 
longer bound to operate on an embedded OS, AUTOSAR Adaptive’s RTE can schedule modules 
and allocate memory dynamically, but it will still maintain a high standard for safety and real-time 
performance appropriate for commercialized automotive [26]. 

 
Fig 14. Structure of Software Platform Based on the AUTOSAR Adaptive Standard [65] 
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Fault Management 
 
As safety is one of the most important factors to consider when designing the AV architecture, 
almost all surveyed full system designs touch upon “fault management” [1, 46]. Though the most 
bullet-proof way to ensure availability is to have duplicates of the same system running parallelly at 
all time, switching back and forth when faults happen, it is certainly not the most efficient way, as 
duplication aggravates energy, heat and space constraints on the single system [1]. 
 

Degradation 
In lieu of a duplicate system, many designs incorporate a fault management module that listens to 
the health status signals of all other modules at all time, and switches the entire system to fault mode 
(“degradation” [1, 26]) when a particular module fails to update its status [23]. The AUTOSAR 
standard does not specify behavior for the fault mode, but simple asks the implementation to 
provide a “well-defined strategy” [26].  
 
Goebl and Färber’s (2007) design “initiates an emergency brake maneuver using the last known 
situation data available in the database” [24]. This is safer than Jo et al.’s  (2015) design which pauses 
the vehicle regardless of location [23]. However, when a fault happens, there is no guarantee that the 
surviving software is still capable of calculating a safe route from the last known data. Behere et al.’s 
(2016) design solves this problem by requiring the “cognitive system” to always output two routes to 
the “vehicle platform”, one to destination and one to safety [1]. Therefore, even if a critical fault 
happens in the route planning module, the “vehicle platform” can navigate to safety by using the 
latest safety route it received before the fault[1]. 
 

Recovery 
While degradation is a viable strategy for lower level AV (level 0-3), higher level AV (level 4-5) 
system has to overcome the fault and continue its driving duty, because humans drivers are not 
expected to take over as driver at any time [45]. Therefore, the “fall-back mechanism” has to seek 
recovery rather than degradation [45]. One common approach is to issue “restart” commands to 
modules that failed to send a health signal to the fault management module for a period of time [6]. 
In a centralized design, the actual restart could be performed by the fault management module itself 
[44]. In a distributed design, after the central fault management module issues the command, the 
actual restart could be delegated to a specialized local process running on each distributed machine 
[6]. Further, Liu et al. (2017) consider the possibility of a “master” failure, i.e. failure of the fault 
management module [20]. Liu et al. propose using the ZooKeeper system [66] to keep multiple fault 
management modules on different machines, so that there is always a replacement master to 
continue monitoring the system [20]. 
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Computing Platform 
 
As the state-of-art perception algorithms increasingly gravitate towards computationally intensive 
techniques such as deep learning [2, 20], a high-performing full AV system can no longer rely on a 
solely CPU-based computing platform to achieve reasonable response time, even if the researcher 
intentionally design the system to be more CPU-friendly [47]. However, though incorporation of 
high-horsepower computing units, such as GPUs, can boost performance, it should be done 
selectively and only after careful consideration. For example, one commercial AV hardware system 
consists of a 12-core CPU (Intel Xeon E5) and four to eight GPUs (Nvidia K80 GPU) would run 
with power of up to 3000W [46]. On average, 1000W power raises the in-vehicle temperature by 
10°C in a minute [21], meaning that the described hardware system could raise the in-vehicle 
temperature by 30°C without a cooling system. However, adding a matching cooling system would 
empirically doubles the power consumption of the whole system, leading to more than 10% 
reduction in driving range if mounted on a Chevy Bolt, as the vehicle could only carry a limited 
amount of fuel/electricity [21]. Therefore it is important to tailor the selection of the “acceleration 
platform” [21] to the particular algorithms used, so that it strikes a fine balance between higher 
speed and lower power consumption [21]. 
 

Types of “Acceleration Platform” 
GPU: Graphical Computing Unit. While a CPU typically has no more than 50 cores (a core is “an 
independent processing unit that reads and executes instructions of a program” [67]), each capable 
of performing complex instructions, a GPU typically has thousands of them, each capable of 
performing only simple and repetitive mathematical tasks [68]. Therefore, GPU is especially good at 
parallelizing the simple yet numerous vector computations in the neural network algorithms [68]. 
 
DSP: Digital Signal Processor. DSPs usually have instruction sets especially optimized for digital 
signal processing algorithms, with each instruction performing task that could take several 
instructions in general instruction sets [69]. In this way, DSP saves time and energy for its 
specialized field [69]. In an AV system, DSP could be used for the vision modules, as there are 
commercial DSP specializing in vision operations [46]. 
 
ASIC: Application-Specific Integrated Circuit. ASICs are custom-made chips whose type, number, 
layout, and internal structure of microprocessors and memory blocks are designed for specific use 
[70]. The specificity varies depending on the type of ASIC [70], but can be down to an algorithm 
level, such as the “feature extraction” algorithm within the localization module [21], with the 
algorithm printed in hardware as logic gates. 
 
FPGA: Field-Programmable Gate Arrays. Similar to ASICs, FPGAs also allow the users to program 
their algorithms into the hardware using logic gates. However, FPGAs come with versatile logic 
blocks which can be re-configured to express a chosen logic by user after it is manufactured [71]. In 
theory, the performance of FPGAs would always be same or worse than ASICs of the same 
configuration, but FPGAs offer more flexibility in case of design change [70]. 
 

Choice of Platform 
Lin et al. (2018) compare the performance of GPU, ASIC and FPGA for three computationally 
intensive algorithms: object detection (neural network), object tracking (neural network), and feature 
extraction (small vector filters applied all over images) [21]. For object tracking and feature 
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extraction, Lin et al. found that ASIC performed best in terms of both power consumption and tail 
latency. For object detection, GPU performed best in terms of tail latency, but FPGA may be the 
better choice because it consumed much less power [21]. However, though the study concluded in 
favor of FPGAs over GPUs for all three tasks because of their lower power consumption [21], the 
study did no control for latency (the FPGAs had worse latency), so it wasn’t clear if FPGAs were 
really more efficient. Nevertheless, the study presented viable solutions: with full ASIC setup and 
ASIC/FPGA mixed setup, the end-to-end latency was less than the 100ms goal, which is the human 
driver response time, and driving range reduction was a mere 2.5% [21]. Another study by Liu et al. 
(2017) compares the performance of GPU and DSP on object detection and feature extraction, and 
found that GPU performed better using less energy for object detection, while DSP performed 
better using less energy for feature extraction [46] [GRAPH 16-dsp-gpu].  

 
Fig 15. Comparison of Acceleration Platforms’ Latency (left) and Power Consumption (right), on 

Object Detection, Tracking and Feature Extraction Tasks [21] 

 
Fig 16. Comparison of Acceleration Platforms’ Latency and Power Consumption, on CNN (left) 

and Feature Extraction (right) Tasks [46] 
 
From the graphs above, we can safely conclude that the optimal choice of computing platform 
varies significantly for each algorithm, even for algorithms of the same nature (i.e. both detection 
and tracking use neural network). Therefore, the computing platform of the entire AV system will 
most likely be highly heterogeneous (software implication of heterogeneity discussed in “software 
platform” section). Besides, the specific results in the two studies – results of which computing 
platform is best for which module – may not be highly instructive, as the optimal choice will likely 
vary when researchers use a different algorithm for the module. 
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Vehicle Bus Systems 
 

Overview 
 
As suggested by many AV developers [16, 22, 34], the autonomous vehicle should not be 
understood as one single giant computer, but more appropriately as hundreds of data centers 
connected by network – the “vehicle bus system” [11]. Therefore, the in-vehicle data network is an 
important part of the software architecture. It situates at the “basic software layer” of the three-
layer-structure, which is the foundation layer of software architecture [22]. Besides, the vehicle bus 
system’s bandwidth, speed and reliability also has significant influence over the functional 
architecture design, especially the decision on whether and how to distribute functional components 
across machines.  
 
In the previous sections, we have mainly focused on the choice of data network at the level of 
interprocess communications (IPC) toolkit [8] (or middleware with IPC capabilities), such as SimpleComms 
[6] and Cocktail [44], the choice of IPC often builds on the choice, or reality, of the lower level 
vehicle bus networks. By definition, “an interprocess communications toolkit abstracts the transport 
mechanisms, such as shared memory or network protocols, away from the module developer.” [8]. 
However, IPC designs are often influenced and restricted by aspects of bus system design, such as 
the bus system’s communication model (pub-sub v.s. client-server), delivery predictability, and 
dynamic flexibility [22]. For example, the Adaptive AUTOSAR RTE’s IPC specification, has 
recently upgraded to include Ethernet as one of its supported bus systems [10]. This is a result of 
strong push from autonomous vehicle developers, who are eager to move towards service-oriented 
IPC [27]. Besides capability restriction, the vehicle bus systems poses an additional challenge to the 
IPC -- the co-existence of a variety of bus systems in the same vehicle requires interoperability, 
which is another major concern of IPC designers [6, 22]. 
 
In this section, we will introduce the four most common vehicle bus systems for in-vehicle 
communication, LIN, CAN, FlexRay and Ethernet to illustrate what differences the network types 
make, why the bus system is often a mix of different networks, and why the autonomous vehicle 
developers care so much about upgrading to the newest vehicle bus system. 
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The Rise of Vehicle Bus 
 
The need for the ECUs (Electronic Control Unit) to communicate is not unique to autonomous 
vehicles. For example, regardless of level of autonomy, modern vehicles typically have “Engine 
Control Unit, Transmission Control Unit (TCU) and Anti-lock Braking System (ABS)” [11]. The 
transmission unit needs both engine speed information from the engine unit [11] and wheel speed 
information from the ABS [12] to perform gear shift safely. Therefore, instead of wiring both the 
Engine Control Unit and the ABS separately to the transmission unit, a vehicle bus network allows 
all three modules to share information on a common platform and the transmission unit can read all 
the information it needs from this single platform. This central bus platform not only reduces wiring 
complexity but also makes it possible to add or remove additional modules by simply adding or 
removing them from the network without affecting other modules [11]. 
 
As one of the earliest vehicle bus protocols, CAN was officially released in 1986 by Intel and 
Phillips, and it was later further specified by Bosch in 1991. Over time, it has become the one of the 
most popular communication standards in cars, but it is too expensive and complex to be 
implemented for every ECU in the vehicle [13, 14 and 15]. Therefore, with the rise of the LIN 
protocol in the late 1990s (endorsed by a LIN Consortium of BMW, Volkswagen, Audi, Volvo and 
Mercedes-Benz) [15], it has become common practice to use the LIN among non-critical modules, 
such as heating and roof, and use the CAN network in both critical modules and also in the 
backbone network that connects multiple subnetworks. In this hierarchical approach, LIN is often 
used for “subnetworks to a primary CAN network” [14]. 
 
However, with the advent of higher levels (> level 3) of autonomous driving, the bandwidth 
requirements of in-vehicle networks increased dramatically, for new demands such as large sensor 
information flow and infotainment streaming [27]. In 2000, the FlexRay Consortium (Daimler 
Crysler, BMW, Motorola and Philips) was formed [26]. FlexRay offers a least x10 higher bandwidth 
than CAN and also features a more dynamic time allocation scheme. In very recent years, Ethernet 
for cars has become popular and was integrated into the AUTOSAR 4.1.1 standard released in 2013 
[26]. Like the hierarchical network with a mix of LIN and CAN systems described above, Ethernet 
is also currently being used with a mix of local lower-bandwidth subsystems (e.g. CAN) in 
autonomous cars due to its high cost [27]. 
 
In the sections below, each type of vehicle bus systems will be introduced with focuses on their 
topology & hardware, message frame specification, and synchronization & error handling schemes. 
Performance and robustness comparisons will be made throughout the sections. 
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LIN 
 

Topology & Hardware 
LIN is a broadcast serial network built with a pub-sub model [15, 16]. It comprises of a single 
master and a variable number of slaves (typically up to 16 including the master, which can also act as 
a slave when it responds to its own message) [15]. It uses a single wire and therefore only the master 
can initiate a message, while the slaves can only respond by filling the frame initiated by the master 
and listen to the signals being communicated between the master and other slaves [16]. 
 

 
Fig 1. LIN connection. [16] 

 

Message Frame 
With the pub-sub model, LIN message frames do not specify destination ID, but only specifies 
message ID. Every slave node need to listen to all incoming signals, each time deciding whether it 
needs to publish or subscribe depending on the message ID [16]. 
 
The LIN network sends one byte at a time (one dominant bit + 8 data bit + one recessive bit) and 
each message frame is made up of multiple bytes. As shown in the graph below, the message frame 
can be divided into a header, which contains synchronization and identifier information, and a 
response, which contains the message and checksum sent by the responding slave[16].  

 
Fig 2. LIN message frame. [19] 

 

Synchronization & Error Handling 
As a corollary of the stated coordination method, LIN does not require synchronization crystals in 
the slave nodes because the master node controls the timing. This is a major cost saving factor 
compared to CAN [13]. 
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Error detection mechanisms in the LIN protocol include parity check (of the identifier) and 
checksum (of the message) [16], which are much simpler but also less robust compared to CAN. 
The master node is responsible for error handling, but LIN does not specify error handling 
behaviors [16]. Besides, the master node is also responsible for occasional collision resolution, 
because collisions can arise when an event-triggered frame (rare) is initiated by the master. An event-
triggered frame is sent when the master node wants to poll a rare occurrence event among the slaves 
and therefore can trigger none or multiple responses. However, most frames sent by the master are 
not of this nature and target a specific slave for response [15]. 
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CAN 
 

Topology & Hardware 
There are two major similarities between LIN and CAN. First, CAN is also a broadcast serial 
network built with a pub-sub model [17]. Second, CAN also uses message ID rather than destination 
ID in its message frame [16]. However, CAN is much less rigid because it allows multiple masters. 
Since there are multiple masters that can initiate messages, CAN protocol arbitrates transmission 
collisions based on the messages’ priority level.  
 

 
Fig 3. CAN connection. [16] 

 
As shown in the graph, the CAN bus also differs from the LIN bus in that it relies on a two-wire 
physical implementation – Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP) [19]. 
Because signal is represented by the voltage difference between the two wires, the two wires are 
closely twisted together to avoid voltage difference caused by disruption generated by external 
induction field [18] and the STP implementation also has the added protection from its mesh or foil 
shield [28]. Because of this robust signal representation method and the dynamic prioritization 
mechanism, CAN is much faster than LIN and more suitable for mission critical modules. CAN 
operates at minimum 1 MB/s while LIN operates at minimum 40 KB/s, as required by their 
specifications [19]. 
 

Message Frame 
The CAN message frame consists of “fields”, including “Start of Frame, Arbitration Field, Control 
Field, Data Field, CRC (Cyclical Redundancy Check) Field, ACK Field, and End of Frame” [16]. 
Inside the Arbitration Field, there is an identifier that is used to prioritize messages. When two 
nodes simultaneously send messages, the bits in their IDs will conflict, but such conflict is resolved 
by transmitting the dominant bit (logical 1) whenever there is a bit-wise conflict (both 0 and 1 are 
sent simultaneously, by different nodes). When a node notices a dominant bit at a time when it 
sends a recessive bit, this node will stop further transmission and yield to the higher priority ID [17]. 
This process is called bus arbitration and is illustrated by the graph below. 
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Fig 4. CAN bus arbitration [16] 

 

Synchronization & Error Handling 
Unlike LIN, CAN does not have a centralized time keeper, so every node has to synchronize their 
transmission for the arbitration to work. Besides internal time-keeping, CAN nodes re-synchronize 
themselves to the network at every transition from recessive to dominant bit [17]. 
 
Compared to LIN, CAN has many more error detection mechanisms. First, it has longer (16-bit, 
compared to 8-bit in LIN) checksum (cyclic redundancy code) calculated over many selected 
subfields of the preceding fields [19]. Second, it has an acknowledgement field filled by receiving 
node, which helps guarantee delivery. Third, if the receiver detects any error, including any message 
format errors, it can immediately send back an error frame [16]. All these active feedback 
mechanism make CAN’s error detection much faster and more robust than LIN’s. Therefore, it is 
extensively used in modules critical to vehicle safety, including motor control, electronic parking 
brake and vacuum leak detection [13]. 
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FlexRay 
 

Topology & Hardware 
FlexRay can be implemented using a variety of different topologies, including line topology (i.e. bus 
topology) and star topology [29] (see graph below). The most popular implementation is using the 
star topology because FlexRay is usually implemented for its high fault tolerance and the star 
topology offers an extra fault tolerance enhancements: the active star node sitting at the center of 
the network can stop error propagation from any individual branch [22]. 

 
Fig 5. Line Topology vs. Star Topology. [29] 

 
Like CAN, FlexRay’s hardware is implemented on STP or UTP. However, each cable pair operates 
at 10MB/s bandwidth compared to 1MB/s in CAN [25]. More importantly, FlexRay is usually 
implemented with a redundant channel. If both channels are operational and used for unique data 
transmission, the total bandwidth is 20MB/s. The 10MB/s rate serves as a lower bound guarantee 
when one channel fails or if the network is configured to have redundancy [19]. Therefore, the 
actual topology is a derivative of the star topology (see graph below). 

 
Fig 6. Redundant Star Topology. [29] 

 

Message Frame  
One of the biggest advantage of FlexRay over LIN and CAN, besides speed, is its dual use for both 
deterministic transmissions and event-triggered transmissions. The first graph below shows the a 
cycle consisting of static segment followed by a dynamic segment, with each slot (both static and 
dynamic) consisting of some idle time and a frame [33]. The second shows the detail of a frame. 

 
Fig 8. FlexRay communication cycle. [22] 



 35 

 
Fig 7. FlexRay message frame. [33] 

 
Recall that the CAN network prioritizes messages dynamically based on ID, which opens the door 
for starvation of lower priority messages. Such delays may cause “critical accident” if such delays 
happen in the power train or chassis control [30]. FlexRay solves this issue by pre-allocating static 
slots for mission critical messages in the static segment of the frame, thus guaranteeing predictability 
in critical message propagation [22]. This strategy is called “time-triggered” communication as 
opposed to “event-triggered” communication [22].  
 
FlexRay offers event-triggered communication through dynamic slots in addition to the time-
triggered static slots. Compared to the highly predictable LIN network mediated by a single master, 
FlexRay offers more run-time flexibility to minimize idle time. Its dynamic segment is allocated 
using a rule similar to CAN’s allocation scheme [25]. This dynamic segment is of variable size 
depending on how many nodes decide to utilize the segment time: All FlexRay nodes are aware of a 
pre-determined communication schedule that specifies the opportunity, but not necessity, to 
transmit. Then each node keeps a local counter to determine whose turn it is, if no send request is 
made by the corresponding node, each node increments the counter after one “mini-slot” of time. 
Otherwise, a “dynamic message” is sent. This process continues until either the counter passes all 
nodes’ opportunities, or when the remaining time is not enough for a single dynamic message [31]. 
Note that there is an upper limit to the payload length. 
 

Synchronization & Error Handling  
Like CAN, FlexRay also has a global time shared by all nodes, and each node is responsible for 
synchronizing itself. The synchronization is done in a democratic fashion. Multiple nodes are set up 
to send a “sync message” in some pre-allocated static slots, and then an averages is calculated after 
excluding the outliers [32]. In between the synchronizations, FlexRay is also robust against small 
drifts within each message frame, because it uses a its sample window (“microtick” or cycle) is 
smaller than the bit transmission time [29, 25]. These two mechanisms give FlexRay a strong 
synchronization. 
 
Like CAN, FlexRay message frames also carries a CRC (Cyclical Redundancy Check) code. It is 
calculated over all segments in the header segment and payload segment [19]. It is also 24-bit, which 
is even longer than the 16-bit in CAN. Though FlexRay lacks an explicit error reporting mechanism 
provided by error frames in CAN, some paper suggests the use of dynamic messages for error 
reporting to make up for it [30]. 
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Ethernet 
 

Topology & Hardware 
While the updates from LIN to CAN, and then to FlexRay could be considered mostly quantitative 
improvements, the update from FlexRay to Ethernet really should be considered as a paradigm shift 
[26]. The previous updates increased the traffic speed by x100 by introducing better cables, balanced 
flexibility and predictability by innovating with time allocation schemes, and strengthened robustness 
by building more error check signals and hardware redundancies. However, all of LIN, CAN and 
FlexRay are message-based communication, which means that each message is broadcast to all 
receivers whether the message is relevant to them or not. The relevance is decided by nodes 
themselves after receiving the message. This implies that some participating nodes’ time was wasted 
engaging in irrelevant communication, while they could have used the time to make meaningful 
exchanges among themselves. Ethernet solves this problem by placing a “switch” at the center of 
the star topology, selectively directing the messages to their relevant receivers only [35]. This 
effectively creates smaller “collision domains” by allowing parallel transmission of different 
messages at the same time [36]. 
 
Using a single UTP, the current vehicle Ethernet network is designed for 100MB/s bandwidth, 
which is x10 over FlexRay (when used in redundancy mode). Meanwhile, the IEEE802.3 task force 
is actively developing a new version of Ethernet network with gigabyte-level bandwidth [37, 38]. 
 

Message Frame 
Because Ethernet messages can be selectively sent to certain nodes, each message frame contains a 
destination MAC address, indicating the physical address of the receiver node. The data payload 
length is dynamically decided as in FlexRay, but it can be much longer than the FlexRay payload 
(max 254 bytes), reaching 1500 bytes per frame [39]. This increase in payload size gives more 
flexibility to the payload content, allowing more straightforward serialization (and deserialization) by 
sender (and receiver) nodes because data compression becomes less important [27]. The SOME/IP 
(Scalable service-Oriented MiddlewarE over IP) protocol has been integrated into the AUTOSAR 
platform to work with the Ethernet network [41]. The SOME/IP protocol supports flexible 
serialization that can sometimes be as simple as an “one-to-one copy” into the payload [27]. 

 
Fig 8. Ethernet message frame. [39] 

 
It is very important to note that, unlike LIN, CAN, and FlexRay, the message frame of Ethernet is 
not being cyclically repeated constantly. Because the Ethernet messages are destination-based (rather 
than message-based like LIN, CAN, and FlexRay), the communication model can be service-based 
(rather than signal-based). The graph below illustrates the difference between service-based 
communication and signal-based communication. Note that while signal-based communication 
cyclically repeats the message frame, sending invalid values when no event occurs, service-based 
communication first publishes available service (channels for subscription) to all nodes, then accepts 
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subscriptions, and sends messages to subscribers only when an event occurs [27]. The series of 
operations are all supported by the SOME/IP protocol [41].  

 
Fig 9. Signal-based communication vs. Service-based communication. [27] 

 

Synchronization & Error Handling 
Though Ethernet message transmission does not require close collaboration of multiple nodes at 
transmission time (i.e. different nodes filling in different segments of a message frame), 
synchronization is still required for certain activities over the network. For example, transmission of 
video and sound track for the infotainment system should be synchronized, and different sensors’ 
data feeding into the fusion algorithms should be describing the same timestamp [27]. Ethernet uses 
a global time and the master node sends out periodic synchronization messages to all slave nodes. 
The synchronization is two-step, consisting of first a “sync message” and then the timestamp of the 
“sync message” both sent by the master [27]. 
 
Error Handling with Ethernet is a bit trickier. Though Ethernet has a longer CRC code (32-bit) [39] 
compared to FlexRay (24-bit), it also has a longer payload for the code to cover. To make it worse, 
Ethernet has a lower bound of 42-byte (46-byte when 802.1Q tag is absent [39]) for its payload, 
while the other networks allow a minimum of 8-byte payload [42]. Ethernet has this 42-byte lower 
bound because of its unique collision avoidance mechanism in an environment where many nodes 
can speak at once: the receiving node is responsible for notifying the conflicting senders to terminate 
transmission before this byte threshold. Therefore, any message with a smaller payload would be 
discarded as a collision [40].  
 
A larger lower bound affects the reliability of the network negatively, because for mission critical 
messages, the user tend to use smaller payload to reduce “residual error probability” (the probability 
that a transmission error occurred despite correct CRC) [42]. One way to mitigate the poor “residual 
error probability” performance of Ethernet is adding an additional error check code into the payload 
data segment [42], which is a similar approach to how [30] solved the error reporting problem with 
FlexRay.  
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Conclusion 
 
In this section, we examined four generations of in-vehicle bus networks that evolved in response to 
surging data volume. With each update, there had been innovative methods to increase bandwidth 
and reliability. Over the last few years, the introduction of Ethernet into the vehicle network system 
opened up vast potential for flexible, multi-gigabyte, service-based communication using adaptations 
(e.g. SOME/IP) of existing protocols in internet networks [37, 38]. However, as it has been pointed 
out in the “The Rise of Vehicle Bus” section, the newer generations of network tend to supplement, 
instead of fully replace, previous generations, due to high costs and the aforementioned open 
security problems [14, 27, 37]. Therefore, it is likely that we will continue to see LIN and CAN used 
in sub-parts of the data network in the near future, while the trend moves towards time-triggered 
predictable communication for mission critical messages using FlexRay [22], and service-based 
flexible communication for high-volume data using Ethernet [26, 27].  
 
Aside from the insights into the future direction of vehicle bus system itself, the analysis also yields 
implications for both types of AV architecture. With respect to the software architecture, the 
increasingly heterogenous nature of the vehicle bus system further adds to the importance of a 
standardized runtime environment [22], so that lower-level communication can be abstracted from 
higher-level application developments, and can be easily interchanged as it evolves from one 
generation to the next. With respect to the functional architecture, as FlexRay and Ethernet bring 
higher bandwidth and runtime flexibility to inter-machine-communication, the hardware bottleneck 
is being increasingly shifted to the computing power of individual computing platform, favoring 
more distribution over more centralization [22]. 
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Operating Systems 
 

Overview 
 
In the software architecture, the operating system sits next to the vehicle bus system in the “basic 
software layer” [22], at the bottom of the three-layer structure. Similar to the vehicle bus system, 
most AVs’ operating system is heterogeneous in nature. In a distributed design, developers often 
selectively mount different types of OSes to the dozens of ECUs according to the ECUs’ required 
real-time performance and runtime flexibility, as well as the responsible engineers’ familiarity with 
the OSes [1, 22, 23]. In a centralized design, developers can even stack multiple OSes on top of each 
other to create different execution environments [34]. 
 

Types of OSes 
Traditionally, as safety-critical systems, vehicles are mounted with OSes with strict real-time 
performance, pre-determined scheduling and static memory allocation [26]. These OSes are “deeply 
embedded” [26] into the minimal intelligence ECUs such as those for braking and steering. 
However, two newly emerging trends are changing the landscape of vehicle OS requirements.  
 
First, with the rise of IoT movement, cars have expanded beyond their original transport 
functionality to become a part of people’s connected life [72]. Increasingly, cars are being equipped 
with “infotainment” systems, providing services that have been previously provided by 
smartphones, such as “social media, web browsing, and even video chatting” [73]. These 
applications have vastly different requirements from the embedded ECUs for vehicle control, and 
usually build on general-purpose OSes such as Linux, Android, Apple OS and Windows [26, 34]. 
 
Second, as the car industry moves from lower levels of autonomous driving (level 0-3) to higher 
levels (level 4-5), the complexity and performance requirements of the embedded ECUs are 
drastically increasing [74]. Specifically, some of the new requirements include:  
(1) integrate outputs from multiple sensor sources [74, 75]  
(2) support a mix of processes with different levels of determinism, security and real-time 
requirements [77] 
(3) make use of “acceleration platforms” [21] such as GPUs, FPGUs and ASICs [74, 76] 
(4) offer automotive standard safety guarantee for “black box” algorithms used in AV cognitive 
modules [74] 
 
Therefore, we can classify vehicle OSes into three categories. First, there are the traditional 
embedded real-time OSes (RTOS) [78] which can still be commonly found in the AV’s control 
modules. Second, there are the general-purpose OSes for non-safety-critical infotainment modules, 
which offer great human interaction experience but do not need to be super reliable. Third, there are 
the RTOSes with enhanced capabilities, offering flexibility that could not be found in the traditional 
embedded  RTOS [26]. 
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GPOS for Infotainment 
 
The technology for infotainment OS is not sharply innovative due to its non-critical nature. Despite 
the limited innovation, the infotainment OSes are not exact replicates of smartphone OSes. An 
important difference is that infotainment design needs to be less distractive for users before the 
arrival of fully autonomous driving [90]. On this account, Google’ Android Auto and Apple’s 
Carplay use their respective voice control Google Assistance and Siri to help [91]. However, 
according to an American Automobile Association (AAA) study, though Google and Apple’s 
systems are demands less attention from users than the OEM proprietary systems, they still demand 
too much for safe use on road [92].  
 

RTOS for AV of Level 4-5 
 
QNX Neutrino, Wind River VxWorks and Green Hills Integrity, are the top three competitors in 
the space of RTOS for higher level AV, and they all have long tenures (20-30 years) for developing 
traditional embedded RTOS for cars. The solutions they provide share many similarities. 
 
Firstly, they are all conform to a reduced set of POSIX API requirements [79, 80, 81], defined by the 
AUTOSAR Adaptive Platform [26]. This gives them a unique advantage over other RTOSes. 
Generally, RTOSes for embedded systems define their own set of proprietary APIs, making 
application migration and industry competition extremely hard [79]. POSIX systems, on the other 
hand, are widely standardized and highly competitive, but they are usually implemented as variants 
of UNIX, which is too bulky for embedded systems [79]. However, contrary to common belief, 
POSIX systems do not have to be UNIX-based. By definition, POSIX is simply a set of API 
specifications [82]. Therefore, QNX, Wind River, and Green Hills’s products uniquely allow 
developers to port over their POSIX-based programs with PC origins to RTOSes that are 
appropriate for vehicle use. 
 
Secondly, they are all built on a modular “microkernel” [83] architecture [79, 84, 85], which is very 
different from the “monolithic” UNIX architecture [82, 83]. “Microkernel” is a kind of lightweight 
OS design, where the OS only has the bare minimal functionality of managing address-space, 
process, thread, and interprocess communication [83, 86]. This minimalistic design makes the size of 
OS extremely small, with VxWorks 7.0 taking up merely 20 Kbyte [85]. The small size makes 
microkernel OSes suitable for some tiny-memory embedded computing units. On the other hand, 
they can also be easily scaled up to handle ECUs with high complexity [86]. The variety of 
functionalities offered by traditional OSes, such as filesystems, networking, device drivers, and GUI 
can be added onto the microkernel and managed as a regular process [83, 86]. This means that all 
the processes, including the “system processes”, are now managed in user space [83]. This gives 
microkernel another advantage over monolithic OSes, which is “complete memory protection” for 
all processes, including the system processes that are traditionally run in kernel space [83]. 
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Fig 1. All processes run in user space in microkernel design (right), compared to monolithic design 

(left) [83] 
 
Thirdly, they all offer real-time guarantees for critical processes through separation mechanisms. 
This feature had been automatic for the traditional RTOS with the sole purpose of running real-time 
tasks. Now it is important to manage real-time tasks side-by-side with dynamic non-critical tasks on 
the same OS, while still upholding the guarantee. QNX claims that its microkernel design gives it 
“the inherent ability to separate multiple domains spatially and temporally at the application level”, 
and therefore enabling the dual use for both real-time and non-real-time applications on a single OS 
[77]. VxWorks protects critical processes by allocating “a predetermined number of CPU cycles… 
and space partition” “in addition to preemption”, but it also allows more flexible scheduling options 
for less critical processes [88]. Similar to VxWorks, Green Hills Integrity also reserve CPU cycles for 
critical processes in its scheduling scheme [84]. In addition, Green Hills protects the system from 
“memory exhaustion” with its unique “memory quota system”. All system calls issued by processes 
do not use the kernel memory. Instead, “messages, semaphores, or other kernel objects” live in the 
defined memory space of the process that issued the call, so that no malicious process can overrun 
the kernel memory [80]. 
 
Finally, all three OSes are certified by the ISO 26262 standard [36], which is a functional safety 
standard for all road vehicle software, and the proof of compliance to which can be very arduous. 
All three vendors offer the ISO 26262 ASIL D certificate to be purchased alongside the OS software 
[74, 77, 88]. It is especially difficult to certify the safety of “black box” algorithms such as neural 
network [74]. According to Green Hills, it can be done by running a “plausibility analysis function” 
with provable safety alongside the black box and resolving any conflict using a “decision function” 
[74]. 
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Industry Insights 
 

Development Trajectories 
From the surveyed literature, it is clear that the industry as well as academia are both only at the very 
beginning of a journey towards standardized functional architecture for AV systems. The lack of 
standardization is hampering competitive development of interchangeable modules, which in turn 
entrenches divergent proprietary designs. However, as the competition intensifies after AVs are 
commercialized to mass market, we can hope for a dominant design to emerge and trigger 
standardization. As for now, the best we could do is to open up the discussion for best practices in 
AV architecture designs, such as safety separation, de-centralization, data latency management, 
upgrade/downgrade compatibility, and redundant dataflows. Regardless of the particular proprietary 
design, these design features as demonstrated by their implementations should benefit most 
stakeholders by making AV systems safer, faster, and more scalable. 
 
On the other hand, the software architecture in AV has a much clearer three-layer design, shared 
across different platforms. Therefore, the foundational infrastructure of the software architecture – 
the vehicle bus system and operating system have much clearer development trends, with the vehicle 
bus system moving into a hybrid design relying on Ethernet and service-oriented communication as 
its powerhouse, and with the operating system clustering around three specialized uses of deeply 
embedded ECUs, infotainment, and high-performance ECUs for complex cognition. These trends 
are largely driven by the move towards higher levels of autonomy in the industry, and its resulting 
increase in demand for flexibility. As the software architecture has come much further on the 
evolution curve, a next step would be to devise and enforce more appropriate safety standards on 
the software platform. The simple lack of rigorous standards on latency [21], and the awkward 
inapplicability of traditional standards on safety [74] could prove costly as companies continues to 
evolve their designs without the opportunity to build in the standards from ground up. 
 

A Case Study of Infotainment OS 
The infotainment system represents the higher end of speed and flexibility requirement of 
automotive OS, as its functionality differs drastically from the traditional embedded real-time OS for 
low level control modules. At the same time, the technology readiness is higher for infotainment 
system than the many other modules needed for future autonomous vehicles, such as perception 
and planning, because the infotainment fulfills functions similar to smartphones, and its 
performance is not critical to the safety of the driving system. Therefore, the infotainment OS is 
currently one of the most mature market for new generation vehicle software, and serve as a good 
case study for possible trajectories of other vehicle software markets. 
 
The competitive space features three types of players: The first type is OS developer from the 
consumer technology world, such as Apple, Google, and Microsoft. The second type is OEM 
developing proprietary systems for their own brand of cars, such as Toyota and Hyundai [89]. The 
third type is specialized automotive software supplier such as QNX. 
 
Though OEMs and specialized automotive software suppliers entered the market earlier, they are 
increasingly being pushed out by late-comers from the consumer technology world [89]. One key 
differentiation for infotainment OSes is their associated application ecosystem. Unlike in other 
ECUs, where automotive-grade OSes are abstracted away from functional module developers, 
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infotainment OSes selectively approve applications developed by OS-specific third-party developers 
[90]. The infotainment OS companies can therefore use the different approval standard to build 
unique user experiences as a key aspect of competition [93]. The higher quality of app developers on 
the platforms of consumer technology companies is their other major advantage, helping them gain 
leverage over OEMs, turning OEMs from competitors with proprietary infotainment OSes into 
business partners and members of their own consortiums [94].  
 

Standard Alliances 
The future of autonomy is close, but an industry-wide effort towards standardization is required to 
make it safe. Alliances such as the AUTOSAR consortium have been effective in standardizing the 
software architecture and in establishing a common language for OEMs’ suppliers to communicate 
design differences. With the timely release of AUTOSAR Adaptive, such alliance has also proved to 
be an effective model for facilitating technological paradigm shifts (i.e. ethernet, POSIX-based OS) 
throughout the industry.  
 
At the same time, as shown by the case study of infotainment OS, as the requirements for 
automotive modules shifts from solely reliability and security to focus more on intelligence and 
agility, new outsider forces such as consumer software companies, AI/data companies and robotics 
companies can also pop up into the competition, bringing unique skillsets and forging their own 
module-specific consortiums. In the case of infotainment OS, this means a waste of development 
time and resource spent by OEMs and automotive-specific suppliers in trying to make something 
that is not a part of their core competence. Therefore, any universally adopted AV standard should 
be less of a tool to shield away competition, but more of an architectural solution for modifiability 
and interoperability that helps the industry expects new entrant forces.  
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