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Abstract 

Due to the 2008 financial crisis, with the rise of regulatory restrictions and the increasing 

importance of reducing operational and counterparty exposures, compression algorithms have 

played an essential role in optimizing the OTC markets such as CDS, derivatives, and interest 

rate swaps.  However, even with the emergence of portfolio compression, little academic 

research has been done to understand compression algorithms.  This thesis observes the 

emerging technology of compression algorithms, how and why they work, and the ways that they 

are continuously being improved and deployed.  Their recent use cases in OTC markets, 

quantifiable evidence on their proven market optimization, and other applications are covered. 
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Introduction to Compression Algorithms 

 

Compression algorithms are a relatively new computer science technology that is 

constantly being deployed in new and innovative ways.  For the scope of this thesis, the focus 

will be on compression algorithms used in graph reduction rather than those that compress data, 

such as what is used when a folder is compressed into a ZIP file.  Graph compression, or graph 

reduction, was first researched by Chris Wadsworth in 1970.  The goal of his research was to 

show how effective graph reduction would help to advance the development and use of 

functional programming languages.1  Functional programming languages are software 

programming languages that have arisen in the field of computer science as they pose a number 

of benefits, such as parallel programming, efficiency, and nested functions.  Python and Haskell 

are among the most popular programming languages used in the present day. 2 

The issue with functional programming languages, however, is that they require 

efficiently organized data, typically stored as graphs, to optimize the use of memory and 

storage.3  Thus, the research of many others since Wadsworth has focused on improving graph 

compression algorithms to become as efficient as possible.  Yet, as the world has technologically 

advanced since 1970, graphs have become ubiquitous in their deployment.  It is not uncommon 

“to find graphs with millions of nodes and billions of edges in, e.g., social networks.”4 

The use cases of graph algorithms are thus just as numerous as graphs themselves, and 

they will be discussed later in this thesis.  However, with so many different use cases, it is 

important to differentiate between different types of graph reduction.  The first significant 

separator in graph reduction is the allowance of node and edge reduction versus solely edge 

reduction.  After, follows another division between algorithms that can create new edges 

between nodes in order to allow for the possibility of deleting more edges or algorithms that are 

strictly able to reduce graphs from what they currently are while maintaining reachability, which 

is the condition that the nodes of both the reduced graph and original graph are all reachable 

from the same point.5 

Among the most important of all the different types of graph compression is query 

preserving graph compression.  Wenfei Fan describes query preserving graph compression best 

saying that a query preserved compression is: 

 
 

 
1 Wadsworth, Chris. “Graph Reduction: A Retrospective.” Electronic Notes in Theoretical Computer Science, vol. 2, 1995, p. 

286. DOI.org (Crossref), DOI:10.1016/S1571-0661(05)80207-5. 
2 Functional Programming - Introduction - Tutorialspoint. 

https://www.tutorialspoint.com/functional_programming/functional_programming_introduction.htm. Accessed 6 Apr. 2020. 
3 Functional Programming - Introduction - Tutorialspoint. 

https://www.tutorialspoint.com/functional_programming/functional_programming_introduction.htm. Accessed 6 Apr. 2020. 
4 Fan, Wenfei, et al. “Query Preserving Graph Compression.” Proceedings of the 2012 ACM SIGMOD International Conference 

on Management of Data, Association for Computing Machinery, 2012, pp. 157–168. ACM Digital Library, 

doi:10.1145/2213836.2213855. 
5 Reachability Graph - an Overview | ScienceDirect Topics. https://www.sciencedirect.com/topics/computer-science/reachability-

graph. Accessed 6 Apr. 2020. 
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“a small 𝐺𝑟 from a graph 𝐺 such that (a) for any query 𝑄 ∈ 𝑄, 𝑄(𝐺) = 𝑄′(𝐺𝑟), where  

where 𝑄′ ∈ 𝑄 can be efficiently computed from 𝑄; and (b) any algorithm for computing 

𝑄(𝐺) can be directly applied to evaluating 𝑄′ on 𝐺𝑟 as is.”6 

Something to note about these query preserved compressions is that their complexity is identical 

to the graphs they were compressed from.  However, they do exhibit less data and take up less 

memory and space than the graphs prior to reduction.7 

There are also different types of query preserving compression algorithms, and they can 

be split up into either multilateral or bilateral compression.  The former options rely on market 

participants revealing their positions and the entire network of trades being manipulated for 

optimization.  The latter work within the confines of the current compression tolerances, which 

are guidelines that the algorithms must follow due to real life regulation.  In this case the 

tolerances are that banks do not disclose their positions publicly and so compression only takes 

place between each pair of market participants (bilaterally).8 

For the scope of the technical overview, we will examine query preserved graph 

compressions of when used in optimizing OTC markets to reduce the amount of gross notional 

outstanding while ensuring that banks have the same net positions that they held prior to 

compression.  This allows the entire financial system to have less systemic and counterparty risk, 

which is of rising importance since the 2008 financial crisis, when one bank failure would lead to 

another.9 

  

 
6 Fan, Wenfei, et al. “Query Preserving Graph Compression.” Proceedings of the 2012 ACM SIGMOD International Conference 

on Management of Data, Association for Computing Machinery, 2012, pp. 157–168. ACM Digital Library, 

doi:10.1145/2213836.2213855. 
7 Fan, Wenfei, et al. “Query Preserving Graph Compression.” Proceedings of the 2012 ACM SIGMOD International Conference 

on Management of Data, Association for Computing Machinery, 2012, pp. 157–168. ACM Digital Library, 

doi:10.1145/2213836.2213855. 
8 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
9 Elliot, Matthew, et al. “Financial Networks and Contagion.” The American Economic Review; Nashville, vol. 104, no. 10, 

American Economic Association, Oct. 2014, pp. 3115–53. ProQuest, 

doi:http://dx.doi.org.proxy.library.upenn.edu/10.1257/aer.104.10.3115. 
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Introduction to Over the Counter Markets 

 

In today’s financial system, over-the-counter (OTC) markets play a critical role in 

allowing banks (dealers) and investors (buyers or sellers) to hedge investments and decrease or 

increase their exposure to market risk.  Of all of the different types of securities traded in an 

OTC manner, credit default swaps (CDS) represent the largest asset class.  A CDS is “a financial 

derivative or contract that allows an investor to “swap” or offset his or her credit risk with that of 

another investor.”10  In other words, a CDS works similar to the way insurance does, in that one 

party can purchase protection by paying a monthly or annual payment such that it would be 

reimbursed for a partial or full amount of its loss in the case that the event specified occurs.  

When searching for protection against certain events, hedge funds and other buyers/sellers 

purchase CDS’s to offset risk from their positions, so hence their asset class has a massive 

magnitude measured at $3.68 trillion.11 

Given the way that CDS’s are structured, in that they are personalized contracts in some 

cases, it is only possible for them to be traded in an OTC market rather than a centralized one, 

such as stocks that trade on an exchange.  In an OTC market, securities will be traded between 

two parties in which one is the buyer and the other is the seller, and prices are not standardized 

across the market.12  Between the buyer and seller is a dealer, which is usually a bank.  Banks do 

not want the same exposure to the market as buyers and sellers, rather seeking solely to make as 

many trades as possible because of the commission that they earn in doing so.13  However, what 

this entails for the structure of the CDS market, and other OTC markets, is “increased financial 

interdependencies among many kinds of organizations – governments, central banks, investment 

banks, firms, etc. – that hold each other’s shares, debts, and other obligations.”14 

Defined more formally, the interdependencies can be referred to as gross notional 

outstanding, which is the total sum of all the securities’ spot prices that are currently in the 

market.15  For example, if a market were to consist of only 3 CDS contracts worth $3, $4, and $5, 

respectively, its gross notional value would be $12.  However, the idea of gross notional 

outstanding value should be held in contrast with net positions.  A bank could be holding 

multiple contracts which have offsetting positions, and if this is the case then that bank is both a 

buyer and seller, which is very typical of banks to do, and it would have a net position less than 

 
10 Kuepper, Justin. “Credit Default Swap (CDS) Definition.” Investopedia. www.investopedia.com, 

https://www.investopedia.com/terms/c/creditdefaultswap.asp. Accessed 25 Mar. 2020. 
11 Kuepper, Justin. “Credit Default Swap (CDS) Definition.” Investopedia. www.investopedia.com, 

https://www.investopedia.com/terms/c/creditdefaultswap.asp. Accessed 25 Mar. 2020. 
12 Murphy, Chris B. “Over-The-Counter (OTC).” Investopedia. www.investopedia.com, 

https://www.investopedia.com/terms/o/otc.asp. Accessed 25 Mar. 2020. 
13 Craig, Ben, and Goetz von Peter. “Interbank Tiering and Money Center Banks.” Journal of Financial Intermediation, vol. 23, 

no. 3, July 2014, pp. 322–47. DOI.org (Crossref), doi:10.1016/j.jfi.2014.02.003. 
14 Elliot, Matthew, et al. “Financial Networks and Contagion.” The American Economic Review; Nashville, vol. 104, no. 10, 

American Economic Association, Oct. 2014, pp. 3115–53. ProQuest, 

doi:http://dx.doi.org.proxy.library.upenn.edu/10.1257/aer.104.10.3115. 
15 Nickolas, Steven. “Notional Value vs. Market Value: What’s the Difference?” Investopedia. www.investopedia.com, 

https://www.investopedia.com/ask/answers/050615/what-difference-between-notional-value-and-market-value.asp. Accessed 31 

Mar. 2020. 
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the gross notional outstanding that it is contributing to the market.16  Thus, it follows that 

although every market has its inherent level of risk associated with the trades that make up that 

market, a market can be further prone to risk if it has a much larger amount of gross notional 

outstanding than needed to fulfill its net positions.17 

During the 2008 financial crisis, the entire financial market suffered due to a 

magnification of credit defaults that was a product of network effects.  Interdependencies formed 

due to significant gross notional amounts in the OTC derivatives markets created a large number 

of counterparty risk for banks rather than solely the market risk that they wanted to take on.  

Although some blame should fall on the net positions that financial institutions held at the time, 

much of it is attributable to the large gross positions that they held, creating a considerable 

systemic risk rather than just market exposure.18  Since the 2008 crash, the network profile of the 

financial market has been a focus in recent years as legislators aim to lessen interconnectedness, 

and compression has served as a solution for banks to reduce counterparty risk while maintaining 

market exposure.   

Three major regulations were passed since the Great Recession, including but not limited 

to the Dodd-Frank Act (2010), Basel III (2011), and European Market Infrastructure Regulation 

(2012).  The Dodd-Frank Act imposed many regulations on banks with the purpose of limiting 

systemic risk.  First of all, banks would have to split up their investing and servicing platforms 

and, by the Volcker Rule, would not be allowed to take the same inherently risky positions that 

they could hold prior.  Second, banks would have to increase their reserve requirements.  This 

meant that banks would be able to have less outstanding trades on their balance sheets in 

proportion to the cash that they had on hand.19  Combining this with the passing of European 

Market Infrastructure Regulation (EMIR), which forced banks to include OTC derivatives 

markets in their outstanding trades, banks now have a need to find ways to reduce their gross 

notional outstanding while fulfilling their net positions.20  The Basel III framework gives more 

stringent regulations on the reserve requirements that banks must uphold and installed a liquidity 

coverage ratio so that banks would be forced to keep a percentage of its positions in securities 

that could be sold within 30 days.21 

This increased regulation of banks has led to the need for portfolio compression, defined 

below: 

“a process of replacing multiple offsetting derivatives contracts with fewer deals of the 

same net risk to reduce the notional value of the portfolio. It can be carried out between 

 
16 “How Gross and Net CDS Notionals Really Work.” Financial Times. ftalphaville.ft.com, 

http://ftalphaville.ft.com/2011/10/27/713826/how-gross-and-net-cds-notionals-really-work/. Accessed 31 Mar. 2020 
17 in ’t Veld, Daan, and Iman van Lelyveld. “Finding the Core: Network Structure in Interbank Markets.” Journal of Banking & 

Finance, vol. 49, Dec. 2014, pp. 27–40. DOI.org (Crossref), doi:10.1016/j.jbankfin.2014.08.006 
18 Elliot, Matthew, et al. “Financial Networks and Contagion.” The American Economic Review; Nashville, vol. 104, no. 10, 

American Economic Association, Oct. 2014, pp. 3115–53. ProQuest, 

doi:http://dx.doi.org.proxy.library.upenn.edu/10.1257/aer.104.10.3115. 
19 Kenton, Will. “Dodd-Frank Wall Street Reform and Consumer Protection Act.” Investopedia. www.investopedia.com, 

https://www.investopedia.com/terms/d/dodd-frank-financial-regulatory-reform-bill.asp. Accessed 31 Mar. 2020. 
20 “Derivatives / EMIR.” European Commission - European Commission. ec.europa.eu, https://ec.europa.eu/info/business-

economy-euro/banking-and-finance/financial-markets/post-trade-services/derivatives-emir_en. Accessed 31 Mar. 2020. 
21 Basel III: International Regulatory Framework for Banks. 7 Dec. 2017. www.bis.org, https://www.bis.org/bcbs/basel3.htm. 
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two or more counterparties (bilateral and multilateral compression, respectively).  The 

idea is to reduce the gross notional exposure in derivatives portfolios, which counts 

towards regulatory requirements such as the leverage ratio.”22 

In simpler terms, compression aims to provide banks with the same access to market risk with 

less counterparty risk, or the risk that a counterparty on one of their trades is not able to fulfill its 

contractual obligations.  The mechanics of portfolio compression will be covered more deeply in 

later sections of this thesis, but there are two main factors that allow compression to be effective.  

The first factor is that compression algorithms are able to cancel existing trades between 

counterparties and replace them with less or smaller trades that maintain the same market risk of 

the two counterparties.  The second is that a Central Clearing Counterparty does not need to be 

used.23 

The introduction of the Volcker Rule in 2010 also required banks to clear OTC trades via 

Central Clearing Counterparties (CCPs).24  CCPs are normally banks or other financial 

institutions that aim to solve the same issue that portfolio compression does.  CCPs work as 

intermediates between buyers and sellers and guarantee both sides of an OTC trade in the case 

that one counterparty cannot fulfill its obligations.  In addition, CCPs must clear every trade, 

meaning that fewer trades are occurring in the market and forcing traders to be more efficient 

with their trades (reducing the amount of redundant trades that they submit to the CCPs). 25  The 

effect of CCPs is that they do reduce counterparty risk.  However, systemic risk will still be 

present as the CCPs themselves could fail.  It can be said that CCPs do benefit the OTC market 

in making it more efficient but fail in terms of reaching a level of stability that one would need to 

prevent a cascade of failures as was, seen in the 2008 Great Recession.26  Thus, although helpful, 

CCPs are less effective than portfolio compression via compression algorithms in making the 

OTC market more efficient and stable as they can only help stabilize the market bilaterally and 

not multilaterally.  It has even been researched how portfolio compression reduces the benefits 

that CCPs can provide and renders them pointless.27 

Compression algorithms are an important emerging technology that helps banks reduce 

their balance sheets and gross notional outstanding while maintaining the net positions that they 

seek to hold in relation to the market, and further research into improving them can free up more 

capital in banks so that they can take on other positions and create a more stable financial 

system. 

 

 
22 “Portfolio Compression Definition.” Risk.Net. www.risk.net, https://www.risk.net/node/2270600. Accessed 5 Apr. 2020. 
23 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
24 Kenton, Will. “Dodd-Frank Wall Street Reform and Consumer Protection Act.” Investopedia. www.investopedia.com, 

https://www.investopedia.com/terms/d/dodd-frank-financial-regulatory-reform-bill.asp. Accessed 31 Mar. 2020. 
25 Andrew Bloomenthal. “The Core Role of a Central Counterparty Clearing House—CCP.” Investopedia. 

www.investopedia.com, https://www.investopedia.com/terms/c/ccph.asp. Accessed 5 Apr. 2020. 
26 Duffie, Darrell. “Resolution of Failing Central Counterparties.” SSRN Electronic Journal, 2014. DOI.org (Crossref), 

doi:10.2139/ssrn.2558226. 
27 Duffie, Darrell, and Haoxiang Zhu. “Does a Central Clearing Counterparty Reduce Counterparty Risk?” Review of Asset 

Pricing Studies, vol. 1, no. 1, Dec. 2011, pp. 74–95. DOI.org (Crossref), doi:10.1093/rapstu/rar001. 
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Technical Overview of Compression Algorithms 

 

The technical aspects of compression algorithms will now be discussed in the scope of 

the financial system.  First, it is necessary to formally define the OTC financial market as a 

graph.  Marco D’Errico and Tarik Roukny put it best: 

“The network or graph 𝐺 is the pair (𝑁, 𝐸) where 𝑁 is a set of institutions present in the 

market and 𝐸 is a set of directed out-standing fungible obligations (i.e.,  edges) between 

two institutions in the market. An outstanding obligation is represented by 𝑒𝑖𝑗 whose 

value corresponds to the notional value of the obligation and the directionality departs 

from the seller 𝑖 to the buyer 𝑗 with 𝑖, 𝑗 ∈ 𝑁.”28 

It is important for the algorithms that will be discussed that the edges are directed.  It is obvious 

that if the edges were not directed that not enough information would be obtained from the graph 

since the nature of trades is that one counterparty is the buyer and one is the seller. 

 When examining markets as graphs, we can identify a party’s gross position and net 

position almost immediately.  The gross position, representing the gross notional outstanding as 

discussed above, is found by adding the face values of all directed edges that stem from or go 

into a node.  The formal definition is: 

“𝑣𝑖
𝑔𝑟𝑜𝑠𝑠

= ∑ 𝑒𝑖𝑗𝑗 + ∑ 𝑒𝑗𝑖𝑗 ”29 

The net position is found by taking the total weight of the outward edges and subtracting the 

weight of all inward edges. 

“𝑣𝑖
𝑛𝑒𝑡 = ∑ 𝑒𝑖𝑗𝑗 − ∑ 𝑒𝑗𝑖𝑗 ”30 

Not only is it possible to find the positions of individuals, but one can also find the gross notional 

outstanding of the entire graph by adding the weights of all of the edges that exist within the 

graph.  D’Errico and Roukny define gross notional outstanding as 𝑥, where: 

“𝑥 = ∑ ∑ 𝑒𝑖𝑗𝑗𝑖 ”31 

Finally, it is possible to define market excess quantifiably.  Excess in the market was 

already defined above as the difference between a market’s gross notional outstanding and the 

minimum gross notional outstanding to satisfy its net risk profile, but D’Errico and Roukny 

provide a measurable definition: 

 
28 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
29 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
30 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
31 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 



10 

 

“Δ(𝐺) = ∑ ∑ 𝑒𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 − ∑ 𝑣𝑖

𝑛𝑒𝑡𝑛
𝑖: 𝑣𝑖

𝑛𝑒𝑡>0
”32 

This definition just takes the gross notional outstanding of the entire market graph and subtracts 

the sum of all the net positions of nodes that have a position weight.  The ultimate goal is to 

perform a reduction on the directed graph while keeping 𝑣𝑖
𝑛𝑒𝑡constant for all vertices and 

maximize Δ(𝐺).  An example is given in Figure 1, taken from D’Errico and Roukny. 

 D’Errico and Roukny find a corollary that stems from this definition.  The authors 

“identify a necessary and sufficient condition for excess to emerge in a market:  the existence of 

intermediation.”33  This entails that all OTC markets will exhibit excess since it is the nature of 

OTC markets that dealers facilitate trades between buyers and sellers.  Thus, the dealers will 

have gross positions larger than their net positions, and excess will emerge.  This also leads to 

the conclusion that markets with centralized trading platforms, such as the New York Stock 

Exchange, will exhibit no excess and have no need for compression.34 

 

Figure 1: A graphical example of portfolio compression.  Graph (a) shows a market consisting of 

4 institutions as nodes 𝑖, 𝑗, 𝑘, 𝑙, and positions as edges.  Graph (b) shows a compression solution 

to the market.  Positions were removed and replaced with new positions, which reduced the 

overall market positions by 15 units.35 

It also follows that different compression algorithms would have different levels of 

effectiveness.  And, this effectiveness can be measured by the magnitude of market excess 

(Δ(𝐺)) that each algorithm can remove from the graph.  While it is impossible to find the best 

possible compression algorithm, as more efficient ones are being created every day, we will 

examine three different algorithms that Dominic O’Kane presented in his 2014 paper. 

 
32 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
33 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
34 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
35 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
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One of the first compression algorithms that was created for optimizing OTC markets 

was developed by TriOptima in 2012.  TriOptima is the market leader in portfolio compression 

and was one of the pioneers of applying compression algorithms for OTC market solutions after 

the Great Recession.36  TriOptima filed a patent in 2012, outlining a basic technique for OTC 

market compression using the Depth-First Search algorithm that is frequently spoken about in 

computer science classes.  As is common knowledge to computer scientists, the DFS algorithm 

can list all closed loops in a directed edge graph, which the market graphs are.37  The TriOptima 

algorithm runs DFS on the market graph, and all closed loops are found.  The closed loops are 

cycles of trades that start at one counterparty and end with the same counterparty.  Then, the 

TriOptima algorithm works on each of the closed loops found by the DFS algorithm.  In each 

loop, the weight of the smallest edge will be deleted from the loop.38 

O’Kane points out that although the algorithm is effective in reducing gross notional 

outstanding without changing the net risk profile of the graph, it can be expensive in terms of 

time and memory.  He also states that working with an algorithm of this nature in real life could 

prove to be problematic in that it would be hard to implement compression tolerances.39  

Compression tolerances are the “potential restraints…set by both individual participants and 

regulators.”40  For example, in some CDS compressors, only units of 5 million to 10 million 

dollar transactions are compressed or only trades that have been originally created can be used 

such that the creation of new contracts is not allowed.41 

A large downfall with this traditional DFS greedy approach is that it does not take 

account for loops which sum to zero.  A method to get around this is to enumerate the closed 

loops and associate a value to it.  This is not ideal as closed loops can grow exponentially with 

the number of nodes.42 

 Another method for compression is using algorithms that try to minimize the entry-wise 

exposure of a graph.  To represent a graph, a matrix representation will be used.  Each row and 

column represent a node, and the matrix entry represents an edge.  The value of edge 𝐶1,2 is the 

position between customer 1 and customer 2.  𝐶𝑖,𝑖 will always be zero due to a customer unable 

to buy or sell to themselves.  In addition, the graph will be antisymmetric.  In order to keep track 

of our algorithm using the matrix representation, we calculate the matrix norm and use the first 

and second orders as our entry-wise exposure.43 

 
36 TriReduce. www.trioptima.com, https://www.trioptima.com/trireduce/. Accessed 14 Apr. 2020. 
37 Data Structure - Depth First Traversal - Tutorialspoint. 

https://www.tutorialspoint.com/data_structures_algorithms/depth_first_traversal.htm. Accessed 14 Apr. 2020. 
38 Brouwer, Derk Pieter. System and Method of Implementing Massive Early Terminations of Long Term Financial Contracts. 

US20120023002A1, 26 Jan. 2012. Google Patents, https://patents.google.com/patent/US20120023002A1/en.  
39 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
40 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
41 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
42 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
43 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 

https://patents.google.com/patent/US20120023002A1/en
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“‖𝐿(𝐶, 𝑁)‖𝑝 = (
2

𝑁(𝑁−1)
∑ ∑ |𝐶𝑖𝑗|

𝑝𝑁
𝑗=𝑖+1

𝑁
𝑖=1 )

1

𝑝
”44  

“‖𝐿(𝐶, 𝑁)‖1 =
2

𝑁(𝑁−1)
∑ ∑ |𝐶𝑖𝑗|𝑁

𝑗=𝑖+1
𝑁
𝑖=1 ”45 

“‖𝐿(𝐶, 𝑁)‖2 = √
2

𝑁(𝑁−1)
∑ ∑ |𝐶𝑖𝑗|

2𝑁
𝑗=𝑖+1

𝑁
𝑖=1 ”46 

 

Table of Graph Matrix 

 𝑐1 𝑐2 𝑐3 𝑐4 Net vertex 

value ℎ𝑖 

𝑐1 0 -2  -2 -4 

𝑐2 2 0 -4  -2 

𝑐3  4 0 1 5 

𝑐4 2  -1 0 1 

 

Figure 2: Matrix representation of the graph depicted in Figure 3 (this matrix is my creation, but 

I derived the idea of depicting a graph-matrix relationship in this manner from Dominic 

O’Kane).47 

 

 

Figure 3: Graph representation of matrix depicted in Figure 2 (this graph is my creation, but I 

derived the idea of depicting a graph-matrix relationship in this manner from Dominic 

O’Kane).48 

 
44 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
45 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
46 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
47 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
48 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
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The first of the two optimization methods minimize 𝐿1 using a linear programming 

approach.  The objective function of the linear program to be minimized is “∑ |𝐶𝑖𝑗|𝑛
𝑖𝑗 ,”49 which 

translates to minimizing the absolute values of all the exposures which is also equivalent to 

minimizing the 𝐿1 function defined earlier.50  The constraints which we want to satisfy are ℎ𝑖 

(Figure 2 above), which is the net value of a particular vertex.  In order to have a full linear 

programming problem, we will set: 

"𝐶𝑖𝑗 = 𝐶𝑖𝑗
+ − 𝐶𝑖𝑗

−"51 

Replacing the absolute value with the new variable results in the new objective function 

becoming:  

“Ω(𝐶) = ∑ ∑ (𝐶𝑖𝑗
+ − 𝐶𝑖𝑗

−)𝑁
𝑗=1

𝑁
𝑖=1 ”52 

The above equation is subject to the condition that “∑ (𝐶𝑖𝑗
+ − 𝐶𝑖𝑗

−)𝑁
𝑗=1 = ℎ𝑖 .”

53 

The second method to optimize against is 𝐿2.  The objective function of the linear 

program to be minimised is: 

“Ω(𝐶) = ∑ ∑ 𝐶𝑖𝑗
2𝑁

𝑖=𝑗+1
𝑁
𝑖=1 ”54 

The above equation is subject to the condition that “∑ �̂�𝑖𝑗
𝑁
𝑗=1 = ℎ𝑖.”

55 

The reasoning behind using a quadratic function rather than a linear one is to apply a 

greater cost penalty to large exposures which in turn should give us lower absolute exposures 

compared to using 𝐿2.56  The matrix and antisymmetric structure of the graph give us an 

advantage of allowing us to use already developed solving methods such as linear programming 

to give us near optimal configurations or will have a GCD less than or equal to the original GCD 

divided by the number of counterparties.57 

  

 
49 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
50 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
51 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
52 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
53 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
54 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
55 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
56 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
57 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
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Application of Compression Algorithms in Optimization of OTC 

CDS Market 

 

 According to David Bachelier of Capitalab, another pioneer of portfolio compression 

technology along with TriOptima,58 compression was lightly deployed in 2003 as “an IT and 

operational tool to reduce trade processing and the number of payments on derivatives; there was 

no leverage ratio.”59  However, after the crash of 2008, with many banks defaulting and the 

entire system failing due to large amounts of systemic risk, compression became much more of a 

focus for banks and the government as both created measures to reduce the chance of a similar 

crisis occurring again. 

 Compression is now a regular part of the CDS OTC market, and every bank uses 

compression to help optimize their portfolios.  The market is also becoming more centralized in 

that the compression cycle occurs daily “just prior to the CDS auction process and its purpose is 

to reduce the number of participants in the CDS auction, the number of contracts which need to 

be settled, and the quantity of physical assets which are to be delivered.”60  And, the effects of 

the deployment of this technology are well documented.  According to TriOptima’s statistics 

alone, it eliminated $30.2 trillion of CDS gross notional outstanding in 2008 and $77 trillion in 

total.  In only 2019, it eliminated $250 trillion of gross notional outstanding over all of the OTC 

markets that it covers.61 

 If we are to look at the entire CDS market as a whole, we can see that compression has 

been ubiquitous since 2008.  The “Bank for International Settlements (BIS) attributes the 

reduction of Credit Default Swap notionals to a sixth of the levels exhibited a decade ago to an 

extensive use of portfolio compression after the crisis.”62  In fact, looking at Figure 4 below, we 

can see that CDS gross notional outstanding peaked in 2007, the year before the Great 

Recession, and since then has decreased year-over-year to levels that provide less systemic risk. 

 
58 Who We Are | CAPITALAB. www.capitalab.co.uk, https://www.capitalab.co.uk/who-we-are/. Accessed 24 Mar. 2020. 
59 “The Rapid Evolution of Compression: Keeping Pace with Optimisation Activity.” Risk.Net, 16 Apr. 2018. www.risk.net, 

https://www.risk.net/node/5494961. 
60 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
61 News. www.trioptima.com, https://www.trioptima.com/news/trioptima-sets-new-trireduce-record-250-trillion-g. Accessed 15 

Apr. 2020. 
62 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
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Figure 4: A breakdown of the gross notional outstanding in the CDS market broken down into 

single-asset and multi-asset backed CDS’s.63 

 In fact, something that is even more telling of compression’s success is looking at the 

breakdown of gross notional outstanding being split into the counterparties that hold the gross 

notional outstanding, shown in Figure 5.  From this graphic, it is evident that the most 

compression has been experienced by reporting dealers and banks and securities firms, which 

would make sense as these are the counterparties whose incentive is not to take on net risk, but to 

facilitate trades with other counterparties in order to make a commission off of those trades.  

Thus, they have successfully been able to reduce their systemic risk while maintaining their 

desired amount of net risk. 

 
63 Aldasoro, Iñaki, and Torsten Ehlers. The Credit Default Swap Market: What a Difference a Decade Makes. June 2018. 

www.bis.org, https://www.bis.org/publ/qtrpdf/r_qt1806b.htm. 
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Figure 5: A breakdown of the gross notional outstanding in the CDS market broken down by 

counterparty sector.64 

 Something to note is that the rise of Central Counterparties exhibits an inverse 

relationship with the decline of gross notional outstanding due to reporting dealers and banks and 

securities firms.  As mentioned earlier in this dissertation, CCPs aim to solve the same issue that 

compression algorithms do, and much of the reduction in gross notional outstanding should be 

attributed to their increasing prevalence as well as compression algorithms such as TriOptima’s.  

However, while their use does lessen gross notional outstanding, the CCPs themselves create a 

level of systemic risk as they can fail themselves.  The amount of trades that they serve as 

counterparty to is depicted in Figure 5 as well in brown color, and their share of the market was 

recorded at 53% as of 2018.65  Thus, this leaves much room for the improvement of the 

utilization of compression algorithms, as it seems the market has settled with the results of CCPs.  

TriOptima reported that although it was responsible for $30.2 trillion in reductions in 2008, that 

number shrank to $8.5 trillion in 2010 and $3.5 trillion in 2012.66  While O’Kane argues that this 

reduction can be attributed to the fact that many legacy positions were already compressed by 

2012,67 the fact remains that this decline also coincides with the rise of CCPs. 

 

 
64 Aldasoro, Iñaki, and Torsten Ehlers. The Credit Default Swap Market: What a Difference a Decade Makes. June 2018. 

www.bis.org, https://www.bis.org/publ/qtrpdf/r_qt1806b.htm. 
65 Aldasoro, Iñaki, and Torsten Ehlers. The Credit Default Swap Market: What a Difference a Decade Makes. June 2018. 

www.bis.org, https://www.bis.org/publ/qtrpdf/r_qt1806b.htm. 
66 News. www.trioptima.com, https://www.trioptima.com/news/trioptima-sets-new-trireduce-record-250-trillion-g. Accessed 15 

Apr. 2020. 
67 O’Kane, Dominic. “Optimizing the Compression Cycle: Algorithms for Multilateral Netting in OTC Derivatives Markets.” 

SSRN Electronic Journal, 2013. DOI.org (Crossref), doi:10.2139/ssrn.2273802. 
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Other Applications 

 

Network trafficking 
 

Quality of Service (QoS) technologies are methods of improving the performance of a 

network.  They are important in today’s world as they allow a network to work with higher 

reliability for applications that demand large network capacity, such as streaming, video-

conferencing, and online gaming.  In all of these applications, lag and network performance is a 

major factor, and as more and more of everyday applications require stable network 

performance, QoS becomes more of a necessity.68  QoS technologies work specifically on 

“bandwidth (throughput), latency (delay), jitter (variance in latency), and error rate.”69 

QoS technologies are best thought of as directors of traffic.  There are large packets of 

data that different applications on the network need to send through the network, and the QoS 

technologies decide which paths through the network each packet of data should take and with 

what priority.70  The methods of which QoS technologies can manipulate networks can be 

divided into five different categories: 

1. Classification – Classifying data before it enters the network so that the network 

knows the priority of the data. 71 

2. Congestion management – The methods that handle the classified data and how 

priority data should be treated.72 

3. Congestion avoidance – The way that networks are monitored in real-time so that 

paths that are congested do not receive further packets of new data to transfer.73 

4. Policing – Limiting the traffic through the network to lower levels to avoid 

unexpected drops in reliability.74 

5. Link efficiency – Network paths are examined to find the shortest paths for each route 

that data needs to take.75 

 
68 Kounev, Samuel, et al. Autonomic QoS-Aware Resource Management in Grid Computing Using Online Performance Models. 

2007, p. 48. ResearchGate, doi:10.1145/1345263.1345325. 
69 What Is Quality of Service? - Palo Alto Networks. https://www.paloaltonetworks.com/cyberpedia/what-is-quality-of-service-

qos. Accessed 18 Apr. 2020. 
70 Kounev, Samuel, et al. Autonomic QoS-Aware Resource Management in Grid Computing Using Online Performance Models. 

2007, p. 48. ResearchGate, doi:10.1145/1345263.1345325. 
70 What Is Quality of Service? - Palo Alto Networks. 
71 “What Is QoS? Guide & Best Quality of Service Software 2020.” DNSstuff, 4 Oct. 2019. www.dnsstuff.com, 

https://www.dnsstuff.com/what-is-qos. 
72 “What Is QoS? Guide & Best Quality of Service Software 2020.” DNSstuff, 4 Oct. 2019. www.dnsstuff.com, 

https://www.dnsstuff.com/what-is-qos. 
73 “What Is QoS? Guide & Best Quality of Service Software 2020.” DNSstuff, 4 Oct. 2019. www.dnsstuff.com, 

https://www.dnsstuff.com/what-is-qos. 
74 “What Is QoS? Guide & Best Quality of Service Software 2020.” DNSstuff, 4 Oct. 2019. www.dnsstuff.com, 

https://www.dnsstuff.com/what-is-qos. 
75 “What Is QoS? Guide & Best Quality of Service Software 2020.” DNSstuff, 4 Oct. 2019. www.dnsstuff.com, 

https://www.dnsstuff.com/what-is-qos. 
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Compression algorithms work on two of the five methods, specifically congestion 

avoidance and link efficiency.  When looking at a network and the routers and paths that 

comprise it, it can be thought of as a graph with directed edges.  Thus, graph compression can be 

applied to network graphs in order to identify the paths that are currently congested and remove 

them from the graph in order to find more optimal paths for new data to be sent through 

(congestion avoidance) or to compress the graphs before any data is ready to be sent to create 

paths of minimum distance (link efficiency).76 

 Currently, the main QoS technology used is called the Minimum Hop algorithm.  This 

algorithm uses Breadth First Search, making it different from the typical DFS-powered 

compression algorithms.  The Minimum Hop algorithm works as a QoS technology in the link 

efficiency factor, meaning that it is run prior to packets of data being sent so that path selection 

can be more optimal. 77  However, this algorithm does not change the graphs in any way in terms 

of link efficiency, and only identifies the existing shortest paths.  J.J. Garcia-Luna-Aceves 

proved that much improvement could be made to the Minimum Hop algorithm to improve its 

effectiveness.78 

Cassetti finds that applying compression algorithms as a QoS technology increases 

throughput by 15% compared to the typical Minimum Hop algorithm that is normally used.79 

 

Computational Memory and Logic Synthesis 
 

 Increasing computational power from computer processors has been increasing in 

demand.  This is creating new challenges for engineers to decrease transistor sizes in chips and 

improve synthesis to meet demands.80  This has manifested itself in Moore’s Law, as more and 

more transistors must be fit inside of portable devices to make them smaller and more 

powerful.81  As a result, graph algorithms have been used to model logic gates as directed acyclic 

graphs.  Engineers can use transitive reduction algorithms to affect the datapath and reduce the 

number of logical components, use faster logical components, or use less power.  Cunxi Yu et al. 

have also proven that using graph reduction algorithms for Directed Acyclic Graphs (DAGs) and 

logic synthesis one is able to minimize the area of datapath designs.82  The DAG is a boolean 

 
76 Casetti, C., et al. “A New Class of QoS Routing Strategies Based on Network Graph Reduction q.” Computer Networks, 2003, 

p. 13. 
77 Xin Yuan, and A. Saifee. “Path Selection Methods for Localized Quality of Service Routing.” Proceedings Tenth International 

Conference on Computer Communications and Networks (Cat. No.01EX495), 2001, pp. 102–07. IEEE Xplore, 

doi:10.1109/ICCCN.2001.956226. 
78 Garcia-Luna-Aceves, J. J. “A Minimum-Hop Routing Algorithm Based on Distributed Information.” Computer Networks and 

ISDN Systems, vol. 16, no. 5, May 1989, pp. 367–82. ScienceDirect, doi:10.1016/0169-7552(89)90011-1. 
79 Casetti, C., et al. “A New Class of QoS Routing Strategies Based on Network Graph Reduction q.” Computer Networks, 2003, 

p. 13. 
80 Chipping Away at Moore’s Law - ACM Queue. https://queue.acm.org/detail.cfm?id=3388515. Accessed 28 Apr. 2020 
81 Engineering: Issues, Challenges and Opportunities for Development; UNESCO Report - UNESCO Digital Library. 

https://unesdoc.unesco.org/ark:/48223/pf0000189753. Accessed 28 Apr. 2020. 
82 Yu, Cunxi, Maciej Ciesielski, et al. “DAG-Aware Logic Synthesis of Datapaths.” Proceedings of the 53rd Annual Design 

Automation Conference, Association for Computing Machinery, 2016, pp. 1–6. ACM Digital Library, 

doi:10.1145/2897937.2898000. 
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network representation where vertices are logic gates and edges represent connections between 

gates.  As a result of graph reductions, we can increase processing power without solely counting 

on increasing the number of transistors added.83 

 

Visual Representations of Complex Social Networks 
 

Graph reduction algorithms provide reduction of complex networks where edges are 

redundant.  This leads to the visualization of networks and important clusters of people or 

places.84  Social networks or corporate company communication networks such as emails can be 

represented as interaction maps between individuals which may involve thousands to millions of 

interactions.  These relationships are complex and incredibly large, which result in difficulty in 

both analysis and visualizations.85  While clustering has been used to see a high-level view of 

interactions, reduction algorithms can give a concise and easy to view alternative while keeping 

important properties of the network.86 

For example, in Vincent et al, the group analyzed emails from Enron after the fall out of 

the company.  Emails of directors were gathered, and after reducing the graph to non-redundant 

edges, one can see both cycles and leaves forming out of specific vertices.87 

 
83 Yu, Cunxi, Mihir Choudhury, et al. “Advanced Datapath Synthesis Using Graph Isomorphism.” 2017 IEEE/ACM International 

Conference on Computer-Aided Design (ICCAD), IEEE, 2017, pp. 424–29. DOI.org (Crossref), 

doi:10.1109/ICCAD.2017.8203808. 
84 Fan, Wenfei, et al. “Query Preserving Graph Compression.” Proceedings of the 2012 ACM SIGMOD International Conference 

on Management of Data, Association for Computing Machinery, 2012, pp. 157–168. ACM Digital Library, 

doi:10.1145/2213836.2213855. 
85 Graph Pattern Matching Revised for Social Network Analysis | Proceedings of the 15th International Conference on Database 

Theory. https://dl.acm.org/doi/abs/10.1145/2274576.2274578. Accessed 28 Apr. 2020. 
86 Dubois, V., and C. Bothorel. “Transitive Reduction for Social Network Analysis and Visualization.” The 2005 

IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), 2005, pp. 128–31. IEEE Xplore, 

doi:10.1109/WI.2005.152 
87 Vincent, D., and B. Cecile. “Transitive Reduction for Social Network Analysis and Visualization.” The 2005 IEEE/WIC/ACM 

International Conference on Web Intelligence (WI’05), IEEE, 2005, pp. 128–31. DOI.org (Crossref), doi:10.1109/WI.2005.152. 
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Figure 6: Graph of emails from Enron employee network.88 

It is much easier to deduce findings from graph b of Figure 6, than it is prior to graph 

reduction, and the validity of the findings still holds because it is query preserving.89  In this 

case, the validity refers to the fact that it was more important in the Enron case to know who the 

emails were stemming from than who was receiving the emails.   

 From my own personal experience, I can attest to the value of graph reduction even in 

this seemingly elementary use.  As corporations are getting larger and larger, and management of 

people is coming more into focus, graphs such as the Enron graph in Figure 6 are becoming used 

more.  During a summer internship in the Summer of 2019, I was tasked with creating one of 

these graph networks to see which nodes had many incoming edges.  We then recommended to 

the company that that node (person) hire someone for additional help and to improve the 

efficiency of operations.  Had I been able to perform a graph reduction such as the one on the 

Enron employee graph, the insights would have been more obvious. 

  

 
88 Vincent, D., and B. Cecile. “Transitive Reduction for Social Network Analysis and Visualization.” The 2005 IEEE/WIC/ACM 

International Conference on Web Intelligence (WI’05), IEEE, 2005, pp. 128–31. DOI.org (Crossref), doi:10.1109/WI.2005.152. 
89 Vincent, D., and B. Cecile. “Transitive Reduction for Social Network Analysis and Visualization.” The 2005 IEEE/WIC/ACM 

International Conference on Web Intelligence (WI’05), IEEE, 2005, pp. 128–31. DOI.org (Crossref), doi:10.1109/WI.2005.152. 
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Challenges and Future Work 

 

 There are two main challenges that stand in the way of the further adoption of 

compression algorithms in making OTC markets more efficient.  First, there is the rise of CCPs 

that compression algorithms, and specifically the companies that offer their service, face.  As 

touched upon earlier in this dissertation, the fact that CCPs provide some of the same benefits as 

compression algorithms creates a question of whether further adoption is necessary for 

compression algorithms.  The second main challenge that compression algorithms face is the fact 

that in real-world deployment, compression algorithms must be able to conform to different 

compression tolerances.  As defined above, compression tolerances are important because they 

determine what the result of a compression algorithm will be, as the market as regulations that 

compression algorithms must follow.  For example, the market may require that no new trades 

can be created as a result of compression.90  Individual firms may also require compression 

tolerances specific to themselves, and thus compression algorithms must be nimble enough to 

adhere to these specific guidelines while remaining effective in reducing gross notional 

outstanding.91 

 In an interview with Risk, a financial journal, many important figures in the compression 

algorithm world shared their views in response to these challenges.  According to Mike 

Sweeting, Head of Product at Capitalab, the issue with CCPs, other than the fact that they can 

also default, is that their compression runs are scheduled and each of those runs has limited 

spots.92  Thus, not every dealer can even enter, and compression is limited before it even takes 

place.  The tipping point towards the use of compression algorithms for portfolio compression is 

thus its ability to support straight-through-processing (STP), or the ability to compress trades 

while they are taking place instead of having to coordinate compression with other banks during 

a set time.93  However, as the Head of XVA Management at Credit Suisse, Philip Staddon, points 

out, this will require multiple banks to work with the same compression provider, which is tough 

to ensure as the compression space is a business with different servicers competing for clients 

after all.94 

 In the rest of the interview, Gavin Jackson of Capitalab, Allan Guild of HSBC, and 

Edward Ground of JP Morgan, all mention that it is not the actual technology that is holding 

compression algorithms back, but instead the structure of their deployment.  As of now, 

compression algorithms can support multiple types of compression tolerances while remaining 

effective, and they are actually achieving a more impressive compression than banks are looking 

 
90 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
91 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 

(Crossref), doi:10.2139/ssrn.2962575. 
92 “The Rapid Evolution of Compression: Keeping Pace with Optimisation Activity.” Risk.Net, 16 Apr. 2018. www.risk.net, 

https://www.risk.net/node/5494961. 
93 “The Rapid Evolution of Compression: Keeping Pace with Optimisation Activity.” Risk.Net, 16 Apr. 2018. www.risk.net, 

https://www.risk.net/node/5494961. 
94 “The Rapid Evolution of Compression: Keeping Pace with Optimisation Activity.” Risk.Net, 16 Apr. 2018. www.risk.net, 
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for, with a lot of banks setting individual tolerances to keep the compression more 

conservative.95  The main factor impeding their success is that a large network must be made.  

After observing the technical aspects of compression algorithms, it follows that the larger the 

network, the better the compression would be.  But with all of the different options in the market 

with CCPs and different portfolio compression providers, banks are split up into separate 

networks and are compressing at different times of each other.96  The speakers agree that the 

winner out of CCPs vs compression algorithms will be the one that is operationally easier for 

banks to use.  The main issue, outlined by Philip Staddon, is that banks have to implement teams 

in their own companies to consolidate their trades for both CCP and portfolio compression.  If 

multiple banks are able to all submit their trades directly to Capitalab for STP compression, then 

compression algorithms will win the “battle” against CCPs and the market will exhibit more 

efficiency than it already does.97 
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https://www.risk.net/node/5494961. 
96 “The Rapid Evolution of Compression: Keeping Pace with Optimisation Activity.” Risk.Net, 16 Apr. 2018. www.risk.net, 

https://www.risk.net/node/5494961. 
97 “The Rapid Evolution of Compression: Keeping Pace with Optimisation Activity.” Risk.Net, 16 Apr. 2018. www.risk.net, 

https://www.risk.net/node/5494961. 



23 

 

Conclusion 

 

With the understanding of how compression algorithms are currently deployed to 

optimize OTC financial markets, we can see the benefits that they bring to the financial system.  

There are three main factors that incentivize their utilization.  First, is the reduction of systemic 

risk that they provide the system, which was covered earlier in this dissertation.  Next, the 

compression algorithms shrink the portfolios that banks hold on their balance sheets, which helps 

them follow the new regulation restraints that were put in place after 2008.  Lastly, “by reducing 

the number of contracts, compression leads to a reduction of operational risks and an improve-

ment of management, including trade count reduction, speed to auction in case of default, lower 

cash-flow needed to settle obligations, fewer reconciliations, lighter burden of settlement, [and] 

lowered collateral and margin requirements.”98 

 
98 D’Errico, Marco, and Tarik Roukny. “Compressing Over-the-Counter Markets.” SSRN Electronic Journal, 2017. DOI.org 
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