
 1

An Exploration of Zero-Knowledge Proofs and zk-SNARKs

Terrence Jo

EAS499

Fall 2019

Advisor: Professor David Crosbie

 2

Table of Contents

1. Abstract .. 3

2. Introduction and Overview of Zero-Knowledge Proofs ... 4-6

3. Introduction to zk-SNARKs .. 6

4. Technical Overview of zk-SNARKs .. 7-11

5. zk-SNARK in Application ... 12-19

6. Challenges and Outlook ... 19-21

7. Conclusion .. 21

 3

Abstract

Over the past few years, with the rise of cryptocurrency prices and new blockchain
startups, blockchain technology has become popular and a variety of use cases have become
apparent – in banking, identification, cryptocurrency, supply chains, payments and more.
With new developments in cryptography and privacy, related cryptographic technology is
becoming more advanced and furthering its applications. One such recent development is
zero knowledge proofs, and specifically zk-SNARKs (Zero Knowledge Succinct Non-
interactive Argument of Knowledge), a new form of zero-knowledge cryptography. In this
paper, first I will give an overview of zero-knowledge proofs, then investigate the emerging
new technology of zk-SNARKs, why and how it works, and explore recent implementations
and their efficiencies. Then, I will also explore the practicality and usability of zk-SNARKs in
a business context, by investigating companies and startups that claim to use zero-knowledge
proofs in their products. Finally, I will discuss current challenges in the development of zero-
knowledge proofs and the future outlook.

 4

1. Introduction and Overview of Zero-Knowledge Proofs

Zero-knowledge proofs are a very interesting and fascinating cryptographic concept
and prove to be useful in various applications, mainly in privacy and blockchain technology.
Zero-knowledge proofs involve two parties: a prover and a verifier. The prover makes an
assertion that his or her proof is valid, which the verifier must approve, without the prover
leaking any “knowledge” other than the assertion itself. How can the verifier validate an
assertion without any knowledge of the content and minimal interaction with the prover? This
is where zero-knowledge proofs become useful and can be used in many cryptographic
protocols to “provide zero-knowledge proofs of correctness of... secret-based actions, without
revealing these secrets”. 1

We can imagine use cases almost immediately – imagine frequent scenarios when one
reveals private information to verify something about one’s identity. When one applies for a
credit card, he or she must give up his social security number, or when one checks in for a
flight at the airport, he or she must reveal all the private information present on the passport,
such as birthdate or passport number. Even on a day-to-day basis, when a user logs on to a
web or mobile application, the user must enter a password to the account and send this
sensitive information to the server, trust that the application securely handles this information,
and that the password is not intercepted over the network. Dr. Manuel Blum from the
University of California, Berkeley suggested a zero-knowledge solution to this problem – the
“password” could be an interactive “procedure”, such as changing letters in a string, rather
than a string itself, through which the user proves knowledge of the “password” without
leaking the password itself. 2 An outside observer would no longer have a string password to
intercept and fraudulently log on to another user’s account. 2

So how do zero-knowledge proofs work and how are they structured? As mentioned
previously, there is a “prover” and “verifier”. The “prover” wants to prove the knowledge of a
solution to a specific problem (or truth of a statement), without leaking any knowledge of the
solution itself to the “verifier”, who wants to be reassured that the prover actually does know
the solution (or that the statement is true). According to Goldwasser, Micali, and Rackoff,
who first introduced the “zero-knowledge” concept3, there are three main essential properties
of zero-knowledge protocols:

1. Completeness: If statement is true, the verifier would be convinced of the truth of
statement by the prover.

1 Goldreich, Oded. “A Short Tutorial of Zero-Knowledge.” Weizmann Institute of Science, 2010.
2 Gleick, James. “A NEW APPROACH TO PROTECTING SECRETS IS DISCOVERED.” The New York Times, The New
York Times, 17 Feb. 1987, https://www.nytimes.com/1987/02/17/science/a-new-approach-to-protecting-
secrets-is-discovered.html.
3 Green, Matthew. “Zero Knowledge Proofs: An Illustrated Primer.” A Few Thoughts on Cryptographic
Engineering, 27 Nov. 2014, https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-
illustrated-primer/.

 5

2. Soundness: The prover can only convince the verifier of the truth of the statement
if that statement itself is actually true, except with some very small probability.

3. Zero-Knowledge: The verifier does not know any knowledge (zero knowledge) of
the prover’s statement or solution that, other than the truth of the statement. 4

One of the first such valid general zero-knowledge proof systems was proposed by Goldreich,
Micali, and Widgerson, specifically to verify that a prover knew the 3-coloring of a graph.
The 3-coloring graph problem is an NP-Complete problem stated as follows:

“Given a graph G, can you color the nodes with <3 colors such that for every edge {u, v} we
have f(u) =/= f(v)?” 5

In this zero-knowledge proof system, the prover wants to prove to the verifier that he or she
knows the 3-coloring of a given graph to a verifier, without revealing to the verifier the actual
3-coloring solution. Thus, the zero-knowledge proof system works in the following way:

1. The prover covers each vertex of a 3-coloring solution of the graph such that it is not
observable to the verifier.

2. The verifier randomly chooses an edge of the graph and the prover reveals the two
vertices of the chosen edge. The prover shows that the two vertices are of a different
color. If the two vertices are of the same color, we know that the prover is dishonest
and does not have the solution. If the two vertices are of different color, the verifier
has some (but not full) confidence that the prover is telling the truth. We note that the
prover has (E-1)/E probability of cheating, where E is the number of edges in the
graph. Then we continue to the next step.

3. The prover now covers all vertices of the graph again, and randomly switches the
ordering of the three colors in the prover’s solution. Again, the verifier then chooses a
random edge to check that the edge is valid (the two vertices are of different colors).
Although the prover could be cheating again, we see that now the probability that the
prover successfully cheated both rounds is ((𝐸 − 1)/𝐸) ∗ ((𝐸 − 1)/𝐸) = ((𝐸 −
1)/𝐸)^2, which is lower than the previous round.

4. After repeating this process for multiple n rounds, we can lower the probability that
the prover can cheat the verifier, to a negligible value. 6

a. Probability of Prover Cheating: +,-.
,
/
0
.	

One of the most important aspects of this protocol proposed by Goldreich, Micali, and
Widgerson is the zero-knowledge aspect – we have to show that the verifier cannot identify
the actual solution to the 3-coloring solution. This is where the randomness of the coloring at
each round comes in. If at each round, the order of the coloring of the vertices of the graph is
different, the verifier cannot link the edges revealed between subsequent rounds to construct a

4 Goldwasser et al. “Interactive Proof Systems.” Computational Complexity Theory Proceedings of Symposia in
Applied Mathematics, 1989, pp. 108–128.
5 https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/sat.pdf
6 Green, Matthew. “Zero Knowledge Proofs: An Illustrated Primer.”

 6

valid solution to the 3-coloring graph problem. So, we can see that this zero-knowledge
protocol to proving knowledge of a solution to the 3-coloring graph problem is complete,
sound, and has zero-knowledge. Additionally, since the 3-coloring graph problem is NP-
Complete, we know that any problem in “the class NP can be reduced into an instance of that
problem”. 7 Thus, in essence, Goldreich, Micali, and Widgerson have shown that all
statements in NP can be verified through this zero-knowledge protocol.8

 We might wonder in practice how to convert every zero-knowledge proof into a 3-
coloring graph problem, and also run the interactive aspect of the zero-knowledge protocol for
enough rounds efficiently to be useful in practice and in every-day applications. This leads us
to the development of zk-SNARKs (Zero Knowledge Succinct Non-interactive Argument of
Knowledge), which becomes more efficient and more applicable in practice.

2. zk-SNARKs Introduction

The first zero-knowledge proofs described were introduced in the late 1980’s, by
Goldwasser, Micali, and Rackoff4, but the modern development of zk-SNARKs happened
only in the past decade (introduced by Alessandro Chiesa, professor at UC Berkeley) and is
constantly being improved. Zk-SNARKs (Zero Knowledge Succinct Non-interactive
Argument of Knowledge) are specifically zero-knowledge proofs that are “succinct”, meaning
they can be verified in the matter of milliseconds with a proof length of a few hundred bytes.
The “non-interactive” aspect refers to fact that the prover can send a single message to the
verifier, without having many back-and-forth interactions.9

As mentioned previously, Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer introduced the term zk-SNARKs in their paper “From Extractable Collision
Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again” in 2011.
They introduced the idea of an extractable collision hash function (ECRH)10 and proved that
the existence of ECRH implies that a modified version of “Di Crecsenzo and Lipmaa’s
protocol is a succinct non-interactive argument for NP.”11 This modified version of the
protocol was introduced as SNARKs, and the zero-knowledge version of such protocol is zk-
SNARKs, which we will deep further into the details of in the next section.

7 Green, Matthew. “Zero Knowledge Proofs: An Illustrated Primer.”
8 Goldreich, Oded, et al. “Proofs That Yield Nothing but Their Validity or All Languages in NP Have Zero-
Knowledge Proof Systems.” Journal of the ACM, vol. 38, no. 3, Jan. 1991, pp. 690–728.
9 “What Are Zk-SNARKs?” Zcash, Electric Coin Company, https://z.cash/technology/zksnarks/.
10 Bitansky, Nir, et al. “From Extractable Collision Resistance to Succinct Non-Interactive Arguments of
Knowledge, and Back Again.” Proceedings of the 3rd Innovations in Theoretical Computer Science Conference on
- ITCS 12, 2012, doi:10.1145/2090236.2090263.
11 Crescenzo, Giovanni Di, and Helger Lipmaa. “Succinct NP Proofs from an Extractability Assumption.” Logic
and Theory of Algorithms Lecture Notes in Computer Science, 2008, pp. 175–185., doi:10.1007/978-3-540-
69407-6_21.

 7

3. zk-SNARKs Technical Overview

The initial condition begins with a prover that wants to prove to a verifier that he or she
knows an input 𝑤 such that 𝑧 = 𝑓(𝑥, 𝑤) , where 𝑥 is a publicly known input to the function 𝑓.
The verifier wants to be assured that the 𝑧 provided by the prover is correct, and the verifier
wants to be assured that the prover gains no knowledge about the private input 𝑤. This
situation, with completeness, soundness, and zero-knowledge4 is similar to the more general
zero-knowledge proofs that we have discussed earlier in this paper and refers to the security
aspects of zk-SNARKs. However, to show the true innovative benefit of zk-SNARKs, a few
more requirements regarding the efficiency of this proving system must be met as follows:

1. Non-interactive: Unlike the back-and-forth interactions between the prover and
verifier of the zero knowledge protocol we saw earlier with the 3-coloring graph
example, in zk-SNARKs, the prover provides only 𝑧 along with a string p, which
proves to the verifier that 𝑧 is the correct output of 𝑓 (in other words, prover knows the
secret input 𝑤). The efficiency comes from this one-way interaction, as 𝑧 and p is
sufficient to the verifier and does not need to ask any further questions to the prover.12

2. Succinct: Given a l, which is a security parameter, the p provided by the prover must
have size 𝑂l(1), and the verification should be able to be finished in the following
runtime:

𝑂l(|𝑓| + |𝑥| + |𝑧|) 12

To successfully construct and implement such zk-SNARKs, there are four main ingredients as
follows:13

1. Encoding into Polynomial Problem
2. Succinctness through Random Samples
3. Homomorphic Encryption
4. Zero-Knowledge

In the paper “Quadratic Span Programs and Succinct NIZKs without PCP’s” by Gennaro,

Gentry, Parno, and Raykova14, the authors discovered that reducing original problems to
QSP’s (Quadratic Span Programs), were helpful in constructing zk-SNARKs. Simply put, a
QSP consists of multiple polynomials 𝑣< …𝑣>, 𝑤< …𝑤? over a field F and a target polynomial
t. The QSP is accepted for an input and a witness if and only if t divides 𝑣@		 ∗ 	𝑤A , where
𝑣@		and 𝑤A is constructed from the witness and the original polynomials 𝑣< …𝑣>, 𝑤< …𝑤?.14
Thus the prover shows that 𝑡 ∗ 𝑘 = 	𝑣@		 ∗ 	𝑤A for some other polynomial 𝑘. However, due to

12 Ben-Sasson, et al. “Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture.” Feb, 2019.
https://eprint.iacr.org/2013/879.pdf
13 Reitweissner, Christian. “zk-SNARKs in a Nutshell.” 5 December, 2016.
http://chriseth.github.io/notes/articles/zksnarks/zksnarks.pdf
14 Gennaro, et al. “Quadratic Span Programs and Succinct NIZKs without PCPs.” May, 2013.
https://eprint.iacr.org/2012/215.pdf

 8

the complexity of large polynomials and large runtime of multiplying and dividing
polynomials, this QSP is hard to completely verify in practice, and thus we will go into the
details of verifying a secret point 𝑠 in the polynomials. In other words, the verifier chooses a
secret point 𝑠 such that

𝑡(𝑠) ∗ 𝑘(𝑠) = 	𝑣@(𝑠) ∗ 	𝑤A(𝑠). 13

Although one may see that verifying a QSP at a single point, rather than for all points, reduces
security, since there are relatively few zeroes to make the above equation satisfy, we can see
that it is relatively safe in real application.

3a. CRS Setup Phase and Prover Computation

 Currently, the most common constructions of zk-SNARKs involve a CRS (Common
Reference String) and a set-up of initial parameters. Firstly, we choose a group and a
generator 𝑔, and an encryption scheme E where 𝐸(𝑥) = 𝑔F. Then, the verifier secretly
chooses 𝑠 as well as another value 𝑧 and publicly posts as part of the CRS the following:

𝐸(𝑠<), 𝐸(𝑠.), … , 𝐸(𝑠G)
			𝐸(𝑧𝑠<), 𝐸(𝑧𝑠.), … , 𝐸(𝑧𝑠G) 13

where 𝑑 is the maximum degree of all polynomials in the program.13 Once these values are
calculated and posted, the verifier must discard the secret point 𝑠 for security reasons, so that
the prover cannot obtain it to falsely create proofs. The prover must then use these published
values above to prove that he can compute a polynomial function 𝑓. We can see that any
prover can compute 𝑚 = 𝐸(𝑓(𝑠)) for any function 𝑓 without knowing the verifier’s secret
value 𝑠. As an example, consider a function 𝑓(𝑥) = 𝑥J + 𝑥. The prover computes the
following:

𝐸K𝑓(𝑠)L = 𝐸(𝑠J + 𝑠)	
= 𝑔MNOM = 𝑔MN ∗ 𝑔M	
= 𝐸(𝑠J) ∗ 𝐸(𝑠).	13

Each of 𝐸(𝑠J) and 𝐸(𝑠) can be taken from the publicly published CRS. By the same

token, the prover can also compute 𝑛 = 𝐸(𝑧 ∗ 𝑓(𝑠)), and sends both 𝑚 and 𝑛 to the verifier.

3b. Pairing Function and Verifier Computation

The reason that the verifier needs 𝑛 in addition to 𝑚 is that earlier the verifier had

discarded 𝑠,	so there is no way to check that the prover correctly solved the polynomial 𝑓 at 𝑠.
Thus a way around this is once the verifier receives the values 𝑚 and 𝑛, the verifier must
check that 𝑚 and 𝑛 match through an pairing function 𝑝, which is chosen with the group
chosen in the CRS setup phase, such that the following holds for all inputs values 𝑥 and 𝑦:

 9

𝑝(𝑔F, 𝑔S) = 𝑝(𝑔, 𝑔)FS 13

where a pairing function 𝑝 is a computable bijection such that 𝑝:	𝑁	𝑋	𝑁 → 𝑁.15 We can see
immediately that this pairing function 𝑝 becomes useful, as we can plug in the pairs 𝑛, 𝑔 and
𝑚,𝑔X into the pairing function, and if the results match, then we know that the prover solved
the polynomial correctly at 𝑠, as shown by the following equations:

𝑝(𝑚, 𝑔X) = 𝑝K𝑔Y(M), 𝑔XL = 	𝑝(𝑔, 𝑔)X∗Y(M)
𝑝(𝑛, 𝑔) = 𝑝K𝑔X∗Y(M), 𝑔L = 	𝑝(𝑔, 𝑔)X∗Y(M) 13

So, if the prover correctly solved the polynomial 𝑓 at s, we can see that the following should
hold:

𝑝(𝑚, 𝑔X) = 	𝑝(𝑛, 𝑔) 13

We can see that the verifier can verify the prover’s solution without actually having to
replicate the prover’s computation. Even with much more complex polynomials and programs
than our given example of 𝑓, the verifier does not need to put in as much work as the prover,
and only needs to compute the pairing function 𝑝 for various inputs to finish the job as a
verifier.

 The example above also shows that the protocol is non-interactive – that is, the prover
only needs to send a sequence of values to the verifier once and in one-direction. The verifier
does not need to ask additional questions to the prover to verify the correctness of the prover’s
statement. However, we must also show that the protocol is succinct, as well as zero-
knowledge.

 Currently, the example as it is above is not completely zero-knowledge. It is important
that the verifier does not know anything about the value of 𝑓(𝑠), which is sensitive
information to the prover, or even better, the encrypted version of the value, 𝐸(𝑓(𝑠)).13 The
verifier can obtain some information about both with our current system. 𝐸(𝑓(𝑠)) is known
for obvious reasons, as the prover sends this exact value to the verifier for verification. For
𝑓(𝑠), since the verifier knows the public value of 𝐸(𝑧) = 𝑔X,13 the value of 𝑓(𝑠) can be
backed out from the result of the pairing function 𝑝, through a process that we will call “𝑓(𝑠)
Leakage Procedure from Malicious Verifier”:

𝑓(𝑠) Leakage Procedure from Malicious Verifier:

1. In the verification process, the verifier computes:
a. 𝑝(𝑛, 𝑔) = 	𝑝(𝑔, 𝑔)X∗Y(M)

2. The verifier can also compute the following value using the pairing function:

15 Alvarez, Carmé. “Algorithmics and Theory of Computation.”
https://www.cs.upc.edu/~alvarez/calculabilitat/enumerabilitat.pdf

 10

a. 𝑝(𝑔X, 𝑔X) = 	𝑝(𝑔, 𝑔)X
3. Then, the verifier can take the log of 𝑝(𝑛, 𝑔) to obtain the value of 𝑓(𝑠):

a. 𝑙𝑜𝑔	\(],])^K𝑝(𝑔, 𝑔)X∗Y(M)L = 𝑓(𝑠).

Since we have shown that the verifier can retrieve the value of 𝑓(𝑠) which is sensitive to the
prover, we must add zero-knowledge to the protocol.

3c. Zero-knowledge

 To add zero-knowledge, we modify the example above with the prover choosing a
random value 𝜑 to “shift” the value of 𝑓(𝑠) before encryption.13 So instead of computing
𝐸(𝑓(𝑠)) and 𝐸(𝑧 ∗ 𝑓(𝑠)), the prover computes 𝑚` = 	𝐸(𝜑 + 𝑓(𝑠)) and 𝑛` = 	𝐸(𝑧 ∗ (𝜑 +
𝑓(𝑠))) and sends it to the verifier:

𝐸K𝜑 + 𝑓(𝑠)L = 𝑔aOY(M) = 	𝑔a ∗ 𝑔Y(M) = 𝐸K𝑓(𝑠)L ∗ 𝐸(𝜑) 13

We can see from above that the prover can still compute 𝑚` from the public parameters in the
CRS, and by the same token, the prover can also compute 𝑛`. Once the verifier receives 𝑚`
and 𝑛`, the values are inputted into the pairing function 𝑝 in a similar fashion to the example
above:

𝑝(𝑚`, 𝑔X) = 𝑝K𝑔aOY(M), 𝑔XL = 	𝑝(𝑔, 𝑔)X∗(aOY(M))
𝑝(𝑛`, 𝑔) = 𝑝K𝑔X(aOY(M)), 𝑔L = 	𝑝(𝑔, 𝑔)X∗(aOY(M))

From the equations above, we see that verification process still functions properly, and the
verifier’s computation is still limited to the pairing function. An added benefit of this
modified protocol is the zero-knowledge. As mentioned previously, we want to protect
knowledge of 𝐸(𝑓(𝑠)) and 𝐸(𝑠) from leaking to the verifier. It is clear that 𝐸(𝑓(𝑠)) is not
leaked, as the prover no longer sends this value to the verifier for validation. For 𝑓(𝑠), even if
we apply the same “𝑓(𝑠) Leakage Procedure from Malicious Verifier” stated above, the only
useful information that a malicious verifier can extract from the values 𝑚` and 𝑛` is 𝜑 + 𝑓(𝑠).
Since 𝜑 is a random value only known to the prover13, it is now apparent that the malicious
verifier can no longer deduce the value of 𝑓(𝑠), and thus we have shown the new modified
protocol has zero-knowledge.

3d. QSP Problem and Succinctness of zk-SNARKs

 The above example described in detail was for a zk-SNARK protocol for a single
polynomial 𝑓, but most systems require reduction to QSP’s, which were described earlier as a
problem involving multiple polynomials that is derived from the original program to be
proved.14 Our above example is just applied to the various polynomials (𝑣< …𝑣>, 𝑤< …𝑤?, 𝑡)
that are presented in the reduced QSP problem.

 11

 Instead of simply publishing 𝐸(𝑠<), 𝐸(𝑠.), … , 𝐸(𝑠G),	𝐸(𝑧𝑠<), 𝐸(𝑧𝑠.), … , 𝐸(𝑧𝑠G) to
the CRS, in the CRS set up phase, we publish the following:

𝐸K𝑡(𝑠)L, 𝐸K𝑧 ∗ 𝑡(𝑠)L
	𝐸K𝑣<(𝑠)L…𝐸K𝑣>(𝑠)L, 𝐸K𝑧 ∗ 𝑣<(𝑠)L…𝐸(𝑧 ∗ 𝑣>(𝑠))
𝐸K𝑤<(𝑠)L…𝐸K𝑤>(𝑠)L, 𝐸K𝑧 ∗ 𝑤<(𝑠)L…𝐸(𝑧 ∗ 𝑤>(𝑠)) 13

Yet there are some additional parameters that must be published in the CRS that we did not
mention previously. A hole in our logic in the simple example in parts 3a.-3c. is that the
prover can maliciously come up with values 𝑚 and 𝑛 such that the verifier’s computation still
checks out. In other words, the prover can theoretically find values that makes the statement
𝑝(𝑚, 𝑔X) = 	𝑝(𝑛, 𝑔) still true, without actually computing 𝐸K𝑓(𝑠)L or 𝐸K𝑧 ∗ 𝑓(𝑠)L13,
violating the soundness aspect of our zero-knowledge system. Thus, in the setup phase of the
CRS, we must add additional parameters to show that the values that the prover sends to the
verifier actually involves a computation of the satisfying assignment to the QSP and the initial
polynomials.13 Then, the following procedure of the zk-SNARK is similar to the example in
3a.-3c., with the prover sending more polynomials to the verifier, who uses a pairing function
to match the inputs. Again, the prover uses a random value 𝜑 to “shift” the values that he
sends to the verifier, maintaining the zero-knowledge property.13

 Notice that succinctness of zk-SNARKs is with respect to the verification process only
and does not refer to the prover side.12 With more complex problems to prove in the zk-
SNARK protocol, we end up with more complex polynomials in the Quadratic Span Program.
However, we maintain succinctness in the verification process, as we do not need to do
polynomial multiplication for verification – rather, we only need to “check polynomial
identity for a single point”13. Although this leads to a slight reduction in security, this
reduction is negligible as described previously, and thus we maintain soundness. Then, the
only things affecting the efficiency of our verification process are the inputs to the original
program, as well as the group size chosen in our CRS setup phase13. This maintenance of
succinctness no matter the problem complexity, and the non-interactive nature is the largest
added benefit of the recent development of zk-SNARKs, as opposed to the original
inefficient, interactive zero-knowledge proofs introduced in the 1980’s,4 and is the reason zk-
SNARKs can be used in real-life application.

Note, however, there is one downside of zk-SNARKs implemented currently, which is

the CRS phase discussed in our above example. This CRS setup phase requires trust that the
generated parameters that are published publicly are not compromised16. We can imagine a
case in which a parameter such as 𝑧 (mentioned in our example) is not properly discarded and
can allow a malicious prover to generate fake proofs. This problem of trust in these common

16 Binance Academy. “Zk-SNARKs and Zk-STARKs Explained.” Binance Academy, Binance Academy, 18 Nov.
2019, https://www.binance.vision/blockchain/zk-snarks-and-zk-starks-explained.

 12

parameters is solved in a newer development in zero-knowledge proofs called zk-STARKs17,
which will be examined in more detail later in this paper.

4. zk-SNARKs in Application

One of the most interesting engineering challenges of zk-SNARKs in application is
the translation of the original computational problem to the QSP14, or Quadratic Arithmetic
Programs (QAP)18 mentioned earlier in the paper. For zk-SNARKs to be applied to a problem
that the prover wants to prove to a verifier, there are 3 main preparatory procedures:

1. “Flattening Procedure” or Translation into Gates
2. Conversion from Gates to R1CS
3. Conversion from R1CS to QAP form. 18

Starting from the original program, in step number 1, we translate or “flatten” all complex
statements into a series of very simple equations, or logic gates, of the form “x = y” or “x = y
(operation) z”, where an operation is “+, -, *, / and y and z can be variables, numbers or
themselves sub-expressions.”18

 Then these very simple “logic gates” are then converted into an important form called
the Rank-1 Constraint System (R1CS). An R1CS involves a sequence of three vectors 𝑎, 𝑏,
and 𝑐, and the solution 𝑠 to the R1CS, or the witness that the prover provides, is another
vector such that the following equation is satisfied:

𝑎 ∙ 𝑠 + 𝑏 ∙ 𝑠 − 𝑐 ∙ 𝑠 = 0 18

where ‘∙’ stands for the dot product between the vectors on either side. This transformation
into the Rank-1 Constraint System is done for each of the logic gates in the previous step – for
instance, if we had 5 logic gates in step 1, at the end of step 2, we would have a series of 5
vectors for each of 𝑎, 𝑏, and 𝑐.18

Then, we convert these series of vectors in R1CS form to polynomial form, using
Lagrange Interpolation18 to create polynomials such that evaluating each polynomial at
coordinates 1…𝑖 where 𝑖 is the number logic gates in step 1, creates the values of vectors that
were created in the R1CS system in step 2.18 Finally, this series of polynomials form the QAP
problem, to which zk-SNARKs can be directly applied.

 4a. Implementations

 There are various implementations of the above transformations as well as the

17 Ben-Sasson, et al. “Scalable, transparent, and post-quantum secure computational integrity.” 6 Mar. 2018,
https://eprint.iacr.org/2018/046.pdf
18 Buterin, Vitalik. “Quadratic Arithmetic Programs: Zero to Hero.” 11 Dec. 2016,
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649

 13

proof-generating and verification process of zk-SNARKs. A few open-source projects, such
as Snårkl and Pequin19, attempt to take programs written in higher-level languages such as C
and Haskell and compile them into zk-SNARKs, from pre-processing to verification.

Currently, one of the most popular implementations of zk-SNARKs is libsnark, a C++

library used in the backend of the most major widespread zk-SNARK applications, such as Z-
Cash.20 Libsnark is currently being developed by a collaboration amongst a group of
academic institutions called SCIPR (Succinct Computational Integrity and Privacy Research)
Lab21, and led by some of the top researchers in the zero-knowledge space, such as Eli Ben-
Sasson and Alessandro Chiesa.

One of the major challenges, however, is the usability and documentation of these

libraries. Although there are some instructional guidelines on installation and usage,
documentation is very limited, and many bugs and issues are not addressed. A large milestone
for further exploration and more access for interested developers in the usage of zk-SNARKs
in their applications would be more detailed documentation, ease of use, and easy integration.
Most of these implementations are not ready for widespread use, not only because of the
usability, but also because of technical challenges facing zk-SNARKs that will be discussed
later in this paper. Thus, libraries such as Pequin of the Pepper Project, a joint effort by UT
Austin and NYU, highlight the “potential applicability of the theory” rather than being
optimized for use in “real systems”.22

5. Applications with zk-SNARKs

 There are some blockchain-related applications that use zk-SNARKs to provide
privacy to transactions completed over the blockchain network. One of the major benefits
when blockchain technology was initially introduced was the transparency and traceability of
transactions. Typically, in widely used blockchain networks such as Bitcoin or Ethereum, a
publicly distributed ledger allows one to trace the transactions and determine the balance of
any given address. As stated on Bitcoin’s website:

“All Bitcoin transactions are public, traceable, and permanently stored in the Bitcoin
network. Bitcoin addresses are the only information used to define where bitcoins are
allocated and where they are sent. These addresses are created privately by each
user's wallets. However, once addresses are used, they become tainted by the history
of all transactions they are involved with. Anyone can see the balance and all
transactions of any address. Since users usually have to reveal their identity in order
to receive services or goods, Bitcoin addresses cannot remain fully anonymous.” 23

19 “Zero-Knowledge Proofs: What are they, how do they work, and are they fast yet?” https://zkp.science/
20 Samman, George. “The Trend Towards Blockchain Privacy: Zero Knowledge Proofs” 12 September, 2016.
https://www.coindesk.com/trend-towards-blockchain-privacy-zero-knowledge-proofs
21 http://www.scipr-lab.org/
22 https://www.pepper-project.org/
23 https://bitcoin.org/en/protect-your-privacy

 14

Thus, when a user on a blockchain network such as Bitcoin wants to protect his or her privacy
regarding transaction history and balance, many precautions must be taken, such as using
multiple addresses or wallets to make and receive payments, and using tools to hide the user’s
computer IP address.23 This lack of privacy and inconvenience in protecting one’s identity on
a blockchain network has led to the development of Zcash, a blockchain that uses zk-
SNARKs to allow users to transact while protecting their privacy. We will now explore
Zcash, focusing on the privacy aspects, assuming knowledge of the workings of a typical
blockchain network such as Bitcoin.

5a. Zcash

 Zcash is a blockchain-based digital cryptocurrency that has two types of addresses,
“private” or “transparent” addresses.24 Transactions done through transparent addresses are
essentially the same as ones done on Bitcoin in protocol, but the more interesting zero-
knowledge technology is implemented in “private” address transactions.25 The zk-SNARKs in
Zcash allow users to show that all conditions (such as no double-spending, or having enough
balance to complete a transaction) are satisfied to form a valid transaction, without “revealing
any crucial information about the addresses or values involved.”26 In the Bitcoin protocol, a
user that wants to spend money must have the necessary Unspent Transaction Outputs
(UTXO). In Zcash, however, transaction outputs are called commitments, and to spend a
commitment, the spender must publish a nullifier using his spending key. Thus, every
commitment has a corresponding nullifier, each of which are hashed and stored on Zcash
nodes, with no way determining which nullifier corresponds to which commitment. 26

More specifically, the input values, or note provided by the spender in the shielded,
private payment to a recipient, is hashed with the recipient’s address, a “rho”, or unique
identifier value corresponding to the specific note, as well as a random value, called a nonce
in the following way:

 Commitment = HASH(recipient address, amount, rho, r) 26

Then, when such recipient wants to spend a note, the recipient hashes his or her
spending key along with the rho of a previous commitment to publish a nullifier, where such
resulting hash cannot match an existing nullifier, to prevent double spending, or spending a
note that was already spent26:

Nullifier = HASH(spending key, rho) 26

Even if the spender shows through the nullifier (with rho) that the note was not spent

24 https://z.cash/technology/
25 Bowe, et al. “Zcash Protocol Specification.” 24, September 2019.
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
26 https://z.cash/technology/zksnarks/

 15

previously, he or she still has not shown that the note itself exists and is not fraudulently
created by the spender. This is where zk-SNARKs come into the Zcash application.27 To
accomplish this without revealing the detailed addresses and spent amounts, the sender (or
prover in the zk-SNARK) of the private, shielded transaction also provides a zero-knowledge
proof, or a string 𝜋, as described above in the technical overview, using a proving key26, that
the following statements are true:

1. The commitments and nullifiers were correctly computed.
2. The sum of input values and the sum of output values of the transaction equal each

other, and the corresponding notes exist.
3. The sender has authority to spend the input notes of the transaction (by verifying the

spending keys). 26

The miners of the Zcash network then use verifying keys to complete the verification process
of the zk-SNARK proofs provided by the spenders, subsequently adding the verified
transaction to the Zcash blockchain. Currently, the Zcash network uses Bellman, a Rust-
language library to generate arithmetic circuits in zk-SNARKs, which is intended to provide
higher security and more efficiency than its predecessor, libsnark.

5b. zk-SNARKs in Enterprise

 In addition to blockchain networks that involve individual users that desire privacy for
their identities as well as their transactions, zk-SNARKs are very applicable for enterprise
blockchain networks. There are many industries, such as pharmaceutical, food, or healthcare,
where traceability and transaction verification through distributed ledgers are desired either
from the consumer perspective, or by regulation. For instance, in 2013, the Drug Supply
Chain Security Act (DSCSA), Title II of the Drug Quality and Security Act, required the
pharmaceutical industry to adopt a digital system to “track and trace prescription drugs in the
United States”28:

“… (DSCSA), outlines steps to build an electronic, interoperable system to
identify and trace certain prescription drugs as they are distributed in the United
States. This will enhance FDA’s ability to help protect consumers from exposure to
drugs that may be counterfeit, stolen, contaminated, or otherwise harmful. The system
will also improve detection and removal of potentially dangerous drugs from the drug
supply chain to protect U.S. consumers.” 29

It seems likely that a blockchain network would be useful for such an “electronic,
interoperable” system, but a typical decentralized application built with smart contracts on a

27 Gabizon, Ariel. “How Transactions Between Shielded Addresses Work.” 1 October, 2018.
https://electriccoin.co/blog/zcash-private-transactions/
28 Chronicled. “Chronicled and The LinkLab Announce The MediLedger Project, a Revolutionary Blockchain-
backed System to Safeguard the Pharmaceutical Industry.” PR Newswire. 21 September, 2017.
29 https://www.fda.gov/drugs/drug-supply-chain-integrity/drug-supply-chain-security-act-dscsa

 16

blockchain network such as Ethereum faces severe challenges in an enterprise setting.
Because such an industry-specific blockchain network would involve nodes of collaborators
along a supply chain as well as competitors, there are privacy concerns. A typical blockchain
allows for a decentralized system to trace transfers of pharmaceutical goods, but also reveals
the amount of goods, pricing, and other company-specific sensitive information that a player
might not want to reveal to competitors. Additionally, simple “obfuscation” of data through
hashing and other methods30 is not enough, as most use cases of enterprise blockchains, such
as authenticity of a drug, require more than just knowing the pure existence of a transaction.
Therefore, naturally zk-SNARKs becomes useful in this type of enterprise setting, specifically
verifying complex proofs without giving away sensitive company information.31

5b(i) Chronicled/MediLedger

 Chronicled is a venture backed startup founded in 2014 with $28 million in funding32,
and focuses on enterprise software solutions for providing smarter and more secure supply
chains. One of the core ideas in Chronicled’s solutions is privacy, specifically for players in
an enterprise blockchain network.

One of their main solutions is called The MediLedger Project33, which essentially
solves the problem mentioned above in the pharmaceutical industry. In the pharmaceutical
industry, a very secure system of tracing drugs throughout a supply chain is necessary because
of the large number of transfers that products can undergo before being used by the end
consumer. According to Maurizio Greco, the CTO of Chronicled, a “…large number of drugs
are returned by pharmacies to distributors, which must verify the serial number of the drug
before reselling it to another pharmacy or hospital.”34

A previously suggested solution to this problem of making drugs is called the Proof of

Existence (PoE), which involves hashing data along with a timestamp before committing it to
a block on the blockchain, such that the hash cannot be “tampered” with in the future.34 So in
this case, we can imagine hashing a serial number associated with the manufacturing of a drug
and committing to the relevant blockchain. Then an end consumer of the drug can again hash
the serial number and check the blockchain for previous existence. However, this solution
only proves the existence of a serial number, rather than revealing the actual origin of a drug
later down the line – nothing prevents a malicious actor to hash a counterfeit serial number
and commit it to the blockchain, and thus we need to find a way to “authorize” a serial
number, or proving that a serial number is of authentic origin, without revealing disclosing the
actual “creator” or the serial number.34

30 Petkus, Maksym. “Game-changing Year for Private Blockchains.” 3 January, 2018.
https://blog.chronicled.com/game-changing-year-for-private-blockchains-5b91eec0a0e4
31 Gavigan, Jack. “ZSL: zk-SNARKs for the Enterprise.” 23 March, 2017. https://electriccoin.co/blog/zsl/
32 https://www.crunchbase.com/organization/chronicled#section-overview
33 https://www.mediledger.com/solution-protocols
34 Greco, Maurizio. “Does Proof of Existence establish Provenance?” 10 April, 2018.
https://blog.chronicled.com/does-proof-of-existence-establish-provenance-5028fbd8c6da

 17

Thus, the MediLedger blockchain solution is called a “Confidential Chain of Custody”
(3C), which is a combination of two systems: an immutable manufacturer registry, and
another system called the “Chain of Custody.”34 The immutable registry on the blockchain
lists a group of legitimate “creators”, who expose verification endpoints for users to verify the
origin of their drug products, and this verification process can be done in a decentralized
matter. Additionally, the “Chain of Custody” involves transforming a serial number into a
“token” and transferring such token to different users in the blockchain network along with
the transfer of the physical good. At one time, there is only one “custodian”, or controller, of
the drug that can demonstrate ownership or transfer to another player in the network. Through
the “Chain of Custody”, a new counterfeit drug with the same serial number cannot be
introduced into the network, unless the existing legitimate physical asset is replaced as well.34

At each transfer or transaction, unlike in the Proof of Existence solution, the details of

data are not committed to the blockchain – instead, zero-knowledge proofs are pushed
through an Ethereum smart contract that proves that the sender is the valid custodian of the
drug being transferred, and that the transfer was valid without revealing the details of the
transfer. Once the proof is verified through the zk-SNARK protocol, the recipient of the drug
“completes the transfer by proving that he or she is the intended recipient”34

Source: Chronicled

As seen by the description of the MediLedger solution and diagram above, 3C provides an
immutable and efficient supply chain solution for the pharmaceutical industry, while
maintaining privacy of company sensitive information. In terms of efficiency, the current

 18

MediLedger solution has response times of “400ms for Coast-to-Coast verifications”33, so
they have reached “production-level scalability.”30 We can see that this combination of
blockchain and zk-SNARKs can be applied to supply chains of other industries as well,
including automotive, agriculture, and fashion industries, to improve traceability and
authenticity guarantees of products for the end consumer.

5c. Self-Sovereign Identity

 Another application of zk-SNARKs is in the concept of self-sovereign identity – the
idea of using zero knowledge proofs to prove claims about aspects of an individual’s identity
is a major use case for zk-SNARKs. Questions like “Are you over 21”, “Do you live in the
US”, or “Are you employed” could be answered and verified through zk-SNARKs without
giving the details of one’s identity or sensitive information away to the party that is asking the
question.35

5c(i). The Sovrin Network/Hyperledger Indy

 The Sovrin Foundation is a nonprofit organization dedicated to supporting one of the
most prominent efforts to achieve digital self-sovereign identity, the Sovrin Network.36 In
essence, the Sovrin Network is trying to create a secure, easy-to-use “digital equivalent” of a
passport or birth certificate37, to prove identity without having to manage many usernames
and passwords that users trust companies to keep secure. There are two main problems that
the Sovrin protocol is trying to tackle:

1. Standardizing the format for a digital credential.
2. Creating a “standard way to verify the source and integrity of these digital

credentials”37

Until now, the Public Key Infrastructure (PKI) has been used to verify digital signatures and
help determine the identity of services and users on the Internet. This public key infrastructure
relies on a central authority called Certificate Authorities (CAs)38, which issues digital
credentials to users and is trusted to ensure that the digital certificates are associated with the
legitimate and right identity. We can already see that there is a huge security vulnerability in
trusting these CA’s – if anything happens to CA’s or if they make a mistake with providing
digital certificates, the entire PKI system is in jeopardy and it may be difficult to trust that an
online connection is secure and that data is sent to the correct counterparty.37 Additionally, the

35 “The Sovrin Network and Zero Konwledge Proofs.” 3 October, 2018. https://sovrin.org/the-sovrin-network-
and-zero-knowledge-proofs/
36 “Self-Sovereign Identity Advocates Support the Sovrin Network.” 25 February, 2019.
https://www.globenewswire.com/news-release/2019/02/25/1741723/0/en/Self-Sovereign-Identity-
Advocates-Support-the-Sovrin-Network.html
37 The Sovrin Foundation. “Sovrin: A Protocol and Token for Self-Sovereign Identity and Decentralized Trust.”
Jan 2018. https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
38 https://www.thalesesecurity.com/faq/public-key-infrastructure-pki/what-public-key-infrastructure-pki

 19

current infrastructure and the reliance of CA’s makes it difficult and costly to obtain
certificates.37

 Therefore, the Sovrin protocol proposes a new solution, called a decentralized PKI
(DPKI)37, which involves the of storing these certificates, or “proof of ownership” of public
keys, on a blockchain so that there is an immutable decentralized ledger and no reliance on a
central authority. With partners such as the Linux Foundation’s HyperLedger Indy Project as
well as the World Wide Web Consortium (W3C)39, the Sovrin Network is attempting use
Digital Identifiers (DIDs) to create an identifier that can be controlled solely by the owner of
that identity. Additionally, any connections between two parties would involve looking up the
counterparty’s DID and the associated public key, similar to how the Doman Name System
(DNS) works currently.39

 One of the highest priorities of the Sovrin Network is privacy, which is where the
zero-knowledge proof comes in. There are three main privacy requirements that the Sovrin
networks sets out to achieve:

 “1. Pseudonymity by default. Sovrin supports pairwise-unique DIDs and public keys.

2. Private agents by default. To prevent correlation, no private data is stored on the
ledger, even in encrypted form.
3. Selective disclosure by default. Sovrin verifiable claims use cryptographic zero-
knowledge proofs so they can automatically support data minimization”37

As seen above, the Sovrin Network and its proposed protocol strives to limit the amount of
data leaked in any digital connection between two parties through the idea of “selective
disclosure”.37 Most of the zero knowledge technology in the Sovrin network is built into
HyperLedger Indy, which is the codebase on which Sovrin is built on top of.40 In Indy’s
protocol, for a “prover” to prove that he or she owns a digital credential, or that the data in a
set of claims is true, Indy’s implementation uses zk-SNARKs to keep the prover’s identity
hidden in the verification process.41

6. Challenges of zk-SNARKs and Future Outlook

 There are still many challenges to zk-SNARKs and zero-knowledge proofs that are
preventing widespread application, and the two major ones are scalability, as well as security.

 In our technical overview, we mentioned that one of the greatest improvements in
zero-knowledge proofs provided by zk-SNARKs is the succinctness and efficiency with
which verifiers can verify provers’ claims. However, one of the issues with many
implementations of zk-SNARKs is the costs to the prover in generating the actual proof that is

39 “Decentralized Identifiers (DIDs) v1.0: Core Data Model and Syntaxes.” w3.org/TR/did-core/
40 https://github.com/hyperledger/indy-node
41 https://hyperledger-indy.readthedocs.io/en/master/

 20

to be sent to the verifier. As mentioned by developers of the Pepper Project, the “CPU costs to
the prover are currently immense: order of magnitude (factors between a thousand and a
million) more than simply executing the computation”42. Not only are the CPU costs to
generate a proof very expensive, but the pure memory to store the transcript of a proof is also
a bottleneck mentioned by the Pepper Project.42 Due to these costs, zk-SNARKs can currently
only be applied to small-scale computations, and overly complex programs are still
impractical and difficult to prove through current implementations of zk-SNARKs like the
Pequin of the Pepper Project. Even Maksym Petkus from Chronicled, mentioned earlier in this
paper, describes the “notorious computations” of zk-SNARKs30, and although they were able
to achieve production-level scalability for the <10 enterprise clients they have on their
network, it is unclear how viable it is to scale such a complex application with zero-
knowledge proofs for millions of users.

 The second major issue is the set-up process of current zk-SNARKs: naturally, the
existence of parameters in the common string, or CRS, that are created from private
randomness16 decreases security of zero knowledge systems significantly. For instance, in
Zcash, anyone who has access to the private parameters can generate fake proofs and hence
fraudulently create cryptocurrency value for him or herself.43 This vulnerability in the trusted
setup has become a topic of discussion amongst researchers in zero knowledge proofs, and
there is an emerging solution called zk-STARKs.

 zk-STARKs stands for zero-knowledge, scalable and transparent argument of
knowledge. As seen in the name, zk-STARKs provide scalability and transparency to zero-
knowledge proofs. The “transparency” refers to the lack of the trusted set-up process that
involves private parameters which could be compromised. Instead, the proofs in zk-STARKs
only uses public parameters, and thus a malicious party would not have an unfair advantage or
a way to generate fake proofs. Additionally, zk-STARKs provide scalability that current zero
knowledge solutions do not have, because proofs provided in zk-STARK systems can be
verified much faster than zk-SNARKs.44 zk-STARKs provide “exponentially decreasing
verification time”, and a node in a blockchain network can produce proofs that can convince
other nodes without requiring these nodes to “store the entire blockchain’s state” or re-execute
the computation.45

 However, a downside of zk-STARKs given its quick verification time and a lack of
need for a trusted “set-up phase” is its long proofs. With zk-SNARKs as long as it is
currently, zk-STARK proofs are 1000x longer than zk-SNARK proofs45, and a lot of research
would have to be done to shorten this proof length to have viability on the blockchain. In

42 https://www.pepper-project.org/summary-perf.htm
43 Drygin, Alexander. “The Dark Side of Zero Knowledge: Undetectable Backdoor in zk-SNARK.” 11 January,
2019. https://blog.smartdec.net/the-dark-side-of-zero-knowledge-undetectable-backdoor-in-zk-snark-
a9093ffe49bf
44 Whittle, Ben. “From zk-SNARKs to zk-STARKs: The Application of Zero-Knowledge Proofs.” CoinCentral. 22
January, 2019. https://coincentral.com/zk-starks/
45 Ben-Sasson, et al. “Scalable, transparent, and post-quantum secure computational integrity.” 6 March, 2018.
https://eprint.iacr.org/2018/046.pdf

 21

2018, Ben-Sasson, one of the co-authors of the zk-STARK whitepaper, founded a venture-
backed company called StarkWare Industries to continue improving and developing
blockchain solutions involving zk-STARKs.46

7. Conclusion

 Zero-knowledge proofs and zk-SNARKs are a fascinating cryptography concept that
has been developing rapidly over the past couple of years. With various new applications on
the blockchain and in enterprise as seen in ZCash, Sovrin, and Chronicled, we can see that
this revolutionary technology has the potential to provide true privacy for users and
companies that interact and transact digitally. Although currently there are various challenges
including security, scalability, and efficiency, we will see many developments and research,
such as zk-STARKs, in this space in the upcoming years, and we will eventually experience a
new type of secure digital privacy through an exploding number of applications utilizing this
zero-knowledge technology.

46 https://starkware.co/

