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II. Executive Summary 
 
  The current state of music production equipment is riddled with barriers to entry for 

aspiring producers. Powerful hardware synthesizer equipment and digital audio workstations 
(DAWs) are both prohibitively expensive. DAWs provide a full production suite with all 
necessary tools, but lack intuitive physical control. Hardware synthesizers are tactile but provide 
only narrow functionality, meaning one cannot produce a full song on a single hardware 
synthesizer. 

 
   Our team set out to develop an inexpensive, portable, and powerful hardware 

synthesizer to democratize access to music production tools, as well as to provide established 
producers with more effective equipment for specific applications.  

 
  We began with the goal of shrinking the power of software into a portable package by 

parallelizing audio computations. We set out to develop applications taking advantage of a 
Graphics Processing Unit (GPU)’s natural parallelization ability, using the Nvidia Jetson Nano as 
the processing engine. Before the outbreak of COVID-19, we had planned to outsource 
manufacturing of a PCB and heatsink to external vendors given the complexity of those 
components. In addition to this, we planned to develop a GUI using a Qt framework that would 
produce the same signals as would our physical controls. We would thus be able to develop the 
synth engine to interface with this GUI and in theory, the synth engine would be able to interface 
with the physical controls once ready. In order to get the physical controls ready, our plan was 
to order our designed components and assemble the hardware product in time for the final 
demo. Obviously we were unable to follow through with this.  

 
Our team decided that we wanted to continue developing our project after the transition 

to online courses. To accomplish this, we pivoted to a software implementation of our ideas. We 
used JUCE, a set of libraries made by music hardware and software company Roli, to create a 
GUI that would mimic the intended design of our original product. We continued to develop and 
debug the synthesis engine and phase vocoder until the day of our demo. Ultimately, we were 
successful in creating an audio application that accomplished our intended goals on the Jetson 
Nano, although it remained buggy given the time frame.  
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III. Overview of Project 
 

In our group, 3 of us are active musicians, and 2 of us produce electronic music. We are 
constantly uninspired and frustrated by music production software. Our brains come up with 
music faster than our computer mice can drag a virtual knob. Things that should be as simple as 
turning a knob or humming a tune take 10 times longer than they should. The unintuitive 
software interfaces cost $500 for a license. Hardware synthesizers and electronic instruments 
are tactile and more intuitive to use, but they are not portable. Additionally, to make a full song, 
you’d need upwards of $1200 of equipment. 

 
Our product combines the power of software with the intuitive control of hardware into a 

handheld device the size of a Nintendo Switch. We accomplish this by using the same Graphics 
Card in the Nintendo Switch, but instead of rendering video, we process audio in parallel. Just 
like the Nintendo Switch has swappable controllers, we have a swappable faceplate so that 
depending on the use case (playing a keyboard, singing live on stage, using a guitar foot pedal), 
a musician can use the same hardware with tailored UI. 

 
The hardware synthesizer market has grown rapidly in the past 4 years. Based on rough 

estimates of market size of hardware and software synthesizers, we believe we can sell around 
50,000-300,000 units of our device. At that scale, because we are using 80% of the same 
components as the Switch, we think we can hit a price target of around $400. Because we are 
producing effects with software, and because our hardware box has interchangeable faceplates, 
we could potentially sell the same box to not just music producers but also to live singers, 
drummers, and guitarists, potentially tripling or quadrupling the number of units we could sell. 
This scale could reduce our marginal cost significantly. 
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IV. Value Proposition and Stakeholders 
Our product makes the process of producing music more intuitive and tactile. This 

makes it easier for “bedroom producers” (hobbyists and novices) to pick up and enables 
experienced indie and studio producers to make unique musical sounds faster. 

 
Because we are using the emerging technology of a GPU to produce the music, we are 

able to produce musical effects such as autotune in real-time. It is currently not possible to 
autotune for live performances with computer software unless a performer has several desktops 
chained together. 

 
We have confirmed our value proposition by interviewing several prototypical customers 

and influencers during our time in the NSF Innovation Corps program. We have met with several 
youtube electronic musicians and influencers that have more than 300,000 followers. They have 
expressed interest in using our first beta devices. 

 
Our Hardware Synthesizer device consists of 1) a "brain" with the GPU and audio 

inputs/outputs, 2) an interchangeable control faceplate, and 3) audio software engines. This is 
similar to the Nintendo Switch, which includes the console, interchangeable controllers, and 
video games. 

 

 
Our senior-design prototype faceplate design 

 
V. Market Opportunity and Customer Segments 

Our modular design allows us to design affordable customized faceplates for specific 
use-cases/segments and also achieve economies of scale on the most expensive "brain" 
component. 

 
For the additive synthesizer faceplate, our initial segments are "bedroom producers" of 

electronic music and indie professional influencers. For real-time autotune and harmonization, 
our initial target market includes live performers. 

 
In the future, we plan to build other control faceplates such a foot pedal so that guitarists 

can also use our product for special wowow and reverb effects. We could also partner with 
brands like Moog to build a faceplate that feels like their retro products and simulate their 
sounds using our GPU. 
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The global digital music software market is estimated at $200M. It is expected to grow at 

3.2% CAGR as per NAMM. The global digital instruments market is estimated at $4.5B, and this 
market includes synthesizers, keyboards, and guitars. This is growing by 4.4% CAGR according 
to Statista. 
 

VI. Competition 
There are very few popular software synthesizer DAW softwares. These include Logic 

Pro (Apple), Ableton, and FL Studio. There are many more developers of VST plugins which are 
used to produce custom sounds, reverb effects, etc. The most popular hardware synthesizers 
come from companies like Roland and Korg. The synthesizer space is growing rapidly with 
upstarts like MakeNoise. However, only Teenage Engineering is in the portable synthesizer 
space with a low-volume $1200 and $500 product with cult followings. 

 
Based on sales of comparable products and software, we think we can sell around 

50,000-300,000 units.  
 
We believe our competitive advantages include our business model as well as our 

technology innovation. Programming a GPU is not something that software and firmware 
developers common to the music industry can do easily - it requires specialized knowledge, and 
the process is almost orthogonal. 
 

VII. Revenue Model 
Our revenue model is inspired by the video game industry and designed to democratize 

music production. We reduce barriers to entry for novices to produce full songs, and for experts, 
we sell add-ons.  

 
Because our “brain” shares almost 80% of components with the Nintendo Switch, at a 

volume of 50,000 units, we believe we can hit a price target of $300-400. From there, additional 
faceplates could be sold just like controllers/games for $50-100. We also plan to have an 
app-store for new sounds and software modules. 

 
Worst case, if the hardware fails, because many computers use the same NVIDIA 

graphics cards, we could turn around the software we've already developed and sell a VST 
plugin for existing DAW softwares. At the end of the semester, due to COVID, we developed 
such a software using the JUCE library. 
 

VIII. Cost 
Our biggest costs include the costs of mass-manufacturing. After proving the market with 

a small batch (10-100) of expensive beta units, we hope to join the HAX accelerator and find 5x 
cheaper mass-manufacturing in China. We plan to drop ship directly from our own website. We 
will build our market organically through the influencers who offered to beta test and feature our 
product in their YouTube videos. 
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IX. Technical Description 

 
Our constraints and customer expectations informed our specs. 

 
Realistically, as a senior design project, we did not expect to design the full 

manufacturable product by the end of the second semester (although we would love as much as 
guidance and advice to get there!) 

 
We simply do not have the experience or a checklist needed to pre-emptively avoid 

design issues, multiple prototypes, and engineering validation builds. We also lack the proper 
equipment to test the high-frequency multi-gigahertz, impedance-controlled lines between the 
graphics card, RAM, and Superspeed USB. 

 
We are capable, however, of designing a fully-manufacture-ready faceplate, as it has no 

major high speed components. The fastest speeds are 60MHz for USB 2.0, so we have the 
equipment to test, and tolerances don’t have to be as precise. We didn’t get to complete this as 
COVID disrupted PCB fabs. As such, we developed the fully-software version of the 
synthesizer. 

 
The following specs reflect the hardware we would develop in the future as/when we 

continue the project. 
 
We interviewed 20 music producers to understand what people are looking for in a 

portable music synthesizer. This list of music producers included YouTube musicians with over 
300K followers who regularly use a portable synthesizer similar to our intended product, but 3 
times the cost. 

 
Our music producers all mentioned that they want to be able to start making music as 

quickly as possible, specifically they should be able to play some sound within 30 seconds of 
turning the device on / plugging it in. This requirement means we will eventually have to 
package our own custom build of linux to turn off unnecessary features. 

 
Our target form factor was roughly the same as the Nintendo Switch or Teenage 

Engineering OP1, at around 10 inches wide, 4 inches tall, and 15mm thick. Achieving such a 
thin form factor with proper cooling of electronic components is extremely difficult unless we 
implement vapor chamber cooling, which would greatly increase the cost and complexity. 
However, after talking to producers, they felt that the initial version simply needs to be small and 
light enough to fit in a backpack, so anything smaller and lighter than a laptop is fine. As such, 
we have relaxed our initial binder board dimensions for our faceplate to 13.5 inches by 5.5 
inches. With the stock heatsink, the device would measure approximately 45mm thick, including 
the faceplate. 

 

 



9 

We originally envisioned that music producers would want to be able to pull out our 
synthesiser from their bag and make music on a train, on a plane, or at a park. As such it 
needed to have a battery that would last for at least 10 hours. However, producers said that 
there’s no point of a battery if the device is not capable of producing full songs completely on its 
own. 

 
We will not have a battery for the first prototype board. We will eventually include 

sequencer software which will allow users to save full songs directly on the device. Because 
there are still multiple uses such as on-stage or as a foot pedal, we will still include a battery. 

 
Based on benchmarks of the Nvidia Jetson Nano and of the Nintendo Switch, we think 

we can get the device to run at around 3 W average draw while the GPU is processing sounds 
with 12 W peak draw. Idle draw will be less than a Watt. The device approximately will spend 
50% of its time at half a Watt simply reading input from the faceplate and displaying information 
to the screen, 40% of its time at 3W processing and outputting sound waves Because we are 
targeting ~10 hrs battery life, we will need roughly (.5 * .5 W + .4 * 3 W + .1 * 12 W) * 10 hrs = 
26.5 Wh battery capacity. With a closed cell potential of around 3.7 V for a lipoly battery, we will 
need approximately 7000 mAh. 

 
We need our box to use the industry standard MIDI protocol because, based on our 

conversations with producers, the option to be able to plug in their favorite keyboard or drumpad 
into our device is vital to their interest. Additionally, MIDI support means that each of our 
faceplates can function as MIDI controllers. As every device, DAW, and producer uses MIDI 
interfaces to play and control music, it is imperative that our device do so as well if it is to fit in 
the current market. 

 
Our most important specification is affordability. Price changes with the components 

used, and it also changes drastically with scale (number of units produced). We want to hit a 
price target of $400 so that our product will be cheaper than a software license when we 
eventually release our final product. This means that the production cost should be closer to 
$200 per device at scale. 

 
This final product will be the “brain” box containing the GPU, ports, ADC, and DAC and 

one faceplate that slides onto the brain. 
 
Our prototype setup can be had for just under $400. The NVIDIA Jetson Nano for $100, 

the HiFi Berry ADC and DAC at $70, WiFi+Bluetooth card at $20, custom PCB for the faceplate 
at roughly $135 given the size and components, and $30 for materials for the casing. 

 
Regarding functionality, we were presented with effectively a blank slate.  

 
The goals were to design functions that would take advantage of parallelization on the 

GPU, so we began by considering existing processes that we could improve by using the Nano. 
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Additive synthesis is parallelizable because it represents a complex wave as a sum of 
sinusoids. The oscillation of each individual sine wave can be computed at an individual 
timestep without care for the other waves in that step allowing for parallelization. 

 
When considering effects, we decided upon phase vocoding because of its accessibility 

in addition to its parallelizable nature. Processes such as autotune and harmonization are 
historically too complex to run on a typical microcontroller. Thus in order to use them live artists 
must run a computer in the background. By running the brunt of the computational load in 
parallel we hope to port these effects to the jetson nano. Our goal in doing so is to provide 
smaller artists without the money for real infrastructure, or who may be performing without a full 
gig setup, with the opportunity to use autotune and harmonization live in the same way they 
would use a stomp-box or effects box. 

 
Our product definition has been through several iterations based on both customer feedback 
and technical feasibility. 
 

Initially, our intended form factor was closer to that of a Nintendo Switch. After customer 
feedback, we determined that the small size was less essential for our initial prototypes since 
we will not have software ready to produce a full song. This frees up more space for our controls 
and makes our PCB layout easier. 

 
Additionally, we toyed with the concept of real-time modelling of sound waves or 

instruments. For example, we were hoping to model the shockwaves that result from hitting a 
drum or cymbal so that we could create much more realistic digital instruments. After looking 
into a paper discussing the 3D modelling of flat plates, talking with the Stanford research group 
behind it, and delving into the nitty-gritty of acoustic modelling, we determined that this was 
unlikely to be accomplished with small enough latency to be usable for musicians. 
 
Detailed description of each component and engineering process 

 
Additive Synthesizer 
 

An additive synthesizer generates sounds by adding pure sine waves of varying 
frequencies and amplitudes, and playing back the summation of said sine waves.  

 
The computational cost in building an additive synthesizer is in the computation of 

sinusoids and specifically the quantity of said sinusoids. We get around this issue by computing 
the desired sinusoids in parallel within the GPU and summing them in parallel as well.  
We then operate on the values in the CPU as desired. This is effectively the backend of the 
synthesizer.  

  
The frontend of the synthesizer allows the user to interact with voices among other 

effects like ADSR. Voices are the complex waves composed of simple harmonics (i.e. pure 
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sinusoids). A user interacts with these voices by either loading in preset voices, modifying the 
amplitude of the entire voice or specifying individual amplitudes/frequencies of each harmonic.  

This interaction is partially through (virtual) knobs and buttons, and partially through a 
graphical window. Once the voices and other effects are specified, a user is allowed the play 
voices by simply pressing down on keys.  

 
Additive Synthesizer (ADSR) 
 

Instead of just playing back the pure summation of harmonics, the summation amplitude 
is scaled according to an ADSR (attack, delay, sustain, release) envelope. In our synth engine, 
each voice has its own ADSR envelope. 

  
The user is able to select a voice and modify the ADSR that envelopes said voice. The 

user is able to specify the attack parameter, the decay parameter, the sustain parameter, and 
the release parameter through the knobs provided on the GUI/physical controls. The attack 
parameter specifies the time it takes for the voice to reach the max amplitude, the decay 
parameter specifies the amount of time it takes to reach the amplitude specified by the sustain 
parameter, the sustain parameter specifies the amplitude maintained while a user holds down a 
key, and the release parameter specifies the amount of time it takes to reach a zero amplitude 
once the user releases a key.  
 
Additive Synthesizer (LFO) 

 
Another effect that the additive synthesizer offered was a low frequency oscillator (LFO) 

that could be applied on amplitude of the summation of all of the voices. Through the controls 
given to the user, a user was able to specify the frequency of the LFO, the amplitude of the 
LFO, and the type of LFO (e.g. sine wave, square wave). Once specified, an LFO was applied 
to summation of voices by adding some offset to the amplitude of the summation of all of the 
voices. 
 
Additive Synthesizer (JUCE Implementation) 
 

The JUCE Framework allowed for easier implementation of audio in and out through its 
boilerplate process block coding methodology. Setting up JUCE for Jetson Nano required an 
intense set of build system workarounds. We first had to compile the system to work for Jetson 
Nano’s Arm64 architecture, which required going into the Linux makefile for Projucer (JUCE’s 
application initialisation program) and editing the compilation variable. Once the program was 
built, we used another open source project called FRUT (haha you get it?) to convert the 
“*.jucer” project into a program that compiled via CMake. CMake is an incredibly powerful build 
environment allowing integrated compilation of different programming languages and 
architectures into one executable program. This CMake file was in effect a wrapper or an 
interface to the jucer program meaning that some care was required in adding new libraries and 
functions greatly increasing the time needed to work with it. We compiled our CUDA Additive 
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Synthesis Engine as a separate library, and were eventually able to include it in the JUCE 
program. The additive synthesis engine did not change from the original implementation.  
 
 Implementing the control in JUCE required a great refactoring of the code. Since JUCE 
introduced the GUI that we have talked about as a separate module rather than parameters that 
we were read into, we needed to add many functions that would reveal our internal state in an 
object oriented manner. For example instead of adding individual sine waves via a frequency 
and gain, we initialize each voice to have a set of N harmonics whenever the fundamental 
frequency changes. These harmonics are all set to a gain of 0 unless otherwise changed by the 
system. This helps to reduce the number of unnecessary array accesses per block production. 
 

The block based processing of audio in JUCE is the same as in the RTAudio engine we 
had previously used, except that it allows for simpler and more immediate manipulation of the 
output blocks. This allowed for the final ADSR to be a much simpler built-in function rather than 
the custom per voice ADSRs. 
 
Additive Synthesizer (Qt GUI) 

 
Qt is an application development framework for desktop, embedded and mobile. It’s not 

specifically tailored to an audio production setting, but is instead a general widget toolkit. We 
developed this before the lockdown in order to produce the same output that we were planning 
on having the physical controls. Specifically, the Qt GUI developed outputs a JSON packet that 
contains the state of the board (e.g. which buttons are pressed, the absolute positions of the 
knobs) and this JSON packet is produced every few milliseconds or so. This allowed us to 
develop an interface for the synth engine that read in a JSON packet and interpreted the state 
of the board to commands that could be sent to the synth engine (e.g. update the type of LFO). 
In theory, our physical controls would just need to output the same type of JSON packet and the 
synth engine would work with said controls right away. 
 
Phase Vocoder 

 
Phase Vocoding consists of three stages, analysis, processing, and resynthesis. 

Analysis of the input signal obtains both the continuous and discrete phase information of the 
signal through a Short Time Fourier Transform or windowed Fourier Transform. The continuous 
phase information can be obtained using the windowing operation, since the power of the signal 
is shared across multiple Fourier Transform windows. In the processing phase, time stretching 
or pitch shifting occurs. Time stretching occurs through multiplication of phase and windowing 
hopsize in order to spread the signal across a larger portion of the output. On resynthesis the 
phase information is converted back to its time components through an inverse Fourier 
transform or additive synthesis.  
 

 The process for real time action of the above algorithm moves from all the stages 
happening at individual stages on the signal to streams spawning once each CPU read occurs. 
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The CPU buffers in N samples of the input signal at a time. When a collection N samples is 
received (referred to as a frame) the GPU spawns N/hopsize streams to process the audio. The 
stages occur the same as they would in offline synthesis save for this portion of spawning 
portions  
 
Faceplate Circuit and Embedded Firmware 

 
The faceplate is the circuit board that contains all of the control knobs and buttons. It 

connects to the main Jetson Nano board (and eventually our custom board) via USB protocol.  
 
The embedded microcontroller on the board uses a timer-interrupt based scheduler to 

scan the position of every knob and the state of every button every 0.1 ms. Every 0.5 ms, the 
microcontroller compiles all of the states into a single message and sends the message to the 
main board via USB.  

 

 
Figure 1: Protoboard version of the faceplate 

The protoboard faceplate (faceplate v1) from the first semester used an ESP32 
microcontroller. The final version (faceplate v3) will utilize an STMF4 so that we don’t have to 
use an FTDI Serial to USB converter chip and so that debugging and DFU (firmware update) 
can be easier. We looked into sending the messages via DMA (direct memory access over 
UART) to minimize latency, but since the device is anyway using USB to connect to third-party 
accessory keyboards, and the latency is already better than the noticeable threshold of 1 ms (in 
other words, this communication is not the bottleneck for users’ perceived latency), we are 
planning to just use USB. The added benefit of using USB protocol is that with almost no 
additional engineering we could make the same faceplate into a controller that plugs into a 
computer in case we wanted to sell the control unit standalone without the synthesizer brain. 
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With the protoboard version (v1) of the faceplate, the knobs are simple potentiometers, 

but in the final version (v3), they will be magnetic encoders that use a Hall-effect sensor to 
detect the position of a rotating magnet. The encoders then digitally output the current relative 
or absolute position (depending on the sensor model used). This also can allow for detecting a 
button press. 

 
We very early on ran into an issue where we did not have enough GPIO pins on the 

microcontroller to connect all of the peripherals. To save pins, we had to get a little creative by 
using SPI knob encoders and using a button matrix instead of connecting each button to a 
dedicated GPIO pin. The button matrix means that we can just use 8 pins for 16 buttons instead 
of 16 pins. We use the timer interrupt to sequentially toggle one “column” high and then read the 
value at each row to see which buttons have been pressed. 

 

 
Figure 2: Circuit diagram of prototype faceplate buttons 

 
In the second semester, we started developing the schematic for the first PCB version of 

the faceplate (faceplate v2). We realized that the I2C magnetic sensors that we wanted to use 
for all of the knobs and buttons made the knobs too difficult to assemble (this is because the 
part that the user touches does not make any physical contact with the sensor on the PCB, so 
the knob needs to be mounted directly to the casing with a ball-bearing on some kind of butterfly 
switch. These components require too-high precision to make ourselves, and we struggled to 
find a place that could make this assembly for us). Thus we ended up reverting to mechanical 
quadrature rotary encoders.  
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The problem with these knobs is that they are essentially 3 buttons, so we again 

returned to not having enough GPIO pins. 
 
We considered multiplexing and charlie-plexing, but at the end we decided that it was 

not worth writing complicated firmware to constantly scan and record the values of each knob. 
 
After reading a Nintendo Switch controller reverse engineering blog, which mentioned 

that their bluetooth controller had a built in keypad scanner, we realized we could use a keypad 
scanner to achieve our desired result and found such a component that we could use. It 
connects to the microcontroller with I2C, so we only need 2 wires and much simpler software to 
scan the status of every button and knob. Given the number of buttons and knobs we have, we 
planned to use 3 of these scanners. 

 
From the recommendation of Eduardo Garcia from Bresslergroup, we were planning to 

use STM’s TouchGFX library for the touchscreen interface. We found a controller and SPI 
touchscreen that we could use from their recommended list and also sat in their workshop 
presentation. By the time we got to the point where we were about to order our components, the 
touchscreen went out of stock and alternatives with a similar size and resolution that could be 
controlled via SPI could not be found. Their devboard with the screen and microcontroller went 
from $100 to $500. The microcontroller alone went from $5 to $15. Additionally, we felt that 
there wasn’t much point to code a second version of the UI using a totally different platform and 
language because it would slow down our ability to iterate and fix bugs. We thus decoupled the 
screen from the controller board and instead used an HDMI touch screen directly connected to 
the Jetson Nano. 

 
For our LED buttons that change color on-press, we planned to use WS2812 RGB LEDs 

which are controlled via I2C. This would have been similar to the Adafruit Neotrellis boards. By 
the time we got to implementing this in our schematic, the whole factory systems had shut down 
due to COVID. 

 
We had developed the board outline, board stack up (the specifications for each layer of 

the PCB) and the assembly of the entire device. 
 
After we eventually get a chance to build and debug our v2 board, we will update our 

plans for the final faceplate (v3). For now in v3, we are planning to use the same components 

 

https://www.mouser.com/datasheet/2/609/ADP5587-1503341.pdf
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on the HDMI touch screen that we procured and incorporate that into our faceplate board. If we 
have access to testing for gigahertz-speed signals, we could implement a USB C 3.2 connector 
on our faceplate board such that the single connector carries both HDMI and USB for the 
touchscreen and MIDI over USB for the knobs/buttons. 

 
 
Thermal Simulation 

 
The simulation of heat sinks is, fortunately, well-understood and documented online. The 

boundary conditions were selected as follows. 
 
 Convection at the tips and bases, as per real conditions. Values were estimated from 

research to be 50 W/m2 for the tips and 6 w/m2 for the base. The heat generated by the device 
was represented as a 10W heat flux on a square portion matching the size of the GPU chip. 
Maximum power draw is stated online to be 10W, and the simulation assumes the worst case 
(that all 10W are dissipated as heat through the chip). Conduction through the geometry was 
defined by the material conditions. Aluminium 6061 was used as it is a common alloy used in 
manufacturing, and there is no information about the specific alloy used. A simple heat flux was 
used instead of radiation, again due to license limitations, estimated to be 3W in the area of the 
heatsink that is raised to prevent the CPU inductor, GPU inductor, and PMIC from crashing with 
the base. 

 
The geometry of the heatsink itself was taken from an online CAD model of the Jetson 

Nano provided by NVIDIA. Once opened in solidworks, dimensions were checked against the 
physical device to ensure real-world accuracy. The .SLDPRT file was exported as a CREO 
parametric file, to avoid compatibility issues and retain the full shape, and edited in the ANSYS 
SpaceClaim editor to merge several curved faces that were rendered as multiple  
 

The mesh was defined based around license limitations. The maximum base element 
size was 2e-4m, with a refinement on the tip geometries (any places where the geometry was 
smaller than 2e-4) at a size of 7.5e-5m. This was the smallest size possible given the license 
restrictions on elements and nodes, 32k total for mechanical calculations.Due to the same 
license restrictions, a shortcut had to be taken to mesh the entire geometry of the heatsink. The 
geometry was cut in half and a symmetry condition was imposed on the boundary.  

 
Transient analysis was chosen for ease of comparison to physical testing. Results from 

both built in sensors and contact heat sensors will provide data over time, and being able to 
compare the simulation as it runs over time will allow for more accurate validation of results. 
Once the final case design has been settled, if the factory heatsink is too large, the validated 
simulation setup will be used with parametrically controlled geometries - pin fin, square fin, 
different shapes depending on available heatsink options and PML manufacturing abilities - to 
determine the most effective design given space constraints. 
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The simulation results were validated through stress testing of the Jetson using 
GLMark2. While GLMark2 is described as relatively uninformative for modern computers, the 
power and size of the Jetson Nano makes it a viable testing tool. The standard benchmark loop 
for GLMark2 was run on a 29 inch, 21:9 monitor for 45 minutes. Data was recorded using a 
multimeter with a thermal sensor attachment, as well as with the Nano’s internal temperature 
log. 
 
 
GUI and JUCE 

 
As mentioned, we pivoted to using Roli’s JUCE libraries to create and implement an 

interface that would be able to enact real time state changes in our engine. The goals were to 
allow for control of 32 harmonics in each of four voices, each with their own adjustable ADSR 
envelope. In addition, we implemented a variable waveform LFO and filter. Given the time 
constraints, these were accomplished to varying degrees of success.  
 

The engine code (Appendix A) remained largely unchanged from what we would have 
used for a physical implementation. As such, it was compiled using CMAKE alongside our other 
files. The JUCE library makes use of custom component classes, with a variety of hierarchies 
and inheritances. The overall application structure runs from a ‘Main.cpp’ file, which instantiates 
a ‘MainComponent’ from ‘MainComponent.cpp.’ This houses the audio signal blocks and buffer, 
as well as the GUI window component. The GUI window holds all GUI objects (knobs, sliders, 
buttons, etc) as its children, as well as a subcomponent called ‘Display’ that handles the 
harmonic control of each voice. A single GUI component and an engine are instantiated on 
startup.  
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Figure (): Rough diagram of JUCE implementation hierarchy 

 
To begin the GUI implementation, the JUCE graphical GUI editor was used to create the 

basic structure. As development progressed, it became apparent that the level of control offered 
in the editor was not sufficient. The existing code was copied to a new file and built upon to 
allow for the changing of button colors to indicate mute on/off and voice selection. The Display 
file was created separately to allow for easier handling of switching the voice displays. The 
entirety of the GUI was defined using pointers which were assigned during construction. This 
allowed for reduced functional overhead in the memory-constrained Jetson Nano.  
 

 
Final Status 

 
Our Additive Synthesizer is currently operating at peak efficiency based on the paper 

written by Professor Savioja. Additive Synthesis on a CPU is very straightforward. Computation 
occurs in a nested for loop where the inner loop computes the sum of all the sine waves at time 
t(represented as an angle in radians). This can be naively parallelized by expanding that outer 
for loop into threads on a GPU kernel. This is done in the simple implementation with relative 
success.  
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Figure 3: The diagram illustrates the inefficiencies of the simple kernel algorithm, which simply 
sums all of the sinusoids of a sample in a for-loop in every thread. This results in frequent execution stalls 

as can be seen (depicted as blue) in the second pie chart. 
 
As you can see, there is little utilization of the GPU and most of the time is spent waiting 

for process execution with no warps that can execute. This is because looping in a GPU kernel 
is never suggested. We would prefer to compute each individual sine wave at time t in separate 
kernels as well as spread the computation of those samples across various blocks. We then 
sum those blocks individually.  

 

 

Figure 4: The diagram illustrates the improvement of the fast kernel algorithm, which splits up each 
for-loop into multiple threads. This reduces the frequency of execution stalls. 

This may be a more complicated explanation than the average person can understand so we 
present to you the execution speed data to better explain improvements. 

The simple kernel has an average execution time of ~1 millisecond:  

 



20 

  

Figure 5: Average duration of executing the simple kernel algorithm. 

Whereas the fast kernel has an average execution time of less than half a millisecond:  

 

FIgure 6: Average duration of executing the fast kernel algorithm. 

Our second feature, the Phase Vocoding algorithm, does not currently run in real time 
due to complications from the algorithm. Our preliminary timing/testing shows that we should 
reasonably be able to implement the real time algorithm. From the figure below it can be seen 
that at most our program takes about 1.9 ms to complete. Since we plan to run at less than 256 
samples per frame in order to reduce latency (256 samples corresponds to ~2.9ms at a 
sampling rate of 44.1khz) 

 
Figure 7: The average time it takes the Phase Vocoding algorithm (split into synthesis and analysis) to 

compute the corresponding number of samples. 
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The process of running the algorithm in real time is simple. Whenever a buffer of samples is 
received on the CPU side the GPU will spawn N/hopsize streams in order to process the audio. 
Below is a visual to explain the process 

 
Figure 8: Pictorial explanation of how the GPU analyzes, processes, and resynthesizes the samples in 

parallel. 
 

A thermal model has been implemented in ANSYS Student 19.1 using the Mechanical 
solver suite. Thermal power output was set to 10W, given some online forum postings and 
performance benchmarks by reviewers. The simulation was run over a ten minute span to 
ensure a steady state was reached. These results will be validated through physical 
benchmarking in the next semester. 

 
Figure 9: Average, Maximum, and Minimum Temperature over the 600 seconds of simulation 
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As shown in the plot of the thermal data, the temperatures reached equilibrium at around 

5 minutes of testing, with T_avg sitting at 57.274 [C]. The maximum reached a value of 60.2690 
[C], well below the stated throttling speed of the integral components, 90[C]. As expected, the 
maximum temperature occurred at the location of the processing chip.  

 

 
Figure 10: Temperature mapping on bottom of heatsink geometry 

 
 

 The peak temperature reached by the Nano and the heatsink during testing was around 
63 degrees Celsius. This is well below the throttling temperature threshold for the essential 
components. As such, the stock heatsink was determined to have satisfactory performance for 
thermal constraints, but in order to reach the desired form factor, we needed to use a much 
smaller design.  

 
The completed GUI design, as shown below, was effective in instantiating state change 

in the engine and updating its own state in accordance with user input. We were able to achieve 
control of a unified ADSR envelope across all four voices, as well as real time editing of 
harmonics for each voice. The base frequency and gain of each voice were adjustable 
individually. ADSR was implemented for each voice separately, but only worked for one voice. 
Switching between voices reflected appropriately in the GUI, both in updating the display and 
changing the ADSR envelope controls to the setting’s state. ADSR state was handled in each 
voice by the engine, making it easier to edit and recall. The Display file tracked the current voice 
in a pointer which was updated when the ‘Select’ Button was pressed.  
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Figure(): Final GUI design created with JUCE 

 
 
Selecting a different voice brought up the harmonic display for whichever was currently 

selected. The display interface successfully allowed for the editing of individual harmonic levels. 
In order to display the level of each voice in decibels, a custom class was created as a subclass 
of the included ‘Slider’ component to allow the gain to display in decibels but adjust the linear 
gain state. The other buttons and sliders implemented the standard component classes included 
in JUCE, with handlers that called setter and getter functions in the engine to update the state. 
The select buttons were associated with a radio group, a built in function, to ensure that only 
one was active at a time.  

 
The GUI was implemented successfully overall, with most bugs appearing to occur in the 

engine from what we could tell. We failed to implement MIDI input, for which JUCE provides 
classes and functions. The biggest issue we ran into is that the Linux kernel specially compiled 
for the Jetson Nano did not seem to include a MIDI driver. With limited time and the difficulty of 
debugging this feature, we decided to focus instead on furthering the functionality of what we 
already had. As such, the spacebar key was used to trigger the ADSR and resulting audio 
output.  

 
 
 

Conclusion 
 
We learned a lot through the course of this project. A major conclusion is that using a 

GPU for audio is more complicated and cumbersome than programming a microcontroller and 
certain types of DSP chips. While the GPU could have benefits in physically based audio 
simulation, the specific effects we chose to implement are not the killer apps for GPU audio.  
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X. Self-learning 
 
Davis 

 
For the past semester, I have self-learned both Digital Signal Processing as well as GPU 

Audio. I took Digital Signal Processing (ESE 531) which has helped me better understand 
where our GPU synthesizer failed and what changed will need to be made. All this self learning 
has shown me that it may be a more useful task to build synthesizers the traditional way and 
perhaps the GPUs purpose sits within Machine Learning for Signal Process and not within audio 
generation. I did learn how to work with real-time audio processing on the GPU and I believe 
that now I can definitively say that any remote advantage that the GPU proposes would be 
distinctly improved upon in a DSP chip. 

 
Nikil 

 
Looking for components and reading through datasheets has been a challenge. I’ve 

been calling some of the manufacturers directly to walk through the datasheets to understand if 
they support the desired features. This is one of those tasks that just takes a lot of practice to 
get more proficient and confident, and I definitely learned a good deal both semesters. I’ve 
gotten much more familiar with Altium and its hierarchical design features through this project 
and through my project in ESE516 (IoT electronics). I’ve been using the compiler and design 
rules check to spot errors faster than I had done in the past. I also learned a good deal about 
CUDA and refreshed my signal processing understanding when trying to fix the bugs in the 
Phase Vocoder that Davis had started developing.  
 
Mason 

 
I spent the first semester learning ANSYS thermal simulation, which I have not explored 

in previous classes. While my background from Heat and Mass Transfer (MEAM 333) was 
helpful in knowing what boundary conditions, the structuring and refinement of an accurate 
simulation was not covered in the course material. I learned how to appropriately navigate 
ANSYS software, as well as structure a simulation generally.  

 
The second semester provided many more learning opportunities for me. When we 

pivoted to a pure software project, I first had to learn how to use CMAKE to compile our 
application. The installation and use of JUCE on a device like the Nano is not exactly common 
or encouraged, so I also had to learn a lot about the installation of software on a Linux system. 
JUCE is a set of C++ libraries, a language in which I had zero prior experience. My work in CIS 
240 prepared me somewhat for this experience, but I had to learn C++ syntax and the bulk of 
the GUI libraries provided with JUCE to design and implement our user interface. 
 
Enoch 
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I spent the first semester self-learning how to program with CUDA, which is an API that 
allows me to program with the GPU. In addition to this, I learned about music synthesis and 
luckily for me, there has been quite a bit of overlap with signal processing, a course I’ve taken 
here at Penn. 

 
In this last semester, I continued to learn about music synthesis, specifically learning 

about envelopes (ADSR) and low-frequency oscillators (LFO’s). I also learned about socket 
programming as it relates to communication between different programs on the same machine. 
This proved to be the fastest form of communication between our software GUI and our synth 
engine. I also learned how to use the Qt framework, which I had partially known had to use 
because of a previous course. This project, however, required much more than just the basics I 
learned in a previous course. 

 
 

Discussion of Specific Courses 
 
CIS 565 and ESE 350 have been useful in understanding the requirements needed to 

interact with the GPU and interact with the external world using an embedded system. ESE516 
was helpful with PCB design. MEAM 333 has proven useful in giving theoretical foundations for 
building a thermal simulation. MEAM 545 and MEAM 302 provided background knowledge of 
simulation in general, and prevented running into common pitfalls and essential steps to ensure 
the simulation runs well, including mesh considerations and patience. CIS 560, CIS 563, and 
CIS 380 have been helpful in developing software that is adaptive to different needs and can 
function in a low level context. ESE 224 and ESE 531 have also been helpful in understanding 
the music synthesis required for this project.  
 

  
XI. Ethical and Professional Responsibilities 

 
The societal context of our project is that it will offer producers a cheaper option to 

current expensive hardware. Regarding the environment, our product will be run off of standard 
power, either from the wall or from a standard, portable USB C phone battery. These options 
hold little control over the environmental impact of our device, as they are contingent on the 
‘green-ness’ of the specific power grid. 
 

When considering the production of a music creation device, ethical issues are hard to 
come by. The product itself is intended to provide an affordable alternative to equipment on the 
market. The interesting question to consider is the ethics of basing aspects of our design off of 
existing synthesizer products. While the algorithms we use are originally developed, the 
interface, general idea, and featureset are inspired by a variety of products including the 
Teenage Engineering OP1, Ableton Operator, the Nintendo Switch, and a multitude of additive 
synthesis products. Fortunately, the world of music production equipment tends to be 
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collaborative, and our device differentiates itself enough from other devices to avoid copyright or 
patent issues.  
 

 
XII. Meetings 

 
In the first semester we met on a bi-weekly basis throughout the semester with our 

advisor, Tania Khana. Additionally, stakeholder meetings were conducted through I-Corps, 
twice a week for five weeks, in order to better understand our market. We met with Tomas 
Isakowitz about how to conduct product interviews as well as how to better adjust our business 
model as we learned from the interviews. In the second semester, we continued to meet with 
Tania on a bi-weekly basis until Spring Break. After spring break, we met with Tania twice.  
  

XIII. Reflection on Fall Milestones and Proposed Spring Schedule  
 

Our major milestones for the fall semester were the implementation of our two features, 
Additive Synthesis and Phase Vocoder, on the Nano, with control from a physical prototype 
faceplate. We implemented the phase vocoding algorithm offline on the jetson nano, but were 
unable to port the additive synthesis engine onto the jetson nano. We also failed to implement 
active control of the nano, but we have functional I/O processing via JSON using the ESP32 
chip for our physical controls.  

 
Figure 11: Intended fall and winter milestones 

  
 

We were able to accomplish some goals we intended in the spring, but ultimately 
never succeeded in implementing any hardware. Due to indecision on the part of team 
members responsible for obtaining PCB and other hardware components, we did not have any 
physical objects to implement prior to COVID-19. After COVID-19, we were able to obtain 
workstations to continue development of the project. The workstations arrived the Wednesday 
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before the final demo, and as mentioned, required significant setup before any actual work 
could be done. The entire week leading up to the demo was spent porting the project into JUCE 
and implementing the new features, including the GUI.  

 
XIV. Discussion of Teamwork 

 
Davis and Enoch executed most of the software implementation. The base of the 

additive synthesis engine was coded by Davis, and Enoch continued to improve it and add 
functionality. Nikil handled the electronic hardware, including the prototype control circuit, input 
data handling, and PCB layout. Mason handled thermal modelling and simulation, as well as 
laser cutting for the look and feel prototype and faceplate prototype. After COVID-19, Davis and 
Mason worked on porting the project to JUCE, Enoch continued to add functionality to the 
Additive Synthesizer Engine, and Nikil continued to work on the Phase Vocoder.  
 

A team conflict we worked to resolve was in design and development of user 
interaction/experience. Both Nikil and Davis had dramatically different ideas for the look of the 
faceplate and how users should be able to interact with the additive synthesizer. Davis wanted 
the layout and utilization of the knobs to be very interactive and have them sectioned off based 
on their functionality. Nikil wanted the knobs to surround a long screen that would represent the 
waveforms harmonic content. Based on limitations in screen length as well as the information 
received from product interviews about how musicians interact with synthesizers we determined 
that we should modify Davis and Nikil’s initial idea into a hybrid design that focuses on users 
having visual feedback for the function they are currently modifying.  
 

The nature of our project lent itself well to being an inter-departmental team, with clearly 
delineated tasks that played to our individual strengths. Davis’ embedded systems knowledge 
and general understanding of music hardware proved invaluable, as well as his experience 
specifically with GPU architecture and programming. Enoch’s computer science background 
and in depth knowledge of the mathematical topics necessary to implement the additive 
synthesizer allowed him to make significant contributions to that feature. Nikil’s electrical 
engineering and embedded systems experience made his position as hardware lead a natural 
choice, especially given his familiarity with high speed systems and PCB design. Mason’s 
mechanical background allowed him to understand the thermal problem and construct an 
accurate simulation in addition to analyzing the structural and thermal concerns of a powerful 
electronic device in a small form factor.  

 
 

  
XV. Budget and Justification  

 
Thus far, we have bought equipment for 4 sets of synthesizers so that each of us can 

work on our part of the project independently. Our budget has been as follows: 
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Item Cost/Unit # Units Total Cost 

TOTAL $1,800 

NVIDIA Jetson Nano $120 4 $480 

5V 4A power supply $10 4 $40 

WiFi Card $25 4 $100 

SD Card $30 6 $180 

Electrical components 
for modular faceplate 
prototypes $70 4 $280 

Printed Circuit Board 
manufacturing costs $70 4 

$280 
 

Case Machining costs $40 4 $160 

ADC/DAC Prototype $70 4 $280 
 
To produce a full engineering prototype PCB of the controller faceplate, we are looking 

at PCBWay with parts placed, or 4PCB (which was used by ESE516), or Macrofab (which we 
would consider using for a full production run). Green Circuits and Macrofab both have the 
ability to flash the chip on the assembly line and run some basic validation tests before we even 
get the protoboard back. They are also local in the US. They may also be able to assemble the 
faceplate casing (with the knobs and aluminum covering). 
Item Cost/Unit # Units Total Cost 

TOTAL $5,168 

Electronics Components $127 4 $508 

Mechanical housing cost $40 4 $160 

Tooling cost $1,000 1 $1,000 

Printed Circuit Board Fab cost $350 6 $2,100 

Assembly cost $350 4 $1,400 
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XVI. Standards and Compliance 
 
In planning the software, firmware, and hardware for the device (and later, the JUCE 

implementation), we were constantly making sure we were moving forward to be compatible 
with current devices and standards. For example, we designed our software to be modular so 
that it could accept input from the faceplate via JSON packets or via the QT emulator. We 
additionally wrote the API hooks so that we could take in MIDI input from our faceplate or from 
an external keyboard. We were following the but packing format for MIDI when developing the 
Phase Vocoder engine as well, so that we could eventually connect to external devices and play 
notes for real-time autotune. On the hardware and firmware, we  implemented serial 
communication and selected devices that used I2C.  

 
 

XVII. Work Done Since Last Semester 
 
In addition to the JUCE GUI, a GUI based on Qt was developed to emulate what would 

be our physical controls. This GUI was a lot more modular than the JUCE GUI, as the only 
means of communication was through a JSON packet. An interface had be implemented to 
allow the synth engine to interpret the commands given through the Qt GUI. In theory, our 
physical controls would just need to output the same type of JSON packet and the synth engine 
would work with said controls right away. We had not intended to finish this GUI before the 
lockdown, as we were planning to move onto the physical controls. But due to losing all of our 
hardware, we decided on completing the Qt GUI in case the JUCE GUI did not go as intended. 
This resulted in the following polished Qt GUI. 
 

 
Figure(): Final Qt GUI 

 
In addition to this Qt GUI, more effects were added to the additive synthesizer to 

producer richer sounds. The effects in particular were LFO’s and ADSR.  
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XVIII. Discussion and Conclusion  

 
As the project stands, it is a noise generating piece of garbage. Major work would need 

to be done in order for it to reach a usable or remotely musical state. There are many issues 
with our current design: aliasing, clipping, and block drop out. 
 

Aliasing occurs whenever we try to produce sinusoids above 22kHz (the Nyquist 
Frequency of audio sampled at 44.1kHz). The effect of aliasing can be heard when adding, for 
example, the 64th harmonic of a voice. A ringing sound not present originally is introduced as a 
product of the sampling rate folding the original waveform down to within the audible range.  
 

Clipping occurs whenever the audio gain surpasses the floating point value of 1. This 
occurs because all individual sine waves are able to go to gains of 1. This implementation was 
an oversight that we did not consider until we were able to get multiple waveforms playing 
simultaneously. Fixing it would entail normalizing the sine waves at each block which is a 
feasible task that we hope will be accomplished in the future.  

 
Block drop out occurs randomly and without warning resulting in drastic noise and other 

sound artefacts. We don’t know exactly why this happens, but we assume it’s related to GPU 
processing. 

 
Hopefully in the future we will be able to design and manufacture a PCB and integrate it 

with the existing engine. Ideally, this project will someday be a product in the way we had 
intended back in September. 
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XIX. Appendices 
Our code is rather long (a single file reproduced here would have been 40 pages).  
You can visit our GitHub repositories at the following links: 
https://kutt.it/GPUsynthesizer 
https://kutt.it/AutotuneEngine 
https://kutt.it/FaceplateSimulator 
 
Selected code is reproduced below and on subsequent pages. 
 

Appendix A: Additive Synthesizer Code 
Kernel.h 
#pragma once 
 
 
#include <cstdio> 
#include <cstring> 
#include <cmath> 
#include <algorithm> 
#include <chrono> 
#include <stdexcept> 
 
 
 
 
namespace Additive { 

void initSynth(int numSinusoids, int numSamples, float* 
host_frequencies); 

void endSynth(); 
    void alloc_engine(float2* &h_freq_gains, float* &h_angles, float* 
&h_v_gains,  
    float* &h_tmp_buffer, float* &h_buffer, float* &h_adsr, bool* &h_v_ons, 
int num_samples, int num_voices, int num_harms); 
    void compute_sinusoid_gpu_simple(float * buffer, float angle); 
    void realloc_engine(float* &h_tmp_buffer,float* &h_buffer, int 
prev_num_samples, int num_samples); 
    void my_v_compute(float *buffer, float angle, float* h_buffer, float* 
h_v_gains, float2* h_freq_gains, float* h_adsr, bool* h_v_ons, int numSamples, 
int numSinusoids, int numVoices); 
    void compute_sinusoid_hybrid(float* samples, float2* h_freq_gains, float* 
h_angles, float *h_v_gains, float* h_tmp_buffer, float* h_buffer, int 
numSinusoids, float time, float numSamples); 
} 
 
Kernel.cu 
#include "kernel.h" 
#include <math.h> 
#include <cmath> 
#include <stdio.h> 
#include <cuda.h> 
#include <iostream> 
//divide 

 

https://kutt.it/GPUsynthesizer
https://kutt.it/AutotuneEngine
https://kutt.it/FaceplateSimulator
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#define THREADS_PER_SAMPLE 16 
#define SAMPLES_PER_THREAD 1 
#define SAMPLING_FREQ 44100 
//#define SIMPLE 0 
#define checkCUDAErrorWithLine(msg) checkCUDAError(msg, __LINE__) 
float *dev_buffer, *dev_tmp_buffer; 
float slideTime; 
int numSamples, numSinusoids, numVoices; 
void printArraywNewLines(int n, float *a, bool abridged) { 
    printf("    [ "); 
    for (int i = 0; i < n; i++) { 
        if (abridged && i + 2 == 15 && n > 16) { 
            i = n - 2; 
            printf("... "); 
        } 
        printf("%3f\n", a[i]); 
    } 
    printf("]\n"); 
} 
void printArraywNewLines(int n, float2 *a, bool abridged) { 
    printf("    [ "); 
    for (int i = 0; i < n; i++) { 
        if (abridged && i + 2 == 15 && n > 16) { 
            i = n - 2; 
            printf("... "); 
        } 
        printf("%3f, ", a[i].x); 
        printf("%3f\n", a[i].y); 
    } 
    printf("]\n"); 
} 
void printArray(int n, float2 *a, bool abridged) { 
    printf("    [ "); 
    for (int i = 0; i < n; i++) { 
        if (abridged && i + 2 == 15 && n > 16) { 
            i = n - 2; 
            printf("... "); 
        } 
        printf("{%3f, ", a[i].x); 
        printf("%3f},", a[i].y); 
    } 
    printf("]\n"); 
} 
 
/** 
* Check for CUDA errors; print and exit if there was a problem. 
*/ 
void checkCUDAError(const char *msg, int line = -1) { 
  cudaError_t err = cudaGetLastError(); 
  if (cudaSuccess != err) { 
    if (line >= 0) { 
      fprintf(stderr, "Line %d: ", line); 
    } 
    fprintf(stderr, "Cuda error: %s: %s.\n", msg, cudaGetErrorString(err)); 
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    exit(EXIT_FAILURE); 
  } 
} 
 
void Additive::alloc_engine(float2* &h_freq_gains, float* &h_angles, float* 
&h_v_gains, float* &h_tmp_buffer, 
 float* &h_buffer,float* &h_adsr, bool* &h_v_ons, int num_samples, int 
num_voices, int num_harms){ 

cudaHostAlloc((void**)&h_freq_gains, sizeof(float2)*num_harms * 
num_voices, cudaHostAllocMapped); 
     checkCUDAError("h_freq_gains get Device Pointer", __LINE__); 
   
     cudaHostAlloc((void**)&h_angles, sizeof(float)*num_harms*num_voices, 
cudaHostAllocMapped); 
     checkCUDAError("h_angles get Device Pointer", __LINE__); 
   
     cudaHostAlloc((void**)&h_v_gains, sizeof(float)*num_voices, 
cudaHostAllocMapped); 
     checkCUDAError("h_v_gains get Device Pointer", __LINE__); 
   
     cudaHostAlloc((void**)&h_tmp_buffer, sizeof(float)*num_samples, 
cudaHostAllocMapped); 
     checkCUDAError("h_tmp_buffer get Device Pointer", __LINE__); 
   
     cudaHostAlloc((void**)&h_buffer, sizeof(float)*num_samples, 
cudaHostAllocMapped); 
     checkCUDAError("h_buffer get Device Pointer", __LINE__); 
   
     cudaHostAlloc((void**)&h_adsr, sizeof(float)*num_voices*num_samples, 
cudaHostAllocMapped); 
     checkCUDAError("h_Adsrs get Device Pointer", __LINE__); 
   
     cudaHostAlloc((void**)&h_v_ons, sizeof(bool)*num_voices, 
cudaHostAllocMapped); 
     checkCUDAError("h_v_ons get Device Pointer", __LINE__); 
} 
 
void Additive::realloc_engine(float* &h_tmp_buffer,float* &h_buffer, int 
prev_num_samples, int num_samples){ 
          float tmp_buffer[num_samples]; 

  float buffer[num_samples]; 
          cudaMemcpy(tmp_buffer, h_tmp_buffer, sizeof(float)*prev_num_samples, 
cudaMemcpyHostToHost); 

  checkCUDAError("memcpy realloc firs tmp_buffer", __LINE__); 
  cudaMemcpy(buffer, h_buffer, sizeof(float)*prev_num_samples, 

cudaMemcpyHostToHost);  
  checkCUDAError("memcpy realloc first buffer", __LINE__); 
  cudaFree(h_tmp_buffer); 
  cudaFree(h_buffer); 

          cudaHostAlloc((void**)&h_tmp_buffer, sizeof(float)*num_samples, 
cudaHostAllocMapped); 
          checkCUDAError("h_tmp_buffer get Device Pointer", __LINE__); 
          cudaHostAlloc((void**)&h_buffer, sizeof(float)*num_samples, 
cudaHostAllocMapped); 
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          checkCUDAError("h_buffer get Device Pointer", __LINE__); 
   

  cudaMemcpy(h_tmp_buffer,tmp_buffer, 
sizeof(float)*prev_num_samples, cudaMemcpyHostToHost); 

      checkCUDAError("memcpy realloc tmp_buffer", __LINE__); 
  cudaMemcpy(h_buffer,buffer,  sizeof(float)*prev_num_samples, 

cudaMemcpyHostToHost);  
      checkCUDAError("memcpy reallox buffer", __LINE__); 

 
} 
__global__ void my_vh_kernel(float *outBuffer, float2 *freq_gains, float 
*vgains, float* adsr, bool* vons, float angle, int numSamples, int 
numSinusoids, int numVoices) 
{ 

int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 

if (idx < numSamples) { 
// samples sine wave in discrete steps 
angle = angle + 2.f * M_PI * idx / 44100.f; 
 
float buff_val = 0.f; 
int numHarmonics = numSinusoids / numVoices; 

 
for (int i = 0; i < numVoices; i++) { 

for (int j = 0; j < numHarmonics; j++) { 
buff_val += vons[i] * vgains[i] * adsr[i * idx] * 

freq_gains[i*numHarmonics + j].y * __sinf(angle * freq_gains[i*numHarmonics + 
j].x); 

//printf("idx %d buff val: %f\n", idx, buff_val); 
} 

} 
 

// buffer to be sent to DAC 
outBuffer[idx] = buff_val; 

} 
} 
 
void Additive::my_v_compute(float *buffer, float angle, float* h_buffer, 
float* h_v_gains,  
     float2* h_freq_gains, float* h_adsr, bool* h_v_ons, int numSamples, 

 int numSinusoids, int numVoices) 
{ 

//static int count = 0; 
//std::cout << "frequency" << std::endl; 
//printArray(1, h_freq_gains, 0); 
int threadsPerBlock = numSamples; 
int blocksPerGrid = (numSamples + threadsPerBlock - 1) / 

threadsPerBlock; 
float *dev_buffer, *dev_v_gains, *dev_adsr; 

          bool *dev_v_ons; 
float2* dev_freq_gains; 
cudaHostGetDevicePointer((void**)&dev_freq_gains, 

(void*)h_freq_gains, 0); 
checkCUDAError("dev_freq_gains get Device Pointer", __LINE__); 
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//cudaHostGetDevicePointer((void**)&dev_angles, (void*)h_angles, 

0); 
cudaHostGetDevicePointer((void**)&dev_v_gains, (void*)h_v_gains, 

0); 
checkCUDAError("dev_v_gains get Device Pointer", __LINE__); 

 
cudaHostGetDevicePointer((void**)&dev_buffer, (void*)h_buffer, 0); 
checkCUDAError("dev_buffer get Device Pointer", __LINE__); 

 
cudaHostGetDevicePointer((void**)&dev_adsr, (void*)h_adsr, 0); 
checkCUDAError("dev_adsr get Device Pointer", __LINE__); 

 
          cudaHostGetDevicePointer((void**)&dev_v_ons, (void*)h_v_ons, 0); 

checkCUDAError("dev_v_ons get Device Pointer", __LINE__); 
 

 
my_vh_kernel <<< blocksPerGrid, threadsPerBlock >>> (dev_buffer, 

dev_freq_gains, dev_v_gains, dev_adsr, dev_v_ons, 
angle, numSamples, 

numSinusoids, numVoices); 
checkCUDAError("vhkernel error", __LINE__); 
cudaStreamSynchronize(NULL); 

//std::cout << "reyeet"<<std::endl; 
#ifdef KERNELDEBUG 

           float *debug_arr1; 
          cudaMallocManaged((void**)&debug_arr1, sizeof(float) * numSamples, 
cudaMemAttachHost); 
          checkCUDAError("Error debugging output after cufftshift (malloc)", 
__LINE__); 
          cudaMemcpy(debug_arr1,dev_buffer, sizeof(float) 
*numSamples,cudaMemcpyDeviceToHost); 
          checkCUDAError("Error debugging output after cufftshift (memcpy)", 
__LINE__); 
          printf("out\n"); 
          printArraywNewLines(numSamples, debug_arr1, 0); 
          cudaFree(debug_arr1); 

#endif 
    //std::cout << "yeet" << std::endl; 

// updates the buffer with dev_buffer computed in GPU 
cudaMemcpy(buffer, dev_buffer, numSamples * sizeof(float), 

cudaMemcpyDeviceToHost); 
checkCUDAError("memcpy error", __LINE__); 
#ifdef DEBUGCOPYM 
std::cout << "kernel" << std::endl; 
  float *debug_arr1; 

          cudaMallocManaged((void**)&debug_arr1, sizeof(float) * numSamples, 
cudaMemAttachHost); 
          checkCUDAError("Error debugging output after cufftshift (malloc)", 
__LINE__); 
         memcpy(debug_arr1,buffer, sizeof(float) *numSamples); 
          checkCUDAError("Error debugging output after cufftshift (memcpy)", 
__LINE__); 
          printf("out\n"); 
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          printArraywNewLines(numSamples, debug_arr1, 1); 
          cudaFree(debug_arr1); 

#endif 
 
 

} 
 
 
__device__ float ramp_kern(float currentTime, float slideTime, float f0, float 
f1){ 

float integral; 
if (currentTime < slideTime) { 

float k = (f1-f0) / slideTime; 
integral = currentTime * (f0 + k * currentTime / 2.0f); 

} else { 
integral = f0 * slideTime + (f1 - f0) * slideTime / 2.0f; 
integral += (currentTime - slideTime) * f1; 

} 
return integral * 2.0f * M_PI; 

} 
 
#define imin( a, b ) ( ((a) < (b)) ? (a) : (b) ) 
 
__global__ void sin_kernel_fast(float2* freq_gains, float* buffer,  

float* angles, int 
numThreadsPerBlock, int numSinusoids, 

float time, int numSamples)  
{ 

int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 

if (idx < numSamples * THREADS_PER_SAMPLE) { 
//determine how many sineWaves are to be computed in each thread 

based on how many threads it takes to compute a sample 
int maxSinePerBlock = (numSinusoids + THREADS_PER_SAMPLE - 1) / 

THREADS_PER_SAMPLE; 
int sinBlock = idx / numThreadsPerBlock; 
int sampleIdx = idx - sinBlock * numThreadsPerBlock; // modulo 

function but GPUs are trash at modulo so don't use it 
float val[SAMPLES_PER_THREAD]; 
for (int j = 0; j < SAMPLES_PER_THREAD; j++) { 

val[j] = 0.0f; 
} 

    float gain, freq0, angle, angleStart; 
    int firstSine = sinBlock * maxSinePerBlock; 

int lastSine = imin(numSinusoids, firstSine + maxSinePerBlock); 
//compute samples for maxSinePerBlock 
for (int i = firstSine; i < lastSine; i++) { 

angleStart = angles[i];  
freq0 = freq_gains[i].x; 
gain = freq_gains[i].y; 
for (int j = 0; j < SAMPLES_PER_THREAD; j++) { 
  angle = angleStart + time + 

(sampleIdx*SAMPLES_PER_THREAD+j) / SAMPLING_FREQ; 
val[j] += __sinf(angle * freq0) * gain / numSinusoids; 
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} 
angles[i] = fmod(angle, 44100.f); 

} 
for (int i = 0; i < SAMPLES_PER_THREAD; i++) { 

buffer[idx * SAMPLES_PER_THREAD + i] = val[i]; 
} 

 
} 

 
} 
 
 
__global__ void sum_blocks(float* tmp_buffer, float* buffer, int numSamples) { 

int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 

if (idx < numSamples) { 
float sum = 0; 
for (int i = 0; i < THREADS_PER_SAMPLE; i++) { 

sum += tmp_buffer[idx + i * numSamples]; 
} 
buffer[idx] = sum; 

} 
 
} 
 
 
 
void Additive::compute_sinusoid_hybrid(float* samples, float2* h_freq_gains, 
float* h_angles, float *h_v_gains, float* h_tmp_buffer, float* h_buffer, int 
numSinusoids, float time, float numSamples){ 

int threadsPerBlock = 256;  
int numThreadsPerBlock = numSamples / SAMPLES_PER_THREAD; 
int numThreads = THREADS_PER_SAMPLE * numThreadsPerBlock; 
int blocksPerGrid = (numThreads + threadsPerBlock - 1) / 

threadsPerBlock; 
float2* dev_freqs_gains; 
float* dev_buffer,* dev_tmp_buffer, *dev_angles, *dev_v_gains; 
cudaHostGetDevicePointer((void**)&dev_freqs_gains, (void*)h_freq_gains, 

0); 
checkCUDAError("dev_freq_gains get Device Pointer", __LINE__); 
cudaHostGetDevicePointer((void**)&dev_angles, (void*)h_angles, 0); 
checkCUDAError("dev_angles get Device Pointer", __LINE__); 
cudaHostGetDevicePointer((void**)&dev_v_gains, (void*)h_v_gains, 0); 
checkCUDAError("dev_v_gains get Device Pointer", __LINE__); 
cudaHostGetDevicePointer((void**)&dev_tmp_buffer, (void*)h_tmp_buffer, 

0); 
checkCUDAError("dev_tmp_buffer get Device Pointer", __LINE__); 
cudaHostGetDevicePointer((void**)&dev_buffer, (void*)h_buffer, 0); 
checkCUDAError("dev_buffer get Device Pointer", __LINE__); 

 
 

sin_kernel_fast <<<blocksPerGrid, threadsPerBlock >>>(dev_freqs_gains, 
dev_tmp_buffer, dev_angles, numThreadsPerBlock, numSinusoids, time, 
numSamples); 

 



38 

//checkCUDAErrorWithLine("sin_kernel_fast failed"); 
blocksPerGrid = (numSamples + threadsPerBlock - 1) / threadsPerBlock; 
sum_blocks <<<blocksPerGrid, threadsPerBlock >> >(dev_tmp_buffer, 

dev_buffer, numSamples); 
//checkCUDAErrorWithLine("sum_blocks failed"); 
cudaMemcpy(samples, dev_buffer, numSamples * sizeof(float), 

cudaMemcpyDeviceToHost); 
} 
 
 
Engine.h 
#pragma once 
 
#include "constants.h" 
#include "kernel/kernel.h" 
#include <iostream> 
#include <JuceHeader.h> 
#include "SynthADSR.h" 
#include "lfo.h" 
 
class Engine { 
    private: 
        static Engine *engine; 
 
        float2 *h_freq_gains;    // contains freqs for every harmonic of every 
voice 
        float *h_angles; 
        float *h_v_gains;      // gain for overall voice 
        float *h_buffer; 
        float *h_tmp_buffer; 
        float *h_adsr; 
        float *samples; 
        float *fundamental_freqs; 
        float time; 
        bool *h_v_ons;       // toggle on-off (mute status) without changing 
gain 
        SynthADSR *adsr[4]; 
        LFO *gain_lfo; 
        int enable_gain_lfo; 
 
        int *freq_ratios; 
        int num_samples; 
        int num_sinusoids; 
        int num_harms; 
        int num_voices;  
        float angle = 0; 
 
        Engine(int num_samples);   
        ~Engine(); 
        Engine(Engine const&){}; 
        Engine& operator=(Engine const&){}; 
        void update_freqs(); 
        void realloc_engine(int num_samples); 
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    public: 
        // returns the singleton instance 
        static Engine* getInstance(); 
        static Engine* getInstance(int num_samples); 
 
        // output generator 
        void tick(void* outputBuffer); 
        void simple_tick(void* outputBuffer, int num_Samples); 
 
        void load_sinewave(int v_idx, int f); 
        void load_sawtooth(int v_idx, int f); 
        void load_square_wave(int v_idx, int f); 
 
        void update_fundamental(int v_idx, float freq); 
        void update_voice_gain(int v_idx, float gain); 
        void update_harmonics(int v_idx, int harmonic, float gain); 
        void toggleMute(int v_idx); 
        float get_freq(int v_idx, int harmonic); 
        float get_gain(int v_idx, int harmonic); 
        bool get_mute(int v_idx); 
 
 
        // ADSR functionality 
        void gate_on(); 
        void gate_off(); 
        void process_adsr(void *outputBuffer); 
        void get_adsr(int v_idx, float* curr_adsr); 
        void set_adsr(int v_idx, float* curr_adsr); 
 
   
        // LFO functionality 
        void process_gain_lfo(void *outputBuffer, float angle); 
        void set_gain_lfo_rate(float rate); 
        void set_gain_lfo_level(float level); 
        void set_gain_lfo_type(float knob_val, float max_val); 
 
        void toggle_gain_lfo(); 
}; 
 
 
 
Engine.cpp 
using namespace std; 
#include "engine.h" 
 
 
Engine* Engine::engine = NULL;   
 
 
Engine::Engine(int num_samples) {  
 
    gain_lfo = new LFO(); 
    gain_lfo->set_level(0.f); 
    gain_lfo->set_rate(0.f); 
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    enable_gain_lfo = 1; 
   
    for ( int i = 0; i < 4; i++){ 
        adsr[i] = new SynthADSR(); 
        adsr[i]->setAttackRate(.1 * SAMPLING_FREQUENCY); // .1 seconds 
        adsr[i]->setDecayRate(.3 * SAMPLING_FREQUENCY); // .3 seconds 
        adsr[i]->setReleaseRate(5 * SAMPLING_FREQUENCY); // 5 seconds 
        adsr[i]->setSustainLevel(.5); 
    } 
 
    // initialize adsr settingsinclude cud 
    num_voices= NUM_VOICES_INIT; 
    num_harms = NUM_HARMS_INIT; 
    num_sinusoids= num_harms * num_voices; 
    this->num_samples = num_samples; 
 
    Additive::alloc_engine(h_freq_gains, h_angles, h_v_gains, h_tmp_buffer,  
                           h_buffer, h_adsr, h_v_ons, num_samples, num_voices, 
num_harms); 
   
    for(int i = 0; i < num_voices; i++){ 
        h_v_gains[i]  = 1.0; 
        h_v_ons[i] = false; 
    } 
 
    // turn on 1 voice to start so it makes some kind of sound  
    // h_v_ons[1] = true; // we can turn this on once all the harmonics bugs 
are fixed 
 
    load_square_wave(0, 440); 
    load_sawtooth(1,440); 
    load_sinewave(2,440);  
}   
 
void Engine::realloc_engine(int num_samples){ 
   
     Additive::realloc_engine(h_buffer, h_tmp_buffer,this->num_samples, 
num_samples); 
} 
Engine* Engine::getInstance(int num_samples){ 
     if(!Engine::engine) Engine::engine = new Engine(num_samples); 
     else if (num_samples != Engine::engine->num_samples) { 
         engine->realloc_engine(num_samples); 
     } 
     return Engine::engine; 
} 
 
void Engine::toggleMute(int v_idx){ 
     h_v_ons[v_idx] = !h_v_ons[v_idx]; 
} 
 
Engine* Engine::getInstance(){ 
     if(!Engine::engine) Engine::engine = new Engine(128); 
     return Engine::engine; 
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} 
 
void Engine::process_adsr(void* outputBuffer){ 
   // adsr->batch_process(NUM_SAMPLES, (float*)outputBuffer); 
} 
 
void Engine::load_sawtooth(int v_idx, int f) { 
 
     float L = 1; 
     update_fundamental(v_idx, f); 
     for (int i = 0; i < num_harms; i++) { 
          h_freq_gains[v_idx*num_harms + i].y = (-1.f / (_PI * (i + 1))); 
     } 
} 
void Engine::load_square_wave(int v_idx, int f) { 
     update_fundamental(v_idx, f); 
     for (int i = 0; i < num_harms; i+=2) { 
          h_freq_gains[v_idx*num_harms + i].y = 1.f / (1.f + (i)); //gain 
   
     } 
} 
 
 
void Engine::load_sinewave(int v_idx, int f) { 
          h_freq_gains[v_idx*num_harms].y = 1.0; //gain 
          h_freq_gains[v_idx*num_harms].x = f;   //freq 
   
} 
void Engine::update_freqs(){ 
     for (int i = 0; i < num_voices; i++){ 
        for (int j  = 0; j < num_harms; j++){ 
             h_freq_gains[i*num_harms + j].x = freq_ratios[i*num_harms 
+j]*fundamental_freqs[i]; 
        } 
     } 
   
} 
void Engine::update_voice_gain(int v_idx, float gain){ 
     h_v_gains[v_idx] = gain; 
   
} 
 
void Engine::update_fundamental(int v_idx, float freq){ 
     h_freq_gains[v_idx * num_harms].y = 1.0f; 
     for(int i = 0; i < num_harms; i++){ 
          h_freq_gains[v_idx * num_harms + i].x = freq*(i+1); 
     } 
} 
 
void Engine::update_harmonics(int v_idx, int harmonic, float gain){ 
     h_freq_gains[v_idx*num_harms + harmonic].y = gain; 
} 
 
float Engine::get_freq(int v_idx, int harmonic){ 
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     return h_freq_gains[v_idx*num_harms + harmonic].x; 
} 
 
float Engine::get_gain(int v_idx, int harmonic){ 
     return h_freq_gains[v_idx*num_harms + harmonic].y; 
} 
 
bool Engine::get_mute(int v_idx) 
{ 
     return h_v_ons[v_idx]; 
} 
 
void Engine::get_adsr(int v_idx, float* curr_adsr) 
{ 
     curr_adsr[0] = adsr[v_idx]->get_atk(); 
     curr_adsr[1] = adsr[v_idx]->get_dec(); 
     curr_adsr[2] = adsr[v_idx]->get_stn(); 
     curr_adsr[3] = adsr[v_idx]->get_rel(); 
   
} 
 
void Engine::set_adsr(int v_idx, float* new_adsr) 
{ 
     adsr[v_idx]->setAttackRate(new_adsr[0]); 
     adsr[v_idx]->setDecayRate(new_adsr[1]); 
     adsr[v_idx]->setSustainLevel(new_adsr[2]); 
     adsr[v_idx]->setReleaseRate(new_adsr[3]); 
} 
void Engine::gate_on(){ 
     for(int i =0 ; i < 4;i++){ 
          adsr[i]->gate(ON_G); 
     } 
}   
 
void Engine::gate_off(){ 
      for(int i =0 ; i < 4;i++){ 
          adsr[i]->gate(OFF_G); 
     } 
} 
 
// ------------ lfo functions ------------- // 
 
void Engine::process_gain_lfo(void *outputBuffer, float angle) { 
    if (enable_gain_lfo) { 
        gain_lfo->batch_gain_process(NUM_SAMPLES, (float*)outputBuffer, 
angle); 
    } 
} 
 
void Engine::set_gain_lfo_rate(float rate) { 
    gain_lfo->set_rate(rate); 
} 
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void Engine::set_gain_lfo_level(float level) { 
    gain_lfo->set_level(level); 
} 
 
void Engine::set_gain_lfo_type(float knob_val, float max_val) { 
    float val = (knob_val / max_val) * NUM_LFO_WAVES; 
    val = std::floor(std::max(0.f, val - 0.01f)); 
    int type = int(val); 
    gain_lfo->set_type(type); 
} 
 
void Engine::toggle_gain_lfo() { 
    enable_gain_lfo = !enable_gain_lfo; 
} 
 
   
 
void Engine::tick(void* outputBuffer){ 
     Additive::compute_sinusoid_hybrid((float*)outputBuffer, h_freq_gains, 
h_angles, h_v_gains, h_tmp_buffer, h_buffer,num_sinusoids, time, 
this->num_samples); 
     time += NUM_SAMPLES / 44100.f; 
   
} 
 
void Engine::simple_tick(void *outputBuffer, int num_Samples){ 
    // std::cout<< "tick" <<std::endl; 
    for(int i = 0; i < 4; i++){ 
         adsr[i]->process_SynthADSR(this->num_samples, &h_adsr[i * 
this->num_samples]); 
    } 
     Additive::my_v_compute((float*)outputBuffer, angle,  
     h_buffer,h_v_gains, h_freq_gains, h_adsr, h_v_ons, this->num_samples, 
num_sinusoids, num_voices); 
 
     process_gain_lfo((float*) outputBuffer, angle); 
     angle += MathConstants<float>::twoPi * this->num_samples  / 44100.f; 
} 
 
 
 

 
 
 

Appendix B: Phase Vocoder Code 
 __global__ void  cudaTimeScale(float2* input, int N, int timeScale) { 
    int idx = blockIdx.x * blockDim.x + threadIdx.x; 

if (idx >  N) { 
return; 

} 
 

input[idx].x = input[idx].x * cosf(timeScale * input[idx].y); 
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input[idx].y = input[idx].x * sinf(timeScale * input[idx].y); 
   } 
__global__ void cufftShift(float2* output, float* input, int N){ 
    int idx = blockIdx.x *  blockDim.x + threadIdx.x;  
    if(idx >= N / 2){ 
      return; 
    } 
    output[idx].x = input[idx + N/2]; 
    output[idx + N/2].x = input[idx]; 
} 
 __global__ void cudaMagFreq(float2* output, float2* input, int N){ 
    int idx = blockIdx.x * blockDim.x + threadIdx.x; 
    if(idx >= N){ 
      return; 
    } 
    output[idx].x = sqrtf(input[idx].x * input[idx].x + input[idx].y * 
input[idx].y); 
    output[idx].y = atanf(input[idx].y / input[idx].x); 
  } 
 
 
__global__ void cudaWindow(float* input, float* win, int nSamps, int offset){  
    int idx = blockIdx.x *  blockDim.x + threadIdx.x;  
    if (idx >= nSamps){ 
        return; 
    } 
    input[idx + offset] = input[idx + offset] * win[idx]; 
  } 
 
void pv_analysis_CUFFT(float2* output, float2* fft, float* input, float* 
intermediary, float* win, int N) { 
      timer().startGPUTimer(); 
      cudaWindow<< <1,N >> > (input, intermediary, win, N); 
      #ifdef DEBUGwindow 
          float *debug_arr; 
          cudaMallocManaged((void**)&debug_arr, sizeof(float) * N, 
cudaMemAttachHost); 
          cudaMemcpy(debug_arr,input, sizeof(float) * 
N,cudaMemcpyDeviceToHost); 
          printf("in\n"); 
          printArraywNewLines(N, debug_arr); 
          cudaMemcpy(debug_arr,intermediary, sizeof(float) * 
N,cudaMemcpyDeviceToHost); 
          printf("intermediary\n"); 
          printArraywNewLines(N, debug_arr); 
          cudaFree(debug_arr); 
      #endif 

  checkCUDAError_("Window analysis", __LINE__); 
  cufftShiftPadZeros<<<1, N/2>>>(output, intermediary, N, N); 

      #ifdef DEBUGpad 
          float2 *debug_arr1; 
          cudaMallocManaged((void**)&debug_arr1, sizeof(float2) * N, 
cudaMemAttachHost); 
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          cudaMemcpy(debug_arr1,output, sizeof(float2) * 
N,cudaMemcpyDeviceToHost); 
          printf("out\n"); 
          printArraywNewLines(N, debug_arr1); 
          cudaFree(debug_arr1); 
      #endif 
      checkCUDAError_("pad zero analysis", __LINE__); 
      cufftHandle plan; 

  cufftPlan1d(&plan, 2 * N, CUFFT_C2C, 1); 
  cufftExecC2C(plan, (cufftComplex *)output, (cufftComplex 

*)output, CUFFT_FORWARD); 
  checkCUDAError_("Cufft Error analysis", __LINE__); 

      #ifdef DEBUGCUFFT 
          float2 *debug_arr2; 
          cudaMallocManaged((void**)&debug_arr2, sizeof(float2) *2* N, 
cudaMemAttachHost); 
          cudaMemcpy(debug_arr2,output, sizeof(float2) *2* 
N,cudaMemcpyDeviceToHost); 
          printf("postcufft\n"); 
          printArraywNewLines(2*N, debug_arr2); 
          cudaFree(debug_arr2); 
      #endif 
      cufftDestroy(plan); 
      cudaMagFreq << <1,2 * N >> > (output,  2*N); 
      checkCUDAError_("magfreq Error analysis", __LINE__); 
      #ifdef DEBUGMAG 
          float2 *debug_arr3; 
          cudaMallocManaged((void**)&debug_arr3, sizeof(float2) *2 * N, 
cudaMemAttachHost); 
          cudaMemcpy(debug_arr3,output, sizeof(float2) *2 * 
N,cudaMemcpyDeviceToHost); 
          printf("postMagnitude\n"); 
          printArraywNewLines(2*N, debug_arr3); 
          cudaFree(debug_arr3); 
      #endif 
      timer().endGPUTimer(); 
    } 
      //#define DEBUGTS 
      //#define DEBUGIFFT 
      //#define DEBUGSHIFTRE 

void resynthesis_CUFFT(float* output, float* backFrame, float2* 
frontFrame, float* win,int N, int hopSize) { 
      timer().startGPUTimer(); 

  cudaTimeScale << <1,2*N >> > (frontFrame,2* N, 1); 
      #ifdef DEBUGTS 
          float2 *debug_arr2; 
          cudaMallocManaged((void**)&debug_arr2, sizeof(float2) * 2 * N, 
cudaMemAttachHost); 
          cudaMemcpy(debug_arr2,frontFrame, sizeof(float2) * 2 * 
N,cudaMemcpyDeviceToHost); 
          printf("postTS\n"); 
          printArraywNewLines(N, debug_arr2); 
          cudaFree(debug_arr2); 
      #endif 
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      cufftHandle plan; 
  cufftPlan1d(&plan,  N, CUFFT_C2R, 1); 
  checkCUDAError_("Cufft Plan IFFT Error", __LINE__); 

cufftExecC2R(plan, (cufftComplex*)frontFrame, (cufftReal 
*)output); 

checkCUDAError_("ifft error"); 
      cufftDestroy(plan); 

checkCUDAError_("cufftDestory error"); 
      #ifdef DEBUGIFFT 
          float *debug_arr; 
          cudaMallocManaged((void**)&debug_arr, sizeof(float) *  N, 
cudaMemAttachHost); 
          checkCUDAError_("Error debugging output after ifft (malloc)", 
__LINE__); 
          cudaMemcpy(debug_arr,output, sizeof(float) * 
N,cudaMemcpyHostToHost); 
          checkCUDAError_("Error debugging output after ifft (memcpy)", 
__LINE__); 
          printf("CU IFFT\n"); 
          printArraywNewLines(N, debug_arr); 
          cudaFree(debug_arr); 
      #endif 

cudaDivVec << <1, N >> > (output, N, N); 
      checkCUDAError_("divvec error"); 
      #ifdef DEBUGSCALE 
          float *debug_arr1; 
          cudaMallocManaged((void**)&debug_arr1, sizeof(float) * N, 
cudaMemAttachHost); 
          checkCUDAError_("Error debugging output after ifft (malloc)", 
__LINE__); 
          cudaMemcpy(debug_arr1, output, sizeof(float) * 
N,cudaMemcpyHostToHost); 
          checkCUDAError_("Error debugging output after ifft (memcpy)", 
__LINE__); 
          printf("SCALE RE\n"); 
          printArraywNewLines(N, debug_arr1); 
          cudaFree(debug_arr1); 
      #endif 
 

cufftShift<<<1,N/2>>>(output, N); 
checkCUDAError_("shift error"); 

      #ifdef DEBUGSHIFTRE 
          float *debug_arr3; 
          cudaMallocManaged((void**)&debug_arr3, sizeof(float) * N, 
cudaMemAttachHost); 
          checkCUDAError_("Error debugging output after ifft (malloc)", 
__LINE__); 
          cudaMemcpy(debug_arr3, output, sizeof(float) * 
N,cudaMemcpyHostToHost); 
          checkCUDAError_("Error debugging output after ifft (memcpy)", 
__LINE__); 
          printf("SHIFT RE\n"); 
          printArraywNewLines(N, debug_arr3); 
          cudaFree(debug_arr3); 
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      #endif 
 

cudaWindow<<<1, N>>>(output, win, N); 
checkCUDAError_("window error"); 

      #ifdef DEBUGSHIFTRE 
          float *debug_arr4; 
          cudaMallocManaged((void**)&debug_arr4, sizeof(float) * N, 
cudaMemAttachHost); 
          checkCUDAError_("Error debugging output after ifft (malloc)", 
__LINE__); 
          cudaMemcpy(debug_arr4, output, sizeof(float) * 
N,cudaMemcpyHostToHost); 
          checkCUDAError_("Error debugging output after ifft (memcpy)", 
__LINE__); 
          printf("WINDOW resynth\n"); 
          printArraywNewLines(N, debug_arr4); 
          cudaFree(debug_arr4); 
      #endif 
 

cudaOverlapAdd<<<1,N>>>(backFrame, output, N, hopSize); 
checkCUDAError_("add error"); 

      #ifdef DEBUGOADD 
         float *debug_arr5; 
          cudaMallocManaged((void**)&debug_arr5, sizeof(float) * N, 
cudaMemAttachHost); 
          checkCUDAError_("Error debugging output after ifft (malloc)", 
__LINE__); 
          cudaMemcpy(debug_arr5, output, sizeof(float) * 
N,cudaMemcpyHostToHost); 
          checkCUDAError_("Error debugging output after ifft (memcpy)", 
__LINE__); 
          printf("WINDOW resynth\n"); 
          printArraywNewLines(N, debug_arr5); 
          cudaFree(debug_arr5); 
      #endif 
      timer().endGPUTimer(); 
      } 
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Appendix D: Faceplate PCB Diagram 

 
Hierarchical design makes the PCB look much neater and simpler. 

 

 



49 

 
The knobs in v1 are made with Hall-effect rotary encoders. A single knob’s schematic... 

 

 
is duplicated neatly, so any change in one knob will automatically update to all knobs 
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The quadrature knobs in v2 are repeated in a similar clean pattern 

 

 
Buck converter is used to regulate the power for microcontroller and peripherals 

 


