
CIS 400 Submission – Final Report – April 20, 2020

1

Abstract

doBetter deBugging is a fully self-

contained web platform for asynchronous

candidate evaluation in technical software

engineering recruiting. The status quo

process for recruiting is a drain on

employee’s time and largely disregards the

highly relevant, on-job skill of debugging.

As a product, our implementation offers

increased efficiency in the recruiting

process and interactive visualizations

summarizing an entire debugging

interview that can be interpreted in just

minutes. Furthermore, we have softly

validated product-market fit through a

variety of stakeholder surveys and product

tests. This design project shows promise as

a tool in industry and lends itself to further

development due to a lack of technical debt

and business-conscious design.

1 Motivation and Functionality

1.1 Background

Having taken part in over fifty software

engineering interviews cumulatively, we have been

involved firsthand in the scheduling nightmare that

is the algorithms phone screen. Interviewers have

to take time out of their day to exchange emails

with recruiters to set up phone calls. Those

recruiters then reach out to us, the candidates, to

find times that work. After a time is agreed upon,

the interviewers spend an hour or more talking

through an algorithms question with us candidates.

Later still, they write a qualitative report on the

interview which goes to a separate group of people

called a hiring committee. And only after this are

the candidates told whether or not we can move on

to the next round of interviews. What you end up

with is a process full of friction and lots of full-time

employees spending inordinate amounts of time

talking to candidates.

Furthermore, in our experience, most software

engineering interviews are conducted using

algorithms questions. One Facebook interviewer

said that debugging is “one of the more important

skills of a SWE [software engineer]”, and as

students and former software engineering interns,

we agreed.

Given this motivating context, we believe there

is an opportunity for a framework that helps the

programmer and the recruiter understand

debugging as a process from a fundamental

perspective—one that quantifies actions taken by

an individual in a concrete and meaningful way.

Our project aims to fill this void. doBetter

deBugging is a general platform deeply rooted in

the fundamental facts of code which seeks to bring

a meaningfully automated and quickly

comprehensible analysis to debugging interviews.

1.2 High-Level Product Description

doBetter deBugging is a fully self-contained

web platform for asynchronous candidate

evaluation in technical software engineering

recruiting. The product is targeted toward the

technical software engineering interview where a

candidate is given a programming task to solve.

Typically, an interviewer is on the phone while the

candidate completes the task. doBetter deBugging

monitors the interaction so full-time employees no

longer have to. For a narrated video demo of the

product, please visit this link.

From a more detailed system architecture

perspective, the product is composed of 3 main

components: the interaction interface, the data

pipeline, and the visualization library. The

doBetter deBugging

A Custom Data Pipeline and Analytics Engine

for Generating Insights from Online Debugging Interviews

Amit Gupta, Hannah Walsh

Changwook Shim, David Wu

Corresponding Author: akgupta@wharton.upenn.edu

Team-15

Advisor: Dr. Sangeeta Vohra

https://www.youtube.com/embed/82ITFJS1xUo
mailto:akgupta@wharton.upenn.edu

CIS 400 Submission – Final Report – April 20, 2020

2

interaction interface (Appendix A1) provides a full

programming environment for the candidate

equipped with standard debugging tools like

dynamic testing and console outputs. The data

pipeline tracks the candidate’s edits with a custom

server and connects the candidate's interactions to

our analytics engine. The visualization library

interactively summarizes the candidate's

performance in a variety of time series, static, and

overall metrics (Appendices A2-5).

The system allows the interviewer to more

efficiently engage with the candidate's

performance in an asynchronous manner.

Furthermore, by focusing on debugging

performance rather than algorithms trivia, the task

is more directly representative of a software

engineering (SWE) job.

1.3 Value Proposition to Stakeholders

doBetter deBugging is the technical interview

platform for recruiters that understands how

candidates interact with code. By replacing the

traditional algorithms interview with a debugging

exercise, our platform tests for a skill which we

believe is much more relevant to employee

effectiveness.

Our platform goes deeper than the traditional

questions like "How long did it take?" and "Did it

work once submitted?". The analytics engine dives

way beyond that to quantify the whole interaction

in terms of test cases and interpretable metrics that

tell the whole story in a few interactive graphs and

charts. These analyses are rooted in fact and

transparency; the platform allows the interviewer

to quickly follow any data point right down to the

exact state and second of the candidate's exercise

that created it.

While listening to an interview happen live

allows similar detailed observation, doBetter

deBugging allows the interviewer to quickly parse

through the idle time and reach the relevant

moments. Our platform short circuits the painful

scheduling required to conduct these phone

screens. By allowing the employee interviewer to

evaluate the candidate asynchronously, doBetter

deBugging saves countless hours of valuable

company resources.

There are two main stakeholders in the

recruiting pipeline: the candidate and the company.

For this analysis, we take the candidates to be

students as this is the group with which we have

exceptional familiarity and context. For the

company, we use the full time engineers who

interview as a proxy as they have the most direct

control over the interview process and are the ones

eventually managing new hires.

Students have long lamented the algorithms

interview and often spend so much time preparing

for interviews that they do not even realize what

the actual job is like: "Debugging code seems more

representative of day-to-day work in SWE rather

than solving Leetcode-style [algorithmsss

questions." says one Turing Scholar from UT

Austin.

One Facebook interviewer feels that debugging

is "one of the more important skills" for a Software

Engineer and responds to a doBetter deBugging

demo with the following statement: "My current

interviewing process doesn’t do much testing...and

is therefore prone to human error. This tool takes

that error away and also sheds light on the

candidates [sic] ability to think through a bug."

A Google Product Manager points out another

benefit in "that more companies should have the

early stages of the interview funnel/pipeline be

asynchronous and require no effort from humans

on their side." By removing the friction of

scheduling a mutual time for a phone interview and

the hours spent by employees listening to early

stage candidates code, our product accelerates the

early candidate funnel and saves countless

employee hours, according to another Google

employee.

doBetter deBugging is the coding challenge

platform for university students that understands

how they interact with buggy code. Our platform

goes deeper than the traditional questions like

"How long did it take?" and "Did it work once

submitted?". By focusing on fundamental facts,

our analytics target the niche between the

uninterpretable analytics of cutting-edge research

and handholding from a skilled observer. doBetter

deBugging does not claim to rate performances as

good or bad but instead summarizes facts on the

interaction in a visually compelling, succinct

report.

For the student programmer, we offer a way to

understand interactions with buggy code,

providing concrete metrics around what is a

generally nebulous process. Our application

CIS 400 Submission – Final Report – April 20, 2020

3

provides the accompaniments of any traditional

programming platform, so users experience a

natural programming flow. From this, though, our

application goes further and generates a

quantitative analysis around steps you took to

locate the bug, test cases you wrote to make the

issue concrete, and how you shifted your focus

through time. This fundamental analysis, as

compared to currently researched black box

machine learning, offers the programmer a way to

understand the quantification beyond just a generic

score.

For recruiters, we offer a way to screen

candidates that is representative of the job. Our

platform allows employees to be uninvolved in the

code screen process, saving countless hours of

valuable company resources. Current state of the

art recruiting tools simply output duration, the final

code, and the raw number of test cases passed. Our

debugging library and analytics dive way beyond

that to quantify the whole interaction in terms of

test cases and interpretable metrics that tell the

whole story in a few graphs and charts. Given the

immense costs of recruiting quality talent, even a

slight improvement in signal-to-noise ratios in

interviewing presents a worthwhile investment for

corporations. By bringing in better debuggers,

hours spent debugging (and thus costs) will go

down.

2 Related Work

Ko and Myers (2004) show that bugs occur

when a programmer experiences a cognitive

breakdown or when they have misconceptions

regarding language constructs [4]. In fact,

Ahmadzadeh et al. (2005) claim most bugs are a

result of something that is missing in the code

while Simon and Hanks (2007) argue that the

source is misinformation about what existing code

actually does [1, 6]. In either case, the programmer

has cognitively disconnected from the facts. A

psychological gap exists between the scientific

source of bugs and how programmers tend to

approach debugging. By repeatedly identifying

ways in which programmers approach debugging

as a process, we build on existing debugging

research in a practical and tangible application.

2.1 Competition

From a business perspective, we focus on

related work in the candidate evaluation industry.

To understand this, we take three industry leaders

in slightly different verticals as a lens for the

landscape.

CoderPad (https://coderpad.io/ - "CoderPad

helps you hire better candidates faster, with an

intuitive live programming environment") is an

online coding interview software used by many

firms (e.g. Facebook and Citadel). The system

requires an employee to conduct the interview.

They also log every keystroke made during the

interview and act as a tool for interviewers rather

than an analysis platform. Every keystroke made

during the interview, though, is not a data source

from which programmers or interviews can

meaningfully infer information.

HackerRank (https://www.hackerrank.com/ -

"Practice coding, prepare for interviews, and get

hired") is an online coding interview software used

by many firms (e.g. Amazon and Two Sigma) that

also aggressively advertises training problems to

students. The system allows you to create an

account, track your progress on training questions,

and even suggests practice modules focused on

certain skills. This training component

differentiates it as a go-to spot for interview

preparation (other companies in this vertical

include LeetCode). Their main feedback metric is

the percentage of test cases passed, and they

provide companies with your completed code. For

the developer, they offer by far the most intuitive

testing environment, exposing custom input and

console output.

Triplebyte (https://triplebyte.com/ - "Get offers

from top tech companies") is a relatively new

player in the industry focused on the prescreening

of applicants through a common certification

program used by a few firms (e.g. Uber and

Robinhood). They bring an innovative value

proposition to the recruiter with a model that

displaces employee hours spent interviewing. They

replace algorithmic interviews with screening

questions more relevant to job performance like

devOps and application management (we went

through Triplebyte's certification process to gain

insight). They then certify applicants as meeting a

baseline skill level and forward resumes directly to

https://coderpad.io/
https://www.hackerrank.com/
https://triplebyte.com/

CIS 400 Submission – Final Report – April 20, 2020

4

companies. Triplebyte has a monetization model in

the vertical most similar to what we are targeting.

2.2 Market Research

Asynchronous candidate evaluation presents a

market opportunity in that candidate pipelines

continue to grow wider with the explosion of

Computer Science graduates and employees are

continuing to spend more time interviewing

candidates. For a sense of scale, Google itself

receives 2 million applications every year [5]. In

fact, the Bureau of Labor Statistics puts 10 year

projected growth for software developer

employment at 21% (far above national averages).

However, the cost of this time to companies is

dwarfed by the amount of time software engineers

lose to debugging every year.

doBetter deBugging provides a solution on both

of these vectors – one which has eliminated the

bulk of the technical risk and has soft validation of

product market fit from key stakeholders. By being

fully self-contained, the product is amenable to any

company with a software engineer hiring need

from small startups to Fortune 100 tech firms. By

screening early on for debugging talent, companies

can increase their productivity. As evidenced by

the sheer size of the industry and the problem, even

an incremental improvement in the signal-to-noise

ratios of interviewing yields large gains for the

firms. Every year, a new recruiting technology

enters the market, but few to none offer the

continuing value that doBetter deBugging does

through on job performance improvements.

Willingness to spend in this area is evidenced

from a recruiting perspective by the wide variety of

available software solutions and emerging

solutions gaining traction. HackerRank, for

example, charges $3,000 a year for a single

interviewing account which is limited to 30

candidate screens a month. No offering we

currently see in the market, though, has a natural

programming experience for the user and creates

digestible insights for performance understanding.

This is our unique value proposition.

Current platforms either facilitate employee-led

interviews or attempt to displace the employee-led

interview. In industry, there has been a shift to more

automated recruiting tools as the number of

applications explodes. The driving factor here is

that the employee hours spent interviewing

candidates are neither cost effective nor scalable.

Nearly all resume screens for large technology

companies are automated, which further

demonstrates a willingness to automate early steps

in the candidate pipeline. Overall, this industry

consists of an existing market.

The industry is open to iteratively improved

solutions. To understand the willingness to try new

tools in the candidate pipeline, we return to the

earlier number: $156B in yearly wages lost on

debugging time. An improvement from 75% to just

70% of SWE-hours spent debugging, then,

amounts to a $10.4B gain in productivity. This

improvement is the hook of our marketing pitch.

Where we believe we are uniquely positioned to

enter this industry is through our understanding of

the student population. Recruiting software is one

of the initial points of contact in the recruiting

relationship between a candidate and a company.

Attrition here is a particularly harmful loss to the

candidate pipeline for companies as they never get

to evaluate candidates who do not complete such

code screens. Fewer applicants means fewer

quality applicants and less healthy candidate

pipelines. As such, we believe that demand in this

industry is driven by student preference for

platforms. One of the major determinants of

student platform preference is transparency.

HackerRank exposes a practice environment

which is immensely popular with students.

Triplebyte offers 3 attempts at the same quiz. These

practice environments grow the user bases of these

platforms. As with any two-sided marketplace,

user base is at the heart of efficient performance.

As such, we turn to understand student demand

for debugging understanding at the university

level. For students to be willing to be assessed on

this metric, they will first need to believe that this

is relevant to industry and then be taught

techniques. The first is evident from experience

and the nature of industrial software engineering,

so we turn to the second. See The full survey can

be found in Appendix E2.

Societal Impact for more detail on this.

doBetter deBugging is based on a true dual

value proposition, offering understanding to

students and improving signals for recruiters with

cost effective candidate pipelines.

CIS 400 Submission – Final Report – April 20, 2020

5

3 Technical Approach

doBetter deBugging is a webapp on which

evaluators and candidates can conduct debugging

software engineering interviews asynchronously. It

is built on a React JS frontend with a Django

backend and SQLite database. It consists of the

four components listed below.

The interaction interface draws from the buggy

code base to display 15-30 line buggy code

examples to the user. When the user makes any

edits, the data pipeline notes these changes and

stores them in the database for later analysis. After

the user finishes making edits and submits the

exercise, the visualization library displays insights

and analysis on the interactions.

3.1 Buggy Code Base

The buggy code base is a collection of 15

complete buggy code examples. Each example is

no more than 30 lines long and includes a problem

statement that tells the user what the code should

be implementing and expected output in various

input scenarios. Early examples are all presented in

Python. All examples come with a few public tests

that will be displayed to the user and a number of

private tests that we will use for analysis. No more

examples are needed for testing the functionality

and proof of concept of the platform, but we have

a list of over 100 bugs that we can implement if

needed. These are prepared in a structured way and

compatible with our databasing.

We built this component so there was no onus

on the evaluator to supply the code they want their

candidate to work on. In general, though,

companies like to use their own interview

questions which will often be geared toward the

field of the company. While doBetter deBugging is

built around debugging, it can also handle general

coding problems. The buggy code base exists so

evaluators have the option to select a specific type

of bug if they do not wish to supply their own.

3.2 Interaction Interface

This component displays two text editors to the

user, one that contains a code example from the

buggy code base and another that contains the

associated public test cases. The user is able to

make edits to both the code and the test cases.

While editing, they can choose to run their updated

test cases (or just one test to see more detailed

output) on their updated code. The output of the

test run is displayed next to the second text editor.

In addition to the programming components, we

also offer the user the ability to opt in to our

speech-to-text feature. To do this, we display an

alert within the Interaction Interface that asks them

if they would like to opt in to voice recording. If

they do, we display a full text transcript of what

they said during the interview in the Visualization

Library. A fully functional version can be seen in

this video.

A challenge we ran into building this component

was effectively mimicking a standard development

environment. In addition to allowing users to write

their own unit tests, we wanted them to be able to

debug with console output from those tests (which

is something other asynchronous platforms often

do not provide). To do this, we had to store the

candidate’s code as text, send that text to the

Django backend, load the text as a Python module

and run the test cases on it. Since the output of the

test runs was sent to the console, we had to import

Python’s OS module to redirect it to a string we

could send back to frontend. This took us a while

to work out, but, based on the evaluations

discussed in Interaction Interface, it made doBetter

deBugging feel like a standard programming

environment.

3.3 Data Pipeline

When the candidate makes any edit within the

Interaction Interface, whether it is to the test cases

or the buggy code example, the updated version of

the code is saved to our database under the unique

ID for this user’s session and a timestamp. Each of

these code snapshots will be fetched later using this

session ID for analysis.

Analysis is done using different code snapshot

listeners, where a listener is a function that takes in

a snapshot and outputs information associated with

it, like whether or not it statically checks or how

many test cases it passes. We iterate through all

snapshots one by one and run all our listeners on

them. We compile all the data gleaned from this

into both an analysis of what and how the user did

over time and an individual analysis on each code

snapshot. We send all this information back to

frontend in a JSON format that is compatible with

https://www.youtube.com/embed/82ITFJS1xUo

CIS 400 Submission – Final Report – April 20, 2020

6

the graphing components we use in the

Visualization Library.

In addition to the data we collect from candidate

edits, we also send the file containing their voice

recording (assuming they opted in) to the data

pipeline. Never storing this file itself anywhere, we

translate it to text using Google Cloud’s Speech-to-

Text API. After getting the raw text back, we go in

and add timestamps and punctuation to it so we can

effectively display it to the evaluator later.

3.4 Visualization Library

This component displays the information we

processed using the Data Pipeline for the evaluator

to see. It consists of four different tabs. The Time

Series Analysis tab can display graphs that provide

timestamped data points on six different metrics:

Hidden Tests, User Tests, Print Information, Test

Quality, Test Correctness, and Cheat Checking.

Clicking any of the buttons within the tab will

change the metric the evaluator is looking it.

Clicking a data point on a graph will take an

evaluator to the Snapshot Analysis tab, where they

can see the code the candidate was working on at

that moment in time. This tab allows evaluators to

flip back and forth between candidate’s code

snapshots, filter out snapshots that do not statically

check, and, for each snapshot, we provide a static

analysis detailing how many test cases this

snapshot passed.

The third tab is the Speech Transcript. Here we

display the text we got from the Google Cloud API.

Each word in said text is formatted to be a button,

so when the evaluator clicks on it, they can see the

code snapshot the candidate was working on when

they said that word. There is a button that allows

the evaluator to view the same snapshot in the

Snapshot Analysis tab as well.

The fourth and final tab of the Visualization

Library is Individual Insights. Here we display a

pie chart for the evaluator detailing how long the

candidate spent thinking (or sitting idle), running

code, writing tests, and writing print statements.

Based on whatever the candidate spent the most

time doing, we highlight a small paragraph

explaining what that may or may not imply about

the candidate’s debugging style.

A fully functional version can be seen in this

video.

3.5 Cost and Revenue Models

doBetter deBugging at its core is a SaaS

(Software-as-a-Service) play. Simple competition-

based pricing allows a quick way to benchmark

revenues. HackerRank, for example, charges

$3,000 a year for a single interviewing account

which is limited to 30 candidate screens a month.

CoderPad which offers decidedly less functionality

still charges $750 a month if you interview up to

120 candidates (https://coderpad.io/pricing). We

see no need to charge less than our competition as

we hold no competitive advantage from a costing

perspective to undercut them with. Instead we are

proposing a value add for no increased cost. More

specifically, in our vertical, tiered pricing makes

the most sense and is what you see across the B2B

SaaS sector. Monthly estimates are as follows:

• 1-week free trial

• $50 Up to 5 interviews

• $250 Up to 25 interviews

• $1,000 Up to 100 interviews

• $2,500+ for a custom contract

Variable costs are essentially negligible on a per

use basis due to the lightweight interface and

availability of flexible compute. Marking down

5% variable costs on revenue offers a conservative

cover for maintenance and other server needs. Find

a full breakdown in Appendix B.

Customer acquisition costs will be the greatest

concern as we rollout. We have relatively little

information around what it will take to close deals.

As such, offering free trials to small companies will

be a low friction way to gain early customers.

Ideally, doBetter deBugging entrenches itself with

growing companies and allows those customers to

grow our revenue as they grow. Our projections

suggest the first two months of revenue from each

new customer will go to covering acquisition costs.

From there, the stickiness of the product will have

to prove itself but will provide nearly pure profit.

Before all that though, our cost model sees a few

constraints. While the current demo is compelling

it lacks some key functionality which would be

necessary to begin selling. First, the system needs

a security upgrade. Any system which has users

inputting code needs to be locked down from code

injection. Furthermore, privacy concerns for the

users will need to be addressed through encryption

and other standard measures. Optimizations for

different screen sizes are also missing. User

https://www.youtube.com/embed/82ITFJS1xUo
https://www.youtube.com/embed/82ITFJS1xUo
https://coderpad.io/pricing

CIS 400 Submission – Final Report – April 20, 2020

7

License and other legal agreements will need to be

put into place, as well. Lastly, the platform will

need to have a user account management system

built for both interviewers and candidates. While

these steps seem scary, industry-standard solutions

exist for each of these and can be implemented

through outsourcing for under $30k and within 12

weeks, see Appendix C for details. Securing 3

customers in the 1-100 employee range at $250

each in monthly recurring revenue (MRR) and 3

slightly larger companies at $1,000 MRR each

gives just over 8 months to break even on the

additional investment required. See Appendix D

for more details.

Ending with a brief statement explaining

doBetter deBugging as a company instead of just a

product, we turn to a data play. While the current

value proposition of the product is compelling, as

we collect data on an increasing number of

candidate interactions and interviewer evaluations

(pass or reject), we build an immensely valuable

dataset to further automate this process. doBetter

deBugging is the time-efficient, data-driven

approach to recruiting that focuses on the relevant

skills.

4 Evaluation

4.1 Buggy Code Base

The effectiveness of the buggy code base relies

on how extensible it is, how well it integrates with

the interaction interface and data pipeline, and how

helpful it is to evaluators. We designed the code

base under a fully general yet well-defined

structure. This has allowed us to add to the code

base easily and will allow us to fetch a specific kind

of bug for a user.

With respect to integration, each buggy code

example is based on a predetermined template.

This has made it very straightforward to load an

arbitrary example into the interaction interface for

any given session. Furthermore, since all examples

are structured identically due to the template, our

code listeners have been generalized to work on all

snapshots. Although small, the code base provides

enough example code for users to interact with the

system in a meaningful way. In the event we run

many repeat tests with the same users, we have a

list of over 100 additional bugs. By creating a

structured template and standard implementation

for these examples, writing and testing a new code

example takes under 30 minutes.

To evaluate how useful our buggy code base is

to evaluators, we would need to perform a long-

term study to see how different companies use it (if

at all) and then ask them to evaluate its

completeness and usefulness. Our plan is explained

in depth in Long-Term Studies.

4.2 Interaction Interface

To evaluate the interaction interface, we turned

to those who would be using it: students. Since the

interaction interface is entirely used by the

candidate, we sent a survey out to 30-40 different

computer science majors at various top universities

who have interviewed for software engineering

positions. As students who have had been through

the interview process ourselves, we identified our

three main pain points in the standard interviewing

process: limited development environments,

complicated interfaces, and irrelevant questions.

Since we are trying to offer an alternative to the

current process, we asked students to evaluate

numerically on each of those metrics. We also

asked for them to evaluate our system overall and

provide qualitative feedback, since our pain points

may not be everyone’s pain points.

As seen in Figure 1 above, the students and

graduates who responded to our survey found our

system to be comprehensive (average rating 4.4/5),

easy to understand (4.3/5), and highly relevant

(4.4/5).

The feedback above indicates that we mostly

alleviated the pain points we had identified.

Figure 1: Quantitative results from the student survey

(metrics rated out of 5).

CIS 400 Submission – Final Report – April 20, 2020

8

However, as implied by the overall score, there was

still room for improvement, so we turned to the

qualitative feedback to see what we needed to

address (fortunately, we had sent his survey out in

February, so we had time to address concerns).

In response to our question “what functionality

seems to be lacking or missing?”, a few students

expressed concerns about cheating (“I personally

prefer in person interviews because cheating is a

major concern.”) and about not being able to

explain their thought process to evaluators (“I think

it is important to hear the thought process one goes

through, even if they don’t get the right answer”.)

To address both of these concerns, we added both

the Speech Transcript and the Cheat Checker to the

Visualization Library. The Speech Transcript gives

an evaluator the ability to read a candidate’s

thought process (which they would have to voice

out loud in a traditional interview as well. The

Cheat Checker shows all copies and pastes the

candidate did in in their interview, and highlights

pastes that come from foreign sites to minimize

cheating.

We have not yet followed up on these additions

with those students, but we believe the positive

feedback we received both in Figure 1 and in some

qualitative responses indicate that potential

candidates like the product. (“I think this is a great

idea and I really liked the snapshot analysis feature,

good job!”, “I think some environments make it

confusing or even impossible to run my own test

cases, and it looks like the environment in this

demo really focuses on making that an easier

experience.”, “It’d make a good addition to a

repertoire of test [sic] to run on candidates, makes

it feel more holistic.”)

The full survey can be found in Appendix E1.

4.3 Data Pipeline

For the data pipeline to be effective, it must be

faster than the current industry standard. One of

our major design goals was improved process

efficiency. As such, we ran repeated simulations on

the end-to-end time it takes to conduct and evaluate

an interview through our platform. This gives an

estimate of how much time evaluators would save

by switching to our system.

 Said simulations consisted of each member of

our team pretending to be a candidate and

completing a debugging exercise on doBetter

deBugging. After completing the exercise, we each

set a timer to see how long the data from the

pipeline took to process, and how long it took us to

comprehensively review all the tabs in the

Visualization Library. We each did this twice,

opting in to the Speech to Text feature the first time

and opting out the second time. Below in Figures 2

and 3 are the results.

Assuming that a software engineering phone

screen takes one hour, our system performs much

faster on average. This does not even include gains

from not having to schedule interviews! Note that

since we as developers are familiar with the

platform, we may have moved through the

Visualization Library quickly, but even if you were

to add an extra 5 or 10 minutes to the process,

doBetter deBugging is much faster under the

assumptions we made.

The numbers in Figures 2 and 3 are averages

from the eight simulations we ran, please see

Appendix F for the raw data.

Figure 2: Simulations done after opting out of the

voice recording feature.

Figure 3: Simulation done after opting in to the voice

recording feature.

CIS 400 Submission – Final Report – April 20, 2020

9

4.4 Visualization Library

The function of the visualization library is to

display a meaningful summary of a user’s

interactions and our analysis in a digestible, yet

comprehensive format. So, to evaluate it, we

turned to the people who would be using it:

interviewers. We created another survey like the

one used for the Interaction Interface but this time,

we sent it to stakeholders at both Google and

Facebook. We asked them to rate doBetter

deBugging on four metrics: completeness of data,

digestibility, relevance, and how pleased they

would be if their company began to use it. When

directly asked how happy individuals would be if

their company began to use our product for

candidate evaluation, professionals responded with

an average rating of 4 out of 5. The full results from

the survey are displayed below in Figure 4.

Qualitative feedback was very positive as well:

“from a product perspective, allowing me to skip

to just relevant changes in the code based on

whether they got a test right or wrong was

awesome!” and “sheds light on the candidate’s

ability to think through a bug (which IMO [in my

opinion] is one of the more important skills in a

SWE (Software Engineer).”.

Like the student survey, one stakeholder was

concerned about a candidate not being able to voice

their thought process (“The interviewee could want

to add insight with a voiceover, to explain why

they’re doing a certain thing.”), so the addition of

the Speech Transcript also addressed stakeholder

concerns.

The full survey can be found in Appendix E2.

5 Societal Impact

In addition to the feedback we requested on the

system functionality itself, we also asked for

people to voice their ethical concerns. Many of our

classmates noted that there is already a great deal

of bias (both conscious and unconscious) and

cheating that happens within the traditional

software engineering interview process. To truly be

considered an ethical product, we cannot ignore

those existing issues. If we want to offer a better

alternative, it must be better in all ways – so we

attempted to tackle these issues as well.

With respect to bias, doBetter deBugging has the

potential to completely anonymize the interview

process. By converting speech to text with an opt

in feature, an evaluator can interact with a

candidate without knowing their name, gender,

race, or even what their voice sounds like. In fact,

since we use Google Cloud to make this possible,

doBetter deBugging can interview candidates in

almost any language as well, since the speech to

text feature supports over 120 different languages.

After getting the text, we can use Google’s

translation API to translate it into whatever

language the evaluator wishes to read in. We have

personally tested the feature with English, Chinese,

Korean and Spanish, and all worked seamlessly. As

long as the evaluator goes into the interview

without knowing anything about the candidate, the

interview itself will provide no information about

them. By completely anonymizing the interview,

we can actually eliminate both conscious and

unconscious bias from the interview process.

Candidates can only be judged on their ability to

solve the problem, giving qualified minorities the

fair chance they deserve.

To tackle the issue of cheating, we created the

Cheat Checker feature to track copies and pastes

done by candidates. While not a perfect indication

as to whether or not someone cheated during an

evaluation, it can highlight red flags to keep

evaluators aware.

Lastly, in addition to tackling current societal

problems, we believe that doBetter deBugging’s

emphasis on debugging may also bring about

social good for both universities and tech firms.

Penn CIS faculty Dr. Arvind Bhusnurmath, when

asked about the presence of debugging in

education, said that the CIS curriculum at Penn

offers no courses that teach students how to debug.

Figure 4: Quantitative results from the stakeholder

survey (metrics rated out of 5).

CIS 400 Submission – Final Report – April 20, 2020

10

He believes that we should teach students about

debugging techniques and the debugging process

while they are still at college, as it is a non-trivial

skill that is a very important part of a computer

science student’s future career. Professor Steve

Zdancewic of CIS 120 agreed that the presence of

debugging in the introductory CIS curriculum is

lacking. Through a product that encourages

companies to evaluate students on their debugging

ability (but supports all coding exercises of all

types), doBetter deBugging may be able to help

emphasize the relevance of debugging in both

university and industry.

6 Discussion, Lessons, and Future Work

6.1 Discussion and Lessons

In designing, implementing, and building this

system, we went through the full life-cycle of

development, including background research,

product design, and testing. doBetter deBugging

was inspired by a real-world friction. Because of

this concrete motivation, the process of choosing

what features to implement and how to allocate

time was fairly natural. By considering the users’

needs throughout the design and implementation

process, we arrived at a fully functional product

which can provide value to all of our stakeholders.

Along the way, we often were faced with a

choice between a quick workaround and a longer

design process to build a system the right way.

Time and time again we chose the latter to avoid

technical debt and build an understanding of how

our system might scale. As we continued to

encounter challenges like running arbitrary user

code, connecting spoken words to a specific

snapshot of code, dynamically generating graphs,

or even presenting the work to stakeholders, this

principled and generalizable design approach

proved rewarding. The system and plans were

often updated and modified based on feedback, but

the overall framework and goals remained

constant.

We started by generating a large number of

potential use cases for our product before focusing

on the one we were uniquely positioned to tackle.

In other words, not every technical challenge is

worth solving. We solved many which were core to

the outcomes and functionality we desired, but we

also chose not to solve others (like security) as they

were not unique to our project and existing work

can be leveraged to address those concerns. Such

an exercise allows for careful selection of the

correct application to focus on in the earlier stages

of a project. Now, we speak toward longer term

plans.

6.2 Long-Term Studies

A lot of this project is designed on real-world

applications and improvement over existing

processes. In order to validate product-market fit as

well as technical effectiveness, we require a longer

term study. This study is composed of two key

phases. The first is customer acquisition. Acquiring

customer provides an early litmus test for the

quality of our product and the reality of the issues

we propose solving. Paying customers putting

money behind the strong verbal support we’ve

already seen and customer conversion metrics will

inform which parts of our project were successfully

and meaningfully implemented. The Cost and

Revenue Models section has spoken more to this.

The second phase is tracking customer retention

and tangible impact of candidate pipelines – both

in terms of efficiency with candidate volumes and

quality of hiring signal. The latter is most critical

as we will have to assess the on-job performance

of candidates hired with our focus on debugging

and through our asynchronous interview insights.

Key performance metrics to track will certainly

include the following: time spent per candidate

interviewed, total time spent per candidate hired,

average time to promotion of candidate, as well as

the firm’s own performance reviews. This will take

the form of constant customer relations with the

hiring managers and on-job managers who will be

asked to provide regular feedback on their

candidates. These individuals have the closest real-

world connection to the problem we have

attempted to address in this project and, thus,

represent the critical testing ground for the larger

impact and evaluation of our project.

6.3 Takeaways

Building a system for users presents a unique

technical challenge in that there is a tradeoff

between perceived feature completeness and speed

of development. As such, we spent a fair bit of time

at the outset of the project designing a scalable and

robust framework upon which to build the project.

CIS 400 Submission – Final Report – April 20, 2020

11

This has led to heavily modularized code and

development flows which allow for feature and

listener addition with ease. Each feature or analysis

tool added is isolated from others and can fail

safely. The work completed and demoed above

lays the foundation upon which we can continue to

innovate as the project develops. The user

experience seamlessly enables debugging while

tracking the data we need to automatically provide

the mocked visualizations.

 The code snapshot listeners tell a unique and

digestible story about how a user interacted with a

snippet of buggy code. From this story, users and

recruiters alike are able to draw their own

conclusions about the user’s debugging ability. The

stories the listeners tell and the conclusions

individuals can draw form a richer and more

informative analysis than state of the art online

programming competitors.

Students use the story that our analysis tells to

better prepare for both interviews and industry

itself. Recruiters also use this story to better

evaluate candidates without spending employee

hours on code screens. Our project is built on a

unique understanding of the student population,

transparency as a core value, and justifiable

fundamental insights in the billion-dollar industry

of tech talent acquisition.

References

Ahmadzadeh, Marzieh, et al. “The Impact of

Improving Debugging Skill on Programming

Ability.” Innovation in Teaching and Learning in

Information and Computer Sciences, vol. 6, no. 4,

15 Dec. 2005, pp. 72–87.,

doi:10.11120/ital.2007.06040072.

Assaraf, Ariel. “This Is What Your Developers Are

Doing 75% of the Time.” Coralogix, 20 Feb. 2019,

coralogix.com/log-analytics-blog/this-is-what-

your-developers-are-doing-75-of-the-time-and-

this-is-the-cost-you-pay/.

Britton, Tom, et al. “Reversible Debugging Software.”

University of Cambridge.

http://citeseerx.ist.psu.edu/viewdoc/download?doi

=10.1.1.370.9611&rep=rep1&type=pdf.

Ko, Andrew J., and Brad A. Myers. “A Framework and

Methodology for Studying the Causes of Software

Errors in Programming Systems.” Journal of Visual

Languages & Computing, vol. 16, no. 1-2, 1 Aug.

2004, pp. 41–84., doi:10.1016/j.jvlc.2004.08.003.

Shain, Susan. “2 Million People Apply to Work at

Google Each Year. Here’s Why.” Business Insider,

14 Sept. 2014, businessinsider.com/2-million-

people-apply-to-work-at-google-each-year-heres-

why-2014-9.

Simon, Beth, and Brian Hanks. “First Year Students'

Impressions of Pair Programming in CS1.”

Proceedings of the Third International Workshop on

Computing Education Research - ICER '07, 15 Sep.

2007, doi:10.1145/1288580.1288591.

https://www.tandfonline.com/doi/full/10.11120/ital.2007.06040072
http://coralogix.com/log-analytics-blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/
http://coralogix.com/log-analytics-blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/
http://coralogix.com/log-analytics-blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf
https://faculty.washington.edu/ajko/papers/Ko2004SoftwareErrorsFramework.pdf
http://businessinsider.com/2-million-people-apply-to-work-at-google-each-year-heres-why-2014-9
http://businessinsider.com/2-million-people-apply-to-work-at-google-each-year-heres-why-2014-9
http://businessinsider.com/2-million-people-apply-to-work-at-google-each-year-heres-why-2014-9
https://dl.acm.org/citation.cfm?id=1316455

CIS 400 Submission – Final Report – April 20, 2020

12

Appendices

Appendix A1. Candidate View

Appendix A2.1. Time Series: Our Tests

CIS 400 Submission – Final Report – April 20, 2020

13

Appendix A2.2. Time Series: User Tests

Appendix A2.3. Time Series: Print Info

CIS 400 Submission – Final Report – April 20, 2020

14

Appendix A2.4. Time Series: Test Quality

Appendix A2.5. Time Series: Test Correctness

CIS 400 Submission – Final Report – April 20, 2020

15

Appendix A2.6. Time Series: Cheat Checker (premium)

Appendix A3. Snapshot Analysis

CIS 400 Submission – Final Report – April 20, 2020

16

Appendix A4. Speech Transcript (premium)

Appendix A5. Individual Insights

CIS 400 Submission – Final Report – April 20, 2020

17

Appendix B1. Standard Unit Economics

Appendix B2. Premium Unit Economics

CIS 400 Submission – Final Report – April 20, 2020

18

Appendix C. Time and Cost to Develop Remaining MVP Features

Appendix D. Targeted Growth Strategy

CIS 400 Submission – Final Report – April 20, 2020

19

Appendix E1. Full Candidate Survey

CIS 400 Submission – Final Report – April 20, 2020

20

Appendix E2. Full Evaluator Survey

CIS 400 Submission – Final Report – April 20, 2020

21

Appendix F. Simulation Raw Data (times measured in seconds)

With Voice Simulation 1 Simulation 2 Simulation 3 Simulation 4

Data Pipeline 162.03 84.13 0 16

Time Series 127.64 82.69 70 65

Snapshot Analysis 167.01 67.12 117 91

Speech Transcript 96.03 68.08 123 104

Individual Insights 19.63 30.83 6 6

Without Voice Simulation 5 Simulation 6 Simulation 7 Simulation 8

Data Pipeline 2.3 1.48 0 0

Time Series 144.32 86.95 64 40

Snapshot Analysis 195.03 81.48 116 70

Speech Transcript 0 0 0 0

Individual Insights 10.02 24.99 6 6

	1 Motivation and Functionality
	1.1 Background
	1.2 High-Level Product Description
	1.3 Value Proposition to Stakeholders

	2 Related Work
	2.1 Competition
	2.2 Market Research

	3 Technical Approach
	3.1 Buggy Code Base
	3.2 Interaction Interface
	3.3 Data Pipeline
	3.4 Visualization Library
	3.5 Cost and Revenue Models

	4 Evaluation
	4.1 Buggy Code Base
	4.2 Interaction Interface
	4.3 Data Pipeline
	4.4 Visualization Library

	5 Societal Impact
	6 Discussion, Lessons, and Future Work
	6.1 Discussion and Lessons
	6.2 Long-Term Studies
	6.3 Takeaways

	References
	Appendices
	Appendix A1. Candidate View
	Appendix A2.1. Time Series: Our Tests
	Appendix A2.2. Time Series: User Tests
	Appendix A2.3. Time Series: Print Info
	Appendix A2.4. Time Series: Test Quality
	Appendix A2.5. Time Series: Test Correctness
	Appendix A2.6. Time Series: Cheat Checker (premium)
	Appendix A3. Snapshot Analysis
	Appendix A4. Speech Transcript (premium)
	Appendix A5. Individual Insights
	Appendix B1. Standard Unit Economics
	Appendix B2. Premium Unit Economics
	Appendix C. Time and Cost to Develop Remaining MVP Features
	Appendix D. Targeted Growth Strategy
	Appendix E1. Full Candidate Survey
	Appendix E2. Full Evaluator Survey
	Appendix F. Simulation Raw Data (times measured in seconds)

