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Abstract

Sapling (sapling2020.com) helps everyday
people understand how the environment in the
United States is changing by visualizing for-
est growth and loss. Sapling generates and dis-
plays a heatmap representing changes in forest
coverage between 2016 and 2019 in any region
within the continental US that is selected by
users. This forest growth and death heatmap is
generated from a decision tree model trained
on satellite images and forest data from a 2008
USGS forest survey. To our knowledge, this is
the first forest growth-death visualization capa-
ble of near-real-time heatmaps automatically
from open-source satellite data. Sapling’s in-
tention is to make forest growth/death more
concrete, and in turn inspire environmental ac-
tivism. We hope this tool will help show the
ways in which computer science techniques
can augment existing climate data and address
anthropogenic climate change.

1 Motivation and Functionality

Many people in the United States are aware of the
immediate need to take climate action, however,
this does not translate into the desired level of
action. Sapling’s goal is to make the effects of
climate change more concrete and thus more likely
to lead to action. Concreteness is “how specific,
definite, and vivid” something is, and concrete
communication has been shown more likely to
lead to action. Once a user internalizes what is
happening to the environment, Sapling allows
them to donate to highly rated environmental
charities.

The primary product functionality is in viewing
a map of the continental United States and
choosing an area to analyze or choosing from
preset locations. The map shows the change in
forest coverage over time represented as colors

on a spectrum from red to neutral to green. The
darkest red represents the greatest forest loss while
the brightest green represents the greatest forest
growth. Users can click buttons to view the effects
of individual events like a particular wildfire in
California. Clicking the “California Wildfires”
button transports the map to one of the wildfire
sites. From this view, the change in forest coverage
and the effects of the wildfire are apparent. For
these presets, information like government and
advocacy groups’ responses, how the current
situation can be helped, and how the likelihood
of these events can be decreased long-term and
recommended charities for these areas.

2 Related Work

Across all case studies, input data typically con-
sisted of LiDAR, satellite, spectral, and Landsat
data, indicating significant data preprocessing
steps. Preprocessing included variable extraction
and selection, pixel manipulation, featurization,
and rasterization of LiDAR data. Models trained
were typically 2D or 3D convolutional neural
networks (CNNs) used in tandem with SVM
classifiers, decision trees, and different regressions.
Several papers provided useful comparisons of
model performances in predicting metrics similar
to forest coverage, helping inform our model
choices.

Applications of this form of analysis relat-
ing to our goal of promoting awareness for climate
change included monitoring habitats, detecting
oil spills, characterizing and generating forest
inventories, classifying terrain, and forming more
precise methodologies for meeting sustainable
development goals. For example, one paper
developed a model to detect oil spills using LiDAR
data and satellite data more accurately than using



conventional detection techniques. By developing
models to do analysis using several types of
input data, researchers have been able to predict
environment-related metrics with higher accuracy,
and have been able to extend these predictions to
areas where current satellite data and/or LiDAR
data is not available. These papers validated the
need for a model like ours, as we seek to detect
forest coverage in the absence of recent satellite
data.

An informative paper on using satellite im-
agery to predict poverty further solidified our
understanding of how we might use a CNN or
regression to best predict metrics from satellite
data (Jean). This paper trained a CNN to identify
nighttime image features that indicate variation
in economic outcomes, then trained a ridge-
regression model to synthesize the results of the
CNN with daytime data. The scarcity of training
data led to the necessity of a transfer learning
approach. We found this paper informative in
outlining the possible risks we could face sourcing
carbon stock training data.

Another highly relevant paper on synthesiz-
ing disparate LiDAR and satellite datasets through
deep learning provided a lot of context for how
we might approach our model accuracy goals
and highlighted the need for a model to predict
forest coverage which does not require input
LiDAR data (Ayrey). The paper detailed how
LiDAR-derived forest inventories are uncommon
at a regional scale and also less accurate than a
modeling approach using a three-dimensional
CNN. This approach was most successful in
estimating biomass and densities. While this paper
demonstrated the effectiveness of using a model
to estimate biomass instead of using manually
collected data, it failed to account for the cases in
which there is no LiDAR data available. Thus, this
approach is inadequate for our task, as we seek to
monitor forest coverage across all areas, including
economically developing countries which may not
LiDAR infrastructure in place.

A full list of relevant academic papers con-
sulted can be found in the references.

3 Technical Approach

Our technical approach can be broken down into
three main components: the tree growth/death
model, the Linux server, and the cache on the server.
We will explore the technical details of each compo-
nent, as well as how they interact with each other.

3.1 Tree Growth and Death Model

The tree growth/death model is the main tech-
nical component in our project. Abstractly, it
can be thought of as a function that takes a (lat-
itude, longitude) pair as input, and returns a JSON
list of objects with the fields (latitude, longitude,
growth/death). Concretely, these JSON objects rep-
resent a growth or death of forest material occurring
at the given latitude and longitude coordinates. The
model was entirely implemented in Python, due to
useful satellite data processing libraries as well as
comparative efficiency to JavaScript.

3.2 The Satellite Data Pipeline

Training this model, as well as running this model,
requires satellite data. After exploring a variety of
alternatives like the Google Maps API, we settled
on the EarthExplorer API as our source of satellite
data.

The first major piece of our model is Python
code that interacts with the EarthExplorer API.
Concretely, this code takes a given latitude and
longitude pair, makes requests to the EarthExplorer
API to download large satellite raster images for
this database in a ZIP file.

Within this downloaded ZIP file, we only
need some of the stored files; to reduce the
size of stored data (as these files could be as
large as 1GB), we extracted the metadata file
we needed as well as raster bands 4, 5, and 6.
These raster images represent the blue, green,
and red color bands specifically, and in turn
allowed the next step of the pipeline to convert
these raster images to a JPEG image by over-
laying the bands. This resulting colored JPEG
is both easier to process and more compact to store.

This pipeline was a major source of imple-
mentation complexity. The most common and
accessible coordinate system is latitude and longi-
tude, and as we will explore below, this coordinate
system needed to be both in the input and output



to the model. As such, we needed to convert
between latitude/longitude and the other projection
systems used internally by EarthExplorer and
the satellite images. More specifically, we had
to convert to Albert Equal-area Conic projection,
then to the Universal Transverse Mercator, and
finally back to latitude/longitude. Understanding
which conversions where necessary was a major
source of implementation difficulty, both from
an understanding and evaluation perspective. To
accomplish the above conversions, we initially
implemented our own conversion code, but after
accuracy and rounding errors, we moved to using a
Python library.

3.3 Training the Model
To train this model, we used a USDA Forest
Service data set from 2008 that contains forest/non-
forest data across 300m square regions of the
United States. We used the aforementioned
satellite data pipeline to download randomly
selected 2008 satellite data from across this area,
and stratified these downloaded JPEG images into
testing and training data sets.

With the training data set, we used existing
Python data-science libraries to train a variety of
simple classifiers. Notably, before the images are
fed into these classifiers, they are preprocessed; we
lay a grid of 300m squares on the satellite images
so that they correspond to the given squares in the
forest/non-forest dataset. Then, we take an average
of pixel RGB data across this square in the JPEG
image. Finally, we feed tuples of these average
RGB values as well as the forest/non-forest
boolean into both a decision tree and multivariate
linear regression model, the two classifiers we
tested.

3.4 Generating the Prediction Map
Given the satellite data pipeline and the trained
model, we are now capable of creating a prediction
map for a given latitude and longitude coordinate
pair. The prediction map can be understood as a
grid on top of the map, where any grid square is
true if the area underneath is forest, and false if the
grid is not forest.

To create this map for a given (lat, long)
pair, first the satellite data pipeline downloads
and creates an JPEG image that contains these

coordinates. Then, the model is chunked in the
same process described in the training of the model
above, before these chunks are fed into the trained
model. The output of this predictive step (e.g.
forest/non-forest) is then stored within the grid,
effectively creating the prediction map.

3.5 The Change Map
As our model is primarily interested in calculating
the growth/death of forests, we must calculate two
prediction maps within the same region to see if
forests have grown or shrunk. In our case, due
to the limitations of the EarthExplorer API, we
choose to download images from 2016 and 2019.

Thus, for a given latitude and longitude pair,
an image from 2016 and 2019 were downloaded
by the data pipeline. Then, two prediction maps
were generated - one for each year. Furthermore,
as the data pipeline downloaded satellite images
from the same location in these two years, these
two prediction maps could be directly compared.
This comparison can be considered a matrix
subtraction, where the 2016 prediction map is
subtracted from the 2019 prediction map; if the
resulting value is 0 in the square, there was no
change. If it is negative, then there was forest
loss, and if it is positive, then there is forest growth.

Within this step, there were again signifi-
cant implementation complexities that came with
coordinate conversions, as were explored in the
satellite data pipeline, and similar solutions were
used.

3.6 The JSON Changes List
The final step of the model is to use the generated
change map to create an easily-consumable list of
JSON objects that summarize these changes.

To do so, the change map was further chun-
ked into pieces so that multiple elements in the
map were grouped, which was done for efficiency
reasons. Then, if there were above some threshold
of forest growth squares in these chunks, a JSON
object was output with a growth marked at the
latitude and longitude of this chunk. The same was
done for forest loss.

This threshold was chosen by manual tun-
ing, again based on ground-truth data sets. More
specifically, we used known areas of forest growth



and death, like California wildfires, to tune the
threshold to ignore noise and mark only valid loss
and gain.

3.7 The Server
To display the output of the model to users in a
convenient way, we implemented a web-server and
front-end for interacting with the model as well as
displaying a variety of case studies and metrics.

3.8 The Website
The frontend of the website was written in stan-
dard HTML, along with JavaScript for interactivity
and JQuery code for interactivity. Furthermore, to
provide a nice interface to users to interact with
the model, we used Google Maps API to create a
map page where users could select points on a map
of the United States. With the click of a button,
they could make a request to the server to display
a heatmap of the forest growth/death over the sur-
rounding region.

3.9 Serving the Website
The static pages of the website are served from
a Express Node server running on a Linux box
on the Google Cloud. This linux machine runs a
reverse proxy NGINX server to receive requests
and forward them to a running localhost server.

The DNS domain records for sapling2020.com,
where this website is hosted, is managed using
Google Domains.

3.10 Running the Model on the Server
One of the routes on the server is the /getRegion
route, which takes a latitude/longitude pair as
input, and which can be understood as the route
that actually runs the model on the server.

When this route is called, the server creates
a new process that begins running the Python
model. Standard Node utilities are used for
creating this process. This model process writes
the output list of JSON changes to a file, and then
uses standard out to write back the name of the
newly generated file. This file is read in by the
Node server, which then reads the JSON data from
the file and writes it back to the user.

While this model is running, given its run-
time, a loading screen is displayed to the user.
Furthermore, request timeouts are increased

dramatically on this route, so that the long-running
request will terminate before the user’s request
times out. These timeouts were a major, unex-
pected source of implementation complexity. The
reverse proxy server had a second, shorter timeout
implemented as a default and was causing errors in
some long-running cases, leading to a very hard to
debug issue.

3.11 The Cache

As is mentioned above, the runtime of the
model is very long. As such, a cache was used to
avoid running the model when it was not necessary.

Due to the high-precision of the coordinates
requested by the user, it was not suitable to simple
cache based on coordinates. Instead, we cached
data based on the given UTM region that the
coordinates fell in, one of the projects the model
must parse internally. This cache was implemented
as a simple file-store on disk, and as is explored
in the evaluation metrics section significantly
improved performance after the first request.

4 Evaluation

Given the recent COVID-19 pandemic, user inter-
views and interactions became much harder to en-
gage in - making product evaluation difficult from
a qualitative perspective. However, we thoroughly
evaluated our product from a technical perspective,
with the goal of showing that our product would
be able to function as a released, production piece
of software generally. The metrics we evaluated
our project on fall under two areas of consideration.
First, we studied the performance of our model
from an accuracy/precision perspective, as well as
a run-time perspective. Second, we analyzed the
performance of our complete system under a vari-
ety of real-world workload conditions with multi-
ple users, multiple concurrent requests to the model
and the cache, etc. We will explain, in detail, our
evaluation steps and results for each of these below.

4.1 Model Metrics

One main technical contribution is our model that
can predict if a given 250m region of area has
tree cover or not given satellite data as input. We
evaluated this model on a variety of metrics.

First, and most importantly, we evaluated
how accurate the model is. We wanted to know



how often the model is correct when it outputs
tree/no-tree results. To test this, we stratified our
ground-truth dataset into a testing and a training
dataset. We then trained the model on the training
portion, and assessed its accuracy on the testing
portion.

We tested the model on 5 randomly selected
regions in the western and eastern U.S, with the
model performing noticeably better in the Western
U.S. than the Eastern U.S. We suspect this is due
to biases in our training datasets, as forest patterns
differ according to geography and our training
data may have been biased towards forest patterns
typically found in the Western U.S.

Our goal was to achieve accuracy greater
than 75%, and we were able to achieve this in
our decision tree model. As shown in Appendix
A Figure 1, we achieved an accuracy of 85%
using our decision tree model for the Western
U.S. and achieved an accuracy of 75% using our
multivariate logistic regression model. We had
slightly lower accuracies for the Eastern U.S.,
again demonstrating the biases in our training data.
An area for future improvement here would be to
continue expanding our training dataset with more
diverse images to encompass larger portions of the
United States and improve the model’s accuracy.

Next, we evaluated the running time of the
model. Making a prediction through the model
requires inputting satellite imagery and getting
an output tree/no-tree classification. As this is
a major piece of the entire system that users
interact with, its running time is crucial. We
broke down the running time of each step in
the model to better understand where we were
experiencing bottlenecks, as suggested by some of
our evaluation plan peer feedback, and this helped
inform our decision to cache our data.

We used basic Python timing tools to run
the model five times in different locations and
record the average time that each step took. Within
the total average runtime of 21.4 minutes, about
70% of this time is spent within the download step
at 15.3 minutes, where the network is the limiting
factor. As shown in Appendix A Figure 2, this step
is the bottleneck in our running time. The final
change map and JSON output conversion steps

take up another 20% of the running time but are
configurable to run faster at a lower resolution.

Notably, though this model was trained on
local computers, it now runs entirely in the cloud
on our server. It is thus necessary that this model
performs well with respect to the above metrics in
this environment.

4.2 Full System Metrics

Other than the model, there is a surrounding
frontend and backend that allows users to a)
visualize a map of tree growth and death and b)
make requests to the model to visualize these
statistics on specific regions. The second part
of our evaluation consisted of evaluating how
effectively this system would allow users to access
this information.

First, we collected metrics that capture the
quantitative experience of a single user using
the system. The first metric is the average
load-times of the various pages users inter-
act with. We used existing tooling, namely
pingdom.com, to measure the load-time of the
various pages of our website from around the
U.S., and see how this relates to our server location.

As illustrated in Appendix A Figure 3, we
found that our landing page had a load time of 158
ms, which is considered excellent, whereas our
map page had a load time of 349 ms, which is still
within an acceptable range, and comparable to the
load time of Google Maps.

Second, we measured the run-time of re-
quests that a user makes to visualize specific areas
of tree growth/death. There are notably two routes
that a request can take: it may be one of the cached
locations, or the model may need to run on new
satellite data. This evaluation metric focuses on
highlighting the difference between the cached
locations and new computation and highlights
how much longer one takes than the other for a user.

We incorporated this metric to address some
of the peer feedback given for our evaluation plan,
as many peers expressed concern that the running
time of the model would significantly hamper the
user’s experience. This evaluation demonstrates
how that issue is largely resolved with the use of



caching.

Our results for this portion of the evaluation
are shown in Appendix A Figure 4. Without a
cache, the running time is the same as the running
time of the model at 21.4 minutes, but once the
data is added to the cache, the heatmap can be built
in about 12 seconds, which is a speedup of about
100x.

Finally, we evaluated how our system per-
forms in the context of multiple users making
requests at once. We performed multiple uncached
requests to the server at the same time, tested
how long each request took, and then averaged
the response time. Our goal was to reflect how
response times change as more users make requests
at once and what the limits are of our system in
terms of concurrent users.

As shown in Appendix A Figure 5, the aver-
age response time increases by almost 1.5x when
there are four concurrent requests instead of just
one. Furthermore, four or more requests to the
server simultaneously result in increased error
rates and timeouts.

4.3 User Research and Evaluation

We evaluated our product with ten unique target
users by conducting video interviews. We first
evaluated how easy they found the product to
understand and use, by giving them no instructions
and allowing them to use the product in a free-form
setting. We then asked the user to record exactly
what actions they took and in which order.

We found that users typically spent a large
amount of time on the landing page reading
through the instructions, which was not what
we had initially anticipated would happen. In
response, we reconfigured the content and created
separate pages for our pre-set case studies.

The user then typically went straight to the
heat map and selected the Walker Fire pre-set case
study, viewing the cached results and spending an
average of 25 seconds interacting with the heat
map. Then, the user exited out of the case study
and selected a custom region.

We stored the coordinates of these custom

regions that were selected, and upon further
examination, found that 9/10 users selected areas
they were already intimately familiar with. We
believe this represents an increased curiosity about
forest changes. Users attempted to tie together
their lives and this new data, indicating a newfound
curiosity, and meeting our established goal of
making climate change concrete.

Finally, we had our users fill out a short sur-
vey about the areas they discovered, testing
basic metrics such as whether they recalled the
approximate extent of forest growth and loss
shown and whether they retained any information
from the case study they read. We found that
users were able to recall the proportion of forest
growth and loss with an error margin of 15%, as
measured by the ratio of growth to loss heat map
markers on the map. This shows extremely high
retention rates of quantitative information, further
demonstrating our success in making climate
change more concrete.

Given the opportunity to conduct further user
evaluation, we would have increased our sample
size and conducted more thorough interviews,
but this proved difficult given the changes in
circumstances. While we recognize that we were
not able to definitively show that users were more
likely to donate to our selected charities upon
interacting with Sapling, we believe that our
evaluation results demonstrate how Sapling both
sparks the average user’s curiosity and promotes
retention of abstract information.

4.4 Evaluation Conclusions

For the model accuracy, we were able to achieve
our goal of 75% or better predictions of tree/no-
tree. For the full system, we had set an initial goal
of an average tested load time of all pages on the
website to be less than two seconds, a standard
maximum allowable load time for many users.
We extended this goal load time to all cached
computations as well. We were successful in both
regards, as shown in the figures included in the
appendix.

In the case of live computation through the
model, due to the large amount of computation that
must occur for the model to process this satellite
image, we had set a goal to process this new image



within a reasonable amount of time for the user to
not leave the site. We had anticipated this to be
within five minutes but were unable to meet that
goal due to the bottlenecks in downloading the
data.

5 Societal Impact

Sapling is a website meant to drive awareness in a
time of climate crisis, however, the interconnected
nature of technology sometimes leads to unfore-
seen consequences. Sapling has minimal privacy
and data security concerns, yet it has a medium
risk of being misused by illegal logging operations.
All information that Sapling is trained on and uses
within its model is open-sourced and publicly
accessible. We have also followed the AWS
cloud security best-practices guide, specifically in
regards to our server access management.

Any type of personally-identifying informa-
tion deserves to be treated with extreme care.
Breaches of this type of data in today’s world
are very serious. We have opted to stay away
from all features requiring personally-identifying
information, and as such Sapling does not store
any personally-identifying information for living
creatures other than trees. We also do not store
any information about user sessions. Although
storing “cookies” may enable certain features on
Sapling, we deemed this risk unworthy. Not only
does this guarantee that we won’t spill any of this
data, but it reduces the likelihood of other types of
attacks. Simply, there’s less potential reward for
compromising the product.

In regards to server security, to prevent ac-
cess by malicious parties (e.g. may begin logging
user sessions, etc), we have followed the AWS
best practices guide for server management.
Specifically, only certain SSH keys can access the
server, and these keys are stored by team members
in their respective password managers as well
as only locally on their computers. Finally, we
do not accept any user input to be displayed on
the website, making various injections as well as
cross-site scripting attacks impossible.

The data presented on the map is at a reso-
lution such that only macro-geographic features
could be made out. These include locations of
cities, bodies of water, or other landforms like

mountains. It is not possible to use the map data to
determine the location of individual buildings and
reveal to the public where isolated structures are.

If a group intended to conduct large-scale il-
legal logging, they could use Sapling to ensure
they stay under-the-radar by monitoring forest
coverage in the areas they log. Although unlikely,
this would have the opposite climate effect as is
intended. This would also leave groups in the
immediate area of illegal logging vulnerable to
displacement or violence.

Additionally, if our data were compromised,
this product could be used to hide changes or show
better forest coverage than exists. This could be
used to lobby for looser environmental regulations
or simply uninspire climate activists. Finally, there
is a long-term risk of demotivation, assuming
high adoption of Sapling. It is possible that those
tracking forest coverage through Sapling might see
short term progress and then reduce their efforts
and proclaim climate victory. However, reversing
or minimizing anthropogenic climate change is a
huge task that would require years of “progress” on
Sapling. It is not the intent of our product to create
a sense of false victory, however, it is possible.

6 Discussion

We believe Sapling will continue to be a tool for
social good in the future. There are a variety of
ways we’d like to continue improving Sapling both
technically and with more of a user focus.

Firstly, we’d like to improve our prediction
of forest coverage change. We trained multiple
models, but believe for the best results the US
should be covered by multiple models. Geographic
factors provide inherent differences in the satellite
image patterns from around the country that would
be best accounted for by separate models, rather
than inside of one predictive model. This would
also allow more easily for the addition of state or
region specific datasets for training. Additionally,
the most common and most severe piece of user
feedback we received pointed to long wait times.
The caching system we put in place improved the
wait times by about 100x, however it is realistic to
preprocess and cache the entire map. This would
require a financial investment up front for the
computational resources. Preprocessing the entire



map would also require either a larger server for
extensive caching or implementation of a content
delivery network (CDN).

We also believe that coordinate conversions
and translating projection systems deserves
more up front attention than originally given.
Managing these translations proved one of our
greater implementation challenges. For future
projects using similar approaches, we recommend
creating a standalone coordinate handling module.
Users testing our product commented on how
concerned they were after use, and team members
observed increased curiosity. Particularly, users
consistently tried the custom change map feature.
They were interested in viewing the forest changes
for areas they were intimately familiar with - their
hometowns, current living areas, or national parks.
We believe this is a positive indicator towards
sparking action. In the future, users should be able
to further craft their searches by selecting custom
timeframes.

Further user engagement should be built by
allowing users to favorite areas and receive
ongoing email or text updates about them. User
engagement can also be encouraged by real-time
tracking during traumatic events like large wildfires
or hurricanes.

There is also an opportunity to more closely
include one stakeholder group. Sapling could
partner with tree planting and regrowth initiatives
to help decide which areas are most in need of
replanting. Some of these organizations include 8
Billion Trees and Team Trees.

7 Business Analysis

7.1 Market Opportunity

Sapling has gone through many versions including
one stark shift due to COVID-19. In the beginning
of this semester, we had planned on delivering a
product to the National Forest Service and had
conversations with other private organizations who
showed partnership interest. As the COVID-19
stress grew on these organizations, they apolo-
getically communicated that their priorities were
now elsewhere. Sapling then pivoted to its current
goal and implementation of making climate
change more concrete and inspiring environmental
activism. For the remainder of this report, the

old business model will be touched on while
the current implementation receives more attention.

The original Sapling business model relied
on a lack of automated environmental analysis for
interested parties. Many organizations like the
National Forest Service, private growth yards, land
insurers, and others make key decisions based
on land changes. In many cases, these decisions
are long standing and have high financial impact.
For instance, when the National Forest Service
redistricts land it is set for 30 years. As such, these
parties are highly motivated to acquire relevant
data.

Currently, many of these organizations col-
lect data by hand. This means sending workers
out into parks and private forests to survey the
land. This process is time and resource intensive.
This data can also become outdated quickly in
the case of significant events like wildfires or
become outdated more naturally in a few years.
The motivation for the newer and present version
of Sapling has been discussed extensively. Despite
61% of Americans claiming to be concerned about
climate change, few act. This is the unfortunate
opportunity Sapling now addresses.

7.2 Users and Customers

Today’s Sapling differentiates between customers
and users. Users are the everyday people we hope
to inspire towards environmental activism. Given
the nature of our tool, we anticipate the largest
user demographic to be young, tech forward,
professionals and students. While our goal is to
change the perception of climate change as an
academic pursuit, we believe our tool still has a
somewhat techy orientation that will filter out older
age groups and some less tech-savvy young people.
Future versions of the product should address this.

The organizations funding us will be envi-
ronmental grant writers like The Green Climate
Fund, Green Grants, and The Climate Works
Foundation whose missions fall in line with ours:
help our odds against climate change. Discussions
with them in the early fall confirm that they agree
with our current approach. Since we are helping
implement their mission, they are our customers.



7.3 Market Segment

It is difficult to estimate the total of environmental
grants afforded in the United States each year since
many are handed from private organization to pri-
vate organization, however Yale Research indicates
a minimum of $218.5 MM was spent lobbying
congress in favor of the environment between 2000
and 2016. Open Secrets, an organization dedicated
to political transparency, notes that “[a]s attention
to climate and resource issues has increased in re-
cent years, environmentalists have grown far more
influential in Washington, even if political contribu-
tions from environmental groups are but a fraction
of those given by the industries they generally op-
pose”. This market direction favors Sapling.

7.4 Competition

Aside from research studies conducted within
universities, key competitors include paid services
which do similar forms of analysis, tracking forest
metrics and reporting real-time data to clients. Ex-
amples of these include Forest Business Analytics,
Remsoft, and Forest Economic Advisors.

Forest Business Analytics (FBA) is a con-
sulting service that has a stated goal of “help[ing]
customers to better understand their present
operating business environment through diligent
analysis and application of tailored solutions.”
The company’s target market is forest-related
businesses and the main form of analysis it
conducts is economic in nature.

Similarly, Remsoft is a paid service that
caters to the forestry industry, offering operational
consulting services and “power[ing] critical deci-
sions for forest-to-mill planning, land management,
and MRO inventory optimization”. While the
company conducts similar forms of analysis such
as modeling wood flow and other forest metrics, it
performs this analysis for economic purposes such
as determining the value of timberland investment
properties.

Forest Economic Advisors is a consulting
service that conducts the aforementioned forms
of analysis with a heavy emphasis on “economic
forecasts, lumber, timber, panels, and other wood
products.”

These companies perform very similar types

of forest analysis using satellite data and display
their metrics in a palatable interface. However,
they do not cater to the same target market segment,
instead offering paid services to clients in the
forestry industry. They also include an extra layer
of analysis on the initial predicted metrics, offering
economic interpretations to cater to their clients’
needs.

Sapling distinguishes itself in that our target
user is the average individual and our target market
is environmental grant writers whose missions are
to help our odds against climate change. Sapling
does not perform economic analysis of forest
metrics and does not perform the supply-chain
analysis characteristic of its competitors. We do
not aim to promote forestry-related businesses,
rather conveying the base forest metrics to any
individual with some analysis describing the
implications of our findings in the grand scheme of
the Climate Crisis.

7.5 Cost Analysis

Currently, Sapling2020.com runs on a single
Google Cloud n1-standard-4 E2 instance. This
costs a fixed $97 a month, although these costs are
subject to slight variation due to Google Cloud
variable pricing. Furthermore, costs scale linearly
with used network data, which in turns scales with
usage, though this is in the thousandths of a cent
per user.

Given our current caching mechanisms, more
usage will result in lower network usage of our
product, as more requests can be served from the
cache and will not need to be generated from
downloaded satellite images, the largest network
requests performed by our servers. Furthermore,
much of our content can be served from a CDN,
further limiting costs through caching, and as such,
we do not expect monthly expenditures to be more
than $150, no matter the scale.

If we were to cache the entire continental
US up-front to improve the user experience, this
could be done by less than 10 higher-tier/spec
servers running on Google Cloud overnight; this
would likely cost in the hundreds of dollars, but
would be a one-time fixed cost.



7.6 Revenue Model
The former version of Sapling would have worked
as a product-based consultancy. With our model
and basic analytics already built, we had planned
on extending the software package with some
custom metrics and possible integrations with
clients’ existing monitoring systems.. These
increased variable costs are justified by high
average contract size for the old business model.

Today’s Sapling will seek grants from orga-
nizations like The Green Climate Fund, Green
Grants, and The Climate Works Foundation. Cli-
mate Works approved $100,000 “to protect primary
forests in Papua through monitoring and advocacy
efforts” and $115,000 “to support governance and
technical requirements for effective carbon pricing
in the aviation sector” in 2018. Based on these
organizations’ portfolios, they would be interested
in supporting our project on an annual or 5 year
basis.

8 Acknowledgements

We thank Dr. Eric Eaton, Dr. David Rolnick, Dr.
Jane Dmochowski, Dr. Brett Hemenway Falk, and
Dr. Ani Nenkova for their invaluable guidance on
this project.

9 References

Ahmed, Oumer S., et al. “Characterizing
Stand-Level Forest Canopy Cover and Height
Using Landsat Time Series, Samples of Airborne
LiDAR, and the Random Forest Algorithm.”
ISPRS Journal of Photogrammetry and Re-
mote Sensing, vol. 101, 2015, pp. 89–101.,
doi:10.1016/j.isprsjprs.2014.11.007.

Ayrey, Elias, et al. “Synthesizing Disparate
LiDAR and Satellite Datasets through Deep
Learning to Generate Wall-to-Wall Regional Forest
Inventories.” 2019, doi:10.1101/580514.

Dalponte, M., et al. “A System for the Es-
timation of Single-Tree Stem Diameter and
Volume Using Multireturn LIDAR Data.” IEEE
Transactions on Geoscience and Remote Sens-
ing, vol. 49, no. 7, 2011, pp. 2479–2490.,
doi:10.1109/tgrs.2011.2107744. Gleason, Colin
J., and Jungho Im. “Forest Biomass Estimation
from Airborne LiDAR Data Using Machine
Learning Approaches.” Remote Sensing of

Environment, vol. 125, 2012, pp. 80–91.,
doi:10.1016/j.rse.2012.07.006.

Goetz, Scott J, et al. “Mapping and Moni-
toring Carbon Stocks with Satellite Observations:
a Comparison of Methods.” Carbon Bal-
ance and Management, vol. 4, no. 1, 2009,
doi:10.1186/1750-0680-4-2.

Holloway, Jacinta, and Kerrie Mengersen.
“Statistical Machine Learning Methods and
Remote Sensing for Sustainable Development
Goals: A Review.” Remote Sensing, vol. 10, no. 9,
2018, p. 1365., doi:10.3390/rs10091365.

Jean, N., et al. “Combining Satellite Im-
agery and Machine Learning to Predict Poverty.”
Science, vol. 353, no. 6301, 2016, pp. 790–794.,
doi:10.1126/science.aaf7894.

Kim, Yong Hoon, et al. “Machine Learning
Approaches to Coastal Water Quality Monitoring
Using GOCI Satellite Data.” GIScience Remote
Sensing, vol. 51, no. 2, 2014, pp. 158–174.,
doi:10.1080/15481603.2014.900983.

Knudby, Anders, et al. “Predictive Map-
ping of Reef Fish Species Richness, Diversity and
Biomass in Zanzibar Using IKONOS Imagery
and Machine-Learning Techniques.” Remote
Sensing of Environment, vol. 114, no. 6, 2010, pp.
1230–1241., doi:10.1016/j.rse.2010.01.007.

Langner, Andreas, et al. “Integration of
Carbon Conservation into Sustainable Forest
Management Using High Resolution Satellite
Imagery: A Case Study in Sabah, Malaysian
Borneo.” International Journal of Applied Earth
Observation and Geoinformation, vol. 18, 2012,
pp. 305–312., doi:10.1016/j.jag.2012.02.006.

Lodha, Suresh K., et al. “Aerial LiDAR Data
Classification Using Support Vector Machines
(SVM).” Third International Symposium on 3D
Data Processing, Visualization, and Transmission
(3DPVT’06), 2006, doi:10.1109/3dpvt.2006.23.

Mora, Brice, et al. “Modeling Stand Height,
Volume, and Biomass from Very High Spatial
Resolution Satellite Imagery and Samples of
Airborne LiDAR.” Remote Sensing, vol. 5, no. 5,



2013, pp. 2308–2326., doi:10.3390/rs5052308.

Reed, Bradley C., et al. “Measuring Pheno-
logical Variability from Satellite Imagery.” Journal
of Vegetation Science, vol. 5, no. 5, 1994, pp.
703–714., doi:10.2307/3235884.

Saatchi, S. S., et al. “Benchmark Map of
Forest Carbon Stocks in Tropical Regions across
Three Continents.” Proceedings of the National
Academy of Sciences, vol. 108, no. 24, 2011, pp.
9899–9904., doi:10.1073/pnas.1019576108.

Xu, Zewei, et al. “A 3D Convolutional Neu-
ral Network Method for Land Cover Classification
Using LiDAR and Multi-Temporal Landsat
Imagery.” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 144, 2018, pp. 423–434.,
doi:10.1016/j.isprsjprs.2018.08.005.

Yuan, Tianle, et al. “Automatically Finding
Ship Tracks to Enable Large-Scale Analysis
of Aerosol-Cloud Interactions.” Geophysical
Research Letters, vol. 46, no. 13, 2019, pp.
7726–7733., doi:10.1029/2019gl083441.

Zhi-Ming, Dong, et al. “Oil-Spills Detec-
tion in Net-Sar Radar Images Using Support
Vector Machine.” The Open Automation and
Control Systems Journal, vol. 7, no. 1, 2015, pp.
1958–1962., doi:10.2174/1874444301507011958.

10 Appendix

Appendix A. Evaluation Metrics
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5


