
Networked

Team Members: Soham Dharmadhikary, Neel Shroff, Nikhil Kokra, Siddarth Sankhe

Faculty Advisor: Swapneel Sheth

Background and Market Opportunity

As automation increases globally, jobs are becoming more and more specialized / creative. Factory
workers, phone operators, cashiers, etc. have been replaced by machines, leaving the more complex
jobs for humans; increasing demand for highly skilled labor goes hand in hand with intelligent
recruiting. The global market for recruitment as it stands today is valued at $5.48 billion, expected
to grow at a whopping 15.8% compound annual growth rate1. Now, recruitment services are
primarily conducted qualitatively, via headhunters and recruitment agencies run by recruiters who
specialize in certain industries. As the world digitalizes, it’s important to take advantage of big data
and find opportunities in employing machines / data analysis to complement recruiters. With this
view, we propose a mix of the incumbent human-centered approach, and a novel data-centered
approach as an improvement upon current recruitment practices.

Our product

Networked is a platform designed to connect employed alumni / recruiters with job-seeking
students. It provides alumni with a clear view of what students from their school are applying to
their company, and allows them to communicate (and refer) those students. It provides students
with a dashboard of alumni that work at their desired company, and allows them to reach out
without ever having to leave the platform. Recruiters on Networked can view all of this activity,
along with a data-driven recommendation system, which classifies students based on attributes
such as GPA, experience (quantifying using number of previous internships), major, interests, skills,
etc.. The goal of the platform is to make the referral process easier / more transparent, and to use
accumulated data to assist recruiters.

Value proposition

Our project seeks to solve a problem many students face every year. As internships become more
and more competitive, it is increasingly difficult to get in touch with alumni and build meaningful
relationships. To help this, we hope to create NetWorked, which will be able to more intelligently
match alumni, many of whom are already looking for people to connect with, with students who are
hoping to get hired at their companies. We will create a system that allows alumni to refer students,
after entering their preferences for potential interns/new-hires. Students can enter their resumes,
GPAs, classes taken, and more, and we will allow alumni to match with students most suited to their
needs. Overall, we hope to make the recruiting process more transparent, simple, and meritocratic.

So, our central value proposition is twofold. First, we create an ecosystem in which both students
and alumni have reason to create meaningful connections. This is because each is actively looking to
either find a job or fill a job. This means that there are no extraneous details or processes they have

1https://www.grandviewresearch.com/industry-analysis/recruitment-process-outsourcing-rpo-market#:~:t
ext=The%20global%20recruitment%20process%20outsourcing,factors%20driving%20the%20market%20g
rowth.

to go through in order to get what they are looking for. Second, our platform matches students to
jobs they are most qualified for and likely to be successful at. This saves alumni time, so their
referrals are based on merit and fit instead of arbitrary measures as is true of the status quo.

Stakeholders

Our primary stakeholders are the users of our platform: students and alumni. Our students are
those college students, initially in STEM majors, who are looking for jobs and internships. Many of
these jobs require an explicit referral before a student’s profile is even considered. This
disadvantages many capable candidates that may not be as well connected. To this end, the student
is getting the added value of being able to network directly with alumni that can present
opportunities that they may not otherwise get.

For alumni, the value is twofold. First, many alumni are incentivized to refer candidates to their
firms. If the candidate is offered a position, the alumni may be offered some sort of financial reward.
Our platform allows alumni to find candidates that are most aligned with their companies, and our
ML model helps predict which candidates are best fit to certain position openings. Second, our
platform is an easy way for alumni to help out candidates from their own schools, instead of having
to scour through email listservs, on campus recruiting sessions, and LinkedIn. This makes the
alumni more in control of who gets to join their firms.

Finally, additional stakeholders include school administrations, many of whom actively look to find
their students jobs, and company HR teams. Both of these types of stakeholders are incentivized to
encourage (and even pay for) the services that our platform can offer.

Competition

Our key competitors fall into two categories: direct and indirect. We summarize both below, though
we note that there are no other tools that are geared directly towards enabling referrals for
technology positions.

Our direct competitors are platforms that allow connections between alumni, companies, and
students. Though the market is relatively fragmented, LinkedIn and TalentNest hold the highest
shares, with 18.5% and 22.5% respectively2. At the University of Pennsylvania, we primarily use
Handshake, which is a smaller player that is commonly used among Ivy league institutions. These
platforms largely function in similar ways. Companies post jobs, and students are able to apply
through the platform or they are redirected to a portal. However, these sites focus on the application
process rather than the connections aspect. While LinkedIn allows students to connect with other
alumni, this is not a standardized process and job postings often hold limited information for which
alumni they should get in touch with. For this reason, our platform serves as a good precursor in the
recruiting pipeline. We allow students to get in touch with alumni from their universities before

2 https://www.datanyze.com/market-share/ats--28/handshake-market-share

https://www.datanyze.com/market-share/ats--28/handshake-market-share

they go through the actual application process on one of these sites, improving their odds for
success.

Our indirect competitors largely come from the status quo. While the firms we mentioned above are
primarily geared towards applying to jobs, the firms we consider indirect competitors are other
ways students can connect with alumni and companies. These include informational sessions and
email. These are not truly competitors in the conventional sense, but they can steal away students
and alumni that would otherwise have used our services. We are confident, however, that the value
we add both through our matching process and simple UI makes NetWorked a far more seamless
user experience than attempting to find arbitrary employees of a company. We also believe that our
platform gives a much higher success rate at facilitating meaningful connections, since all our users
are on the platform for the same, specific purpose.

Revenue Model

Our revenue model would be subscription-based. Once at scale, we would introduce multiple
subscription lengths for students and recruiters, e.g., monthly / weekly / annual subscription rates.
The value added for students is potential referrals to companies of their choice, and more attention
from recruiters on the platform. The value added for recruiters is being able to use our data
analytics engine, and interact with applicants on-platform, knowing which alumni referred them.

We could also sell ad space to companies looking for applicants. A lot of the traffic on our platform
will be students looking for jobs, so our web pages are perfect marketing space for companies with
spots to fill.

Our Technology and Further Research
Creating a more scalable database

Description: Our current database makes use of a single Mongo Cluster and a single S3 bucket.
However, to scale our application, we would likely need to horizontally scale our database
implementation to store a larger amount of data and allow for a higher number of concurrent
requests

Analysis:
Currently, we are using a single Mongo Atlas Cluster to store all of our application data. Our
database consists of six collections (user, studentProfile, alumniProfile, chatMessages,
referralStatus, and openPositions). The alumniProfile and studentProfile consists of the data for
each individual alum and student respectively, the referralStatus collection contains the referral
status between every student and the companies they are interested in, and the chatMessages
collection contains every chat message between any pair of students and alumni. Below, we have
included a diagram of the current schema.

We believe that the current implementations of the chatMessages and referralStatus collections
(primarily the former) will run into a number of performance issues as the number of users for our
platform increases. Although we could vertically scale our database to deal with some of these
issues, by using a cluster with higher size, capacity and CPU, the benefits of scaling on a single
machine are bounded.
Since we are storing all of the chat messages in one collection and chat is a feature that multiple
users may use concurrently, the volume of concurrent requests may overburden a single server.
Thus, we think horizontally scaling might be more effective for our purposes. Splitting up our
dataset over multiple different servers will allow us to split up the workload and more effectively
handle concurrent requests. Since MongoDB is relatively easy to scale compared to many relational
database systems, we think using this database system still makes sense if we were to scale our
application. MongoDB provides functionality to easily replicate and shard, which could help with
the horizontal scaling of our database.

One way to shard our collections would be by using the company the alumni works for. Assuming
we have about an equal number of alumni across many different companies, sharding on this key
would help distribute the data pretty evenly. Currently, our chatMessages collection does not have
this field, so sharding by this key would require us to add this field to the collection. For this case,
hashed sharding would probably be a better choice than ranged sharding, especially since our
sharding key does not have any meaningful ordering.
In addition, since the alumniProfile and studentProfile collections are likely to be much smaller than
the other chatMessages and the referralStatus collections, it may make sense to not shard those two
collections to avoid adding too much unnecessary complexity.

MongoDB’s “sharded cluster”3 also makes it easy to combine sharding and replication. In fact, each
shard is deployed as a replica set. A replica set in mongodb is basically a group of processes that
maintain the same dataset. Thus, this sharded cluster makes it possible to handle “Automatic
Failover”, which elects one of the secondary nodes (in a replica set) to become a primary node if the
original primary node disconnects.

Current Schema

3 https://docs.mongodb.com/manual/sharding/, https://docs.mongodb.com/manual/replication/

https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/replication/

Improving performance of our data analytics

Description: Our current database uses a simple K-means clustering algorithm to classify students
into a certain number of buckets. These include buckets for high academic achievers, high
experienced candidates, and more. Then, when an alumni selects students, we can learn which
clusters they favor the most and recommend students that fit their requirements. As more students
join the platform, the clustering becomes more accurate and buckets can be added.

Analysis:
To improve performance of our platform, we’d primarily target the clustering algorithm. Firstly, we
could run the clustering algorithm not on every new addition of a student, but rather every-time the
database changes in a significant enough way for the clusters to change. We could define this
significance via a certain number of students added (e.g. only rerun the clustering everytime the
database size increases by 20%), or via a certain number of changes to student profiles (e.g. only
rerun the clustering everytime 200 student attributes are created / updated). Since we’re not
rerunning clustering everytime a new student is added, new students would be assigned a cluster
based on what cluster centroid they are closest to. Note that this improvement in speed comes at
the expense of some accuracy, because the optimal clusters may change when a new student is
added. In this setting however, students generally fall into 1 cluster quite neatly so we don’t envision
this being a problem.

We are using K-Means as our clustering algorithm, which means that initialization will have drastic
impacts on the end resulting clusters. Thus, our initialization techniques were very important to us.
We wanted the resulting clusters to not only be optimal, but also intuitive. A good non-intuitive
solution wouldn’t be helpful to us, nor would it be helpful to recruiters looking for particular types
of students. To keep the resulting clusters intuitive, we initialized the K-means with what we
thought was a student representative of the groups we thought we should end up with. For example,
an academic but not experienced student would have a high GPA but low number of internships. A
student great across the board would have a high GPA and a lot of internships as well.

We could improve accuracy of the algorithm by manually weighting features according to their
importance. For example, we could have alumni rank the characteristics they find most valuable in
candidates. This could initially translate into a scoring system that serves as a weighting for each
characteristic. This could then help us determine not only which candidates are most similar to
their preferences, but also which clusters they would find most qualified.

In general, there are many other recommender systems that we looked into. For example, Netflix’s4

famous matrix based algorithm that relies on collaborative filtering. Our current system relies on
content filtering, as we store user (in this case alumni) attributes. However, we could instead rely
solely on alumni ratings. This would require each alumni to rate candidates based on how qualified
they believe they are. Using these ratings, much like the Netflix system, we could create a matrix of

4 https://towardsdatascience.com/tensorflow-for-recommendation-model-part-1-19f6b6dc207d

https://towardsdatascience.com/tensorflow-for-recommendation-model-part-1-19f6b6dc207d

alumni and students, with cells corresponding to how each alumni rated a student. Through a
combination of matrix factorization and some form of gradient descent, then, we could calculate the
expected rating for an arbitrary alumni on an arbitrary student. This circumvents any issues related
to manual labelling, but requires both more computation and more initial data for alumni. We see
this as a worthwhile future addition, but ultimately decided against this as our initial model because
it would require too much data at the onset to be useful in any way. That is, if the matrix mentioned
above is too sparse, then the model provides very poor results. As data is built up, however, we may
be able to see increasing returns to this type of model and it could complement our current
K-means approach.

