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1 Introduction 

 
Natural language processing (NLP) is a discipline within artificial intelligence and linguistics that 

is concerned with using computers to build language models that can interpret, analyze, and 

generate human language. More concretely, NLP aims to solve many important and widely 

applicable linguistic tasks such as speech recognition, natural language comprehension, natural 

language generation, and machine translation. Many generations of models have been developed 

to tackle the challenges of NLP. The state-of-the-arts techniques of NLP often leverage the power 

of neural network models. 

Generative Pre-Trained Transformer (GPT) is a series of transformer-based deep learning 

language models that showcased superior performance in text generation, comprehension and 

other NLP tasks. GPT derives its exceptional capabilities from its unique design and massive size. 

There are numerous aspects of GPT worth analyzing, such as its architecture, training, 

performance, as well as real-world commercial applications and ethical implications.  

In this paper, we will explore an extensive set of topics related to deep learning NLP, as well as 

providing in-depth insights into topics pertaining to transformer and GPT models in particular. In 

section 2, we will present the detailed design components of the transformer model and 

demonstrate its significance in deep learning language modeling. In particular, we will investigate 

the role of the attention mechanism in the transformer model. In section 3, we will introduce the 

GPT series model and discuss its architecture in relation to the transformer model. We will analyze 

its training process, fine-tuning, in-context learning, and performance. We will also examine the 

limitations, implications, ethics and risks associated with GPT. In section 4 and section 5, we will 

explore GPT’s future development potential and survey its prospective business applications. 
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2 Transformer 

 
2.1 Overview 

The Transformer is a class of sequence-to-sequence deep learning model widely used in natural 

language processing [VSP+17]. Compared with relatively more traditional sequential models such 

as the recurrent neural network (RNN), the transformer takes advantage of the concept of attention 

and self-attention, which allows the model to directly look at and draw from the states of any 

preceding tokens in the input sequence in a learned way, irrespective of the distance between the 

tokens [VSP+17]. Intuitively, thanks to the attention mechanism, the learned model gains the 

ability to pay more attention to those parts of the speech that are more important to interpreting 

the meaning of the input, regardless of how far away or how ambiguous those parts might be, 

thereby significantly enhancing its performance. Additionally, the transformer model enables for 

a high degree of parallelization, which allows it to train on much larger datasets than before and 

retaining exponentially more parameters [VSP+17]. Though proposed only 4 years ago in 2017, 

the transformer has quickly gained attention from the academic community and establishes itself 

as one of the cutting-edge topics of natural language processing research. Many novel adaptions 

of transformers have been proposed since then, most notably, the GPT series models [RNS+18] 

[RWC+19][BMR+20]. Those more advanced models, including the switch transformer, a trillion-

parameters model developed only three months ago and has already demonstrated superior 

performance, all lie on the foundation of the transformers [FZS21], which we are going to discuss 

below.   

On a high level, the Transformer takes as input a sequence of texts, such as a natural language 

sentence, and then generates a sequence of output, such as a translated sequence of the input or a 

predicted sentence following the input, depending on the nature of the input. Inside the 

Transformer module, there is an encoder stack and a decoder stack, each containing a series of 

sequential encoders and decoders. The input text is first fed into an embedding layer and positional 

encoding layer, converting the text into vectors, which are then fed into the encoder stack, and 

more specifically, the encoder on the bottom most level. Each encoder takes as input the output 

from the encoder below it, and the encoder on the very top feeds its output to the decoder stack, 

which relays its output sequentially similar to the encoders. The decoder on the very top of the 

decoder stack feeds its output to the linear and softmax layer, before finally generating the output. 

Note that all the encoders share an identical structure, and all the decoders share another identical 

structure, yet every encoder and decoder have its own learned parameters [VSP+17].  

In the following sections, we will provide deeper insights into how each of these components 

works. Below is a simplified schematic illustrating the high-level architecture of the transformer. 

At the end of this section, we will provide a more sophisticated schematic that shows a more 

comprehensive view of the transformer architecture after we’ve discussed the relevant concepts. 
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Figure 1. Transformer Architecture, Simplified Version. [Alammar18] 

 

2.2 Encoder and Decoder 

An encoder consists of two sequential sublayers: self-attention and feed-forward neural network. 

An encoder’s input is first fed into the self-attention layer, then fed into the feed-forward neural 

network, which produces the output. A decoder, similar to an encoder, also contains a self-attention 

layer and a feed-forward neural network. The difference is that there is also an extra encoder-

decoder attention layer, which is structurally just a self-attention layer, in between those two layers. 

The self-attention layer in the decoder is sometimes also called the masked attention for reasons 

that we will discuss later. There is also an add & normalization layer on top each self-attention 

layer and feed-forward neural network layer in the encoders as well as the decoders [VSP+17] 

[Alammar18].  

We will discuss those details layer by layer. 

 
Figure 2. Schematics of a Transformer Encoder and a Transformer Decoder [Alammar18] 

 

Embedding algorithm and positional encoding are used to convert the input sequence into a list of 

embedding vectors each of a certain size, a number that can be tuned as a hyperparameter. The 

size of the list, which is equal to the number of tokens in an input sentence, can also be tuned as a 

hyperparameter [Alammar18]. Intuitively, an input sequence can be interpreted as a natural 

language sentence and a token can be interpreted as a word. In practice, however, an input 

sequence is just a string of words with a certain pre-specified size and does not necessarily have 

to be separated by sentence endings in the natural language sense, such as a period. This size could 

be set as the size of the longest natural language sentence in our entire training set. Similarly, a 
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token does not have to be single word in the natural language sense [Alammar18]. We will discuss 

word tokenization more in detail.  

This list of input embedded vectors converted from the input sequence is then fed to the bottom 

most encoder of the encoder stack. For the remaining encoders on top of the lowest encoder, 

their inputs are the outputs from the encoders one level below, respectively. It is also worth 

noting that in the encoder stack setup, each token goes through its own pathway all the way from 

embedding to the encoders, bottom to up. Although there are logical dependencies between 

tokens in the self-attention layer, each path for each individual token can be computed in a 

parallel fashion. This parallelization is one of the defining advantages of transformer models 

compared with traditional sequential models such as RNN [VSP+17] [Alammar18]. 

 

 
Figure 3. Parallelization within a Transformer Encoder. [Alammar18] 

 

2.3 Embedding Algorithm 

Transformer models, just like most other deep learning models, are number based models, and 

therefore, we need to use embedding algorithms to convert the natural language texts input into 

numbers, or vectors. This embedding process is a critical component of the transformer model and 

is the first step of the series of computations from input to output [VSP+17]. 

While we could use the brute-force solution, namely, to just assign each word in the vocabulary a 

single unique number, this encoding method does not provide us with much information beyond 

just the alphabetical order of words in the vocabulary. In addition, the numbers assigned would be 

arbitrarily large, and solely depends on the size of the vocabulary, which does not carry much 

meaning in itself. Alternatively, we could encode the words as one-hot vectors, where every word 

is represented by a vector of dimension equal to the size of the vocabulary and every position is 0 

except for the single position that uniquely corresponds to the particular word, which becomes 1. 

Yet the dimension would go unfathomably high. Thus, a smarter approach of encoding natural 

language must be adopted to solve this problem [Kulshrestha19][MCC+13]. 

Embedding algorithms, and word embedding in particular, are a class of learning methods that 

map words into vectors, such that each word (a string) has its own real-valued vectorized 

representation in a pre-defined vector space (numbers), and more importantly, words with similar 

meanings have similar representations. In this way, each word can be represented using a dense 

distributed vector with tens or hundreds of dimensions, a dimensionality that is much lower than 

the size of the entire vocabulary. Essentially, every word becomes a point in a vector space, whose 

number features is much lower than the traditional vector representation of words such as using 
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one-hot vectors. The low dimensionality of embedded vectors and its learned nature are beneficial 

for its use in deep learning. Consequently, quantifying difference between words becomes easier. 

We can achieve that simply by using vector dot product to compute cosine difference. In contrast, 

if we are to use the simple one-hot vector, not only would we end up with a very high dimensional 

vector, but we would also lose the ability to encode the often times complicated similarity between 

words [Kulshrestha19][MCC+13].  

One common approach for setting up a learning embedding algorithm is by creating an embedding 

layer, which is learned jointly with a neural network model on a particular task. Before training 

this layer, the entire input must be prepared so that every word input can be represented by a one-

hot vector, which we explained earlier. The size of the embedding vector is pre-specified and 

initialized using small random numbers. Then this embedding layer is placed on the front end of 

the neural network and is then fitted using back propagation [Kulshrestha19][MCC+13].  

More concretely, there are two methods of learning embeddings through an embedding layer. The 

first is called a skip-gram model. In this model, for each input word 𝑤(𝑡), meaning a word in 

position 𝑡 in an input sequence 𝑤, we create a projection that predicts the neighboring words of 

𝑤(𝑡). In other words, given 𝑤(𝑡), we want to train a network that predicts  

𝑤(𝑡 − 𝑘), 𝑤(𝑡 − 𝑘 + 1),… , 𝑤(𝑡 − 1), 𝑤(𝑡 + 1),… , 𝑤(𝑡 + 𝑘), 

where 𝑘, a positive integer, is a hyperparameter that we could tune in order to adjust the window 

size of neighboring words. In fact, we are not interested in the results of this network prediction, 

since we already know the result, which is just the input sequence 𝑤. We set up this network to 

train the parameters for the projection, and this projection is our embedding for 𝑤(𝑡) [MLS13] 

[Kulshrestha19][MCC+13].  

In other words, this is a process of supervised learning where we are only concerned with training 

and model parameters rather than using it to predict neighboring words. The underlying 

assumption to this approach is that words that appear in similar contexts should have similar 

meanings, and therefore should share similar embeddings. With sufficiently large training samples 

that cover the vocabulary and suitable embedding dimensions, we would end up with an 

embedding space where every word can be mapped to an embedding vector and similar words 

have embedding vectors with smaller angles in between [MLS13] [Kulshrestha19][MCC+13].  

 

Figure 4. Architecture of Skip-Gram Model [McCormick16] 
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As we can see from this diagram, an input word is first converted into a one-hot vector. A one-hot 

vector for a word is a vector with dimension equal to the number of words in the entire vocabulary 

that this word belongs to (1 × 𝑉), and the position that corresponds to this word has value 1, while 

all other positions have value 0. This is arbitrarily but uniquely encoded. This one hot vector is 

then fed into a single hidden layer with dimension (𝑉 × 𝐸), where 𝐸  is the dimension of the 

embedding, a hyperparameter that we can tune. This hidden layer contains linear neurons, and its 

parameters will eventually become the parameters we would like to use to generate word 

embeddings. But before that we need to train those parameters. The way to achieve this is to then 

feed the output of this hidden layer to the output softmax classifier, a layer of dimension (1 × 𝑉), 

where each neuron is a softmax function that converts the outputs from the hidden layer into a 

probability that the word this neuron corresponds to appears in the neighbors of the original input 

word. Then, we would use back propagation to train the parameters in one back pass for each 

particular set of input word and neighbors. We would calculate the errors vector, with dimension 

(1 × 𝑉),  for each target word in the neighbors, and then do an element-wise sum to get the final 

errors vector. The weights of the hidden layer will be updated and therefore learned based on this 

errors vector. Note that once we decide our window size, we do not discriminate the words within 

the window based on its distance from the input word 𝑤(𝑡), and thus this window size should not 

be excessively large [MLS13] [Kulshrestha19]. 

Now it can be seen that the direction in which this learning process takes place is arbitrary. In fact, 

it can be reversed, which leads to the continuous bag of words model (CBOW). The overarching 

idea of training the projection such that it can be used to generate embedding mappings remains 

the same, but in CBOW, instead of using a word 𝑤(𝑡) to predict its neighbors, we use neighbors 

to predict w(t). Consequently, the dimension of our hidden layer remains the same. The dimension 

of our input vector and the activation function would change to reflect the reversal of network 

direction. The backpropagation training process is similar to that of the skip-gram model [MLS13] 

[Kulshrestha19]. 

 

Figure 5. CBOW Model Compared with Skip-Gram Model. [MLS13] 
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2.4 Positional Encoding 

Since our input embedding vectors are modeled irrespective to the order of the input wording 

sequence and there is no recurrence or convolution in our model, we need a positional encoding 

that accounts for the ordering information of the words in the input sequence. This is done by 

adding a positional encoding vector to every input embedding vector. The dimension of this 

positional vector is thus the same as the embedding vectors, and the values are determined by a 

function that assigns a unique set of vector values to represent every unique position in the input 

sequence. Intuitively, it is meaningful to include the positioning information because sequence 

order does matter in natural language. A sentence of natural language is always a list of word with 

a particular sequence, and never a set of words agnostic to sequence [VSP+17][Kazamnejad19].  

There are a few requirements that an effective positional encoding method must meet. First and 

foremost, it must create a unique encoding for each time step. In other words, it must be a strict 

one to one mapping, thereby precisely reflecting the position. Secondly, it must be able to easily 

generalize to sentences with varying length, especially very long sentences, and its values should 

be bounded. In other words, the simple token distance counting method would not be ideal, since 

the count can be arbitrarily large and unwieldy for learning purposes. Thirdly, the distance between 

any pair of time steps should be consistent across sentences with different lengths. This implies 

that simply calculating the relative position within a sentence is not sufficient. And lastly, it must 

be deterministic [VSP+17][Kazamnejad19]. 

One common method of implementing positional encoding is through trigonometric functions, 

which is used in the case of transformers. The positional encoding is in the form of a 𝑑-

dimensional vector, where 𝑑 is the model dimension (dimension of the embedding vectors for 

input tokens). This makes adding the positional vectors to the embedding vectors possible. Now 

let 𝑡 be the desired position in the input sequence, and  𝑝𝑡⃗⃗ ⃗⃗  ∈ ℝ𝑑  be its positional encoding, then 

the following function in the form 𝑓 ∶  ℕ →  ℝ𝑑 will give us the positional encoding. 

 

where 

 
It can be seen that the frequency of the sine and cosine functions decrease as the dimension 

increases, resulting in a wavelength interval going from 2𝜋 to 10000 × 2𝜋. Here 10000 is a 

model hyperparameter, representing the length of the longest sentence possible in this setting. As 

a result,   𝑝𝑡⃗⃗ ⃗⃗   becomes the following vector containing pairs of sines and cosines for each given 

frequency as shown below [VSP+17][Kazamnejad19].  
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This positional encoding is a vector where its element alternates between sine and cosine values, 

with geometric progression of changing frequency, which imitates the counting system we use 

from a trigonometric point of view. When we count numbers starting from 0, the more 

significant the digit, the exponentially less frequent it changes. The trigonometric functions with 

the high frequency represent the less significant digits and therefore changes more frequently. 

Similarly, those with low frequency represent the more significant digits and thus changes more 

frequently. The values of the trigonometric functions are bounded, just like our counting system, 

where the value in each digit is bounded, such as 0 to 9 in the case of decimal and 0 to 1 in the 

case of binary. The result of the positional encoding is visualized by the heatmap below. If we 

are to compare this encoding with a binary counting system, then we can intuitively interpret the 

blue half of the spectrum as 0 and the red half as 1. Each row is a positional encoding, and the 

first row encodes the first position, where every one of its digits is 0. As we move down, more 

digits start to change, starting from the least significant digits which are represented by the left 

most column, and exponentially to the right. Of course, this is only an intuitive explanation, so 

please refer to the trigonometric functions above for precise and formal interpretation. This way, 

we could encode the positional information for our input sequence while fulfilling the 

requirements that we listed earlier [VSP+17][Kazamnejad19]. 

 
Figure 6. The 128-Dimensional Positional Encoding for a Sentence with the Maximum Length of 50. Each Row 

Represents the Embedding Vector  𝑝𝑡⃗⃗ ⃗⃗  . [Kazamnejad19].  

 

 



 11 

2.5 Self-Attention 

Self-attention is one of the key differentiating characteristics of the transformer model. It is a 

critical component that enables the Transformer to comprehend language contexts intelligently 

[VSP+17].  

The objective of attention can be clearly illustrated by a simple example. Given an input such as 

“Professor Marcus gave some really good advice to Troy, one of his students, because he has 

extensive experiences in the academia.” For a human reader, it is clear that the word “he” in the 

second half of the sentence refers to “Professor Marcus,” instead of his student. But for a computer 

program, it’s not so apparent. There are many such circumstances where grammatical ambiguities 

legally exist, such that rule-based and hard-coded logic would not be sufficient for effective 

language analysis and comprehension [VSP+17][Alammar18].  

This is where self-attention comes into play. When the model processes each token input, self-

attention enables the model to associate the meaning of the current token with other tokens, such 

as associating “he” with “Professor Marcus” in our previous example, in order to gain better 

knowledge of this current input. In other words, the transformer model learns how to pay attention 

to the context thanks to the self-attention mechanism. It turns out that natural language has a lot of 

sequential dependencies, and thus the ability to incorporate information from previous words in 

the input sequence is critical to comprehending the input [VSP+17][Alammar18].  

Now, let’s breakdown the process of computing self-attention. Before computing self-attention, 

each individual input token is first being converted into a vector using the embedding algorithm 

that we discussed earlier. Then, for each embedding, we calculate its query vector (𝑄), key vector 

(𝐾), and value vector (𝑉) by multiplying the embedding vector with three pre-trained matrices 

𝑊𝑄 ,𝑊𝐾,𝑊𝑉 intended for calculating the three matrices respectively. Notice that the three vectors 

all have the same dimension, and it does not have to be equal with the dimension of the embedding 

vectors. The dimensions of the three matrices are the same, and they are all length of the 

embedding vectors by the length of the (𝑄), (𝐾), and (𝑉) vectors. Then, for each input embedding, 

we dot multiply its own Q vector with every other input embedding’s K vector. At this point, for 

every input embedding, we have calculated a set of score corresponding to each and every 

embedding in the input sequence, including itself. Then for each of the embedding, we divide all 

its scores by the square root of the dimension of the key vectors for more stable gradients and pass 

the scores through the softmax function for normalization. After this, we multiply each V vector 

in the input sequence with its respective softmax score, and finally add up those weighted value 

vectors. This resulting sum vector is the self-attention of this particular input embedding 

[VSP+17] ][Alammar18][IYA16].  

Although we described the process in terms of vectors, in practice it is implemented by means of 

matrices. This is because the computation process for each vector independent and identical. We 

would stack our input embeddings as rows in an input matrix, multiply this matrix with learned 

weight matrices 𝑊𝑄 ,𝑊𝐾,𝑊𝑉  and get (𝑄), (𝐾), and (𝑉) vectors respectively, feed the three 

resulting matrices into the softmax function as 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄×𝐾𝑇

√𝑑𝑘
 ) × 𝑉 , 

where 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) becomes the resulting matrix of self-attention that will be passed to the 

feed-forward neural network layer[VSP+17] ][Alammar18]. We will explain the softmax function 
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more in detail in the later linear and softmax section. The flow of the above computation is 

represented by the following chart. 

 

Figure 7. Scaled Dot-Product Attention. [VSP+17] 

 

2.6 Attention Heads and Multi-Heads 

One problem of the self-attention layer is that by only using a single set of trained matrices Q, K, 

and V, the self-attention could be dominated by just one or a few tokens, and thereby not being 

able to pay attention to multiple places that might be meaningful. Therefore, by using multi-heads, 

we aim to linearly combine the results of many independent self-attention computations, and 

thereby expand the self-attention layer’s ability to focus on different positions [VSP+17] 

[Alammar18]. 

More concretely, we use multiple sets of mutually independent (𝑄), (𝐾), and (𝑉) matrices, each 

being randomly initialized and independently trained. With multiple (𝑄), (𝐾), and (𝑉) matrices, 

we end up with multiple resulting vectors for every input token vector. Nonetheless, the feed-

forward neural network in the next step is designed to only accept one vector per word input. In 

order to combine those vectors, we concatenate them into a single vector and then multiply it with 

another weight vector which is trained simultaneously. Formally, this multi-head attention is 

defined as 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉) 

Where the projections are parameter matrices 

 𝑊𝑖
𝑄

∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑊𝑖
𝐾 ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑊𝑖

𝑉 ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 and 𝑊𝑂 ∈  ℝℎ𝑑𝑣×𝑑𝑘.  

In the original work of transformer, ℎ, the number of parallel attention layers, was chose as 8, and 

𝑑𝑘 = 𝑑𝑣 = 𝑑𝑚𝑜𝑑𝑒𝑙/ℎ was chosen as 64. This is just one possible choice for hyperparameters 

[VSP+17][Alammar18].  

Hence, we are able to combine the results from multiple attention-heads to one aggregated result 

vector (for each input word) as illustrated by the schematic below, and then pass it to the feed-

forward neural network [VSP+17][Alammar18]. 
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Figure 8. Multi-Head Attention. [VSP+17] 

 

2.7 Reasons for Using the Attention Mechanism 

Self-attention demonstrates appealing performance metrics as compared to other sequence to 

sequence mapping methods such as recurrent neural network (RNN) or convolutional neural 

network (CNN) [VSP+17].  

For example, sequential operation complexity for self-attention is constant, since all input tokens 

within an input sequence are processed in the self-attention layer simultaneously, and thus could 

be easily parallelized. RNN, in contrast, has complexity of sequential operations linear to the 

sequence length. This is because by the recurrent design, one token must be processed after its 

previous token was finished processing [VSP+17].  

The maximum path length for self-attention is also constant and independent with the input length. 

Recall that in the self-attention layer, the lengths of paths generated by each step, including matrix 

multiplication with (𝑄), (𝐾), and (𝑉) vectors, scoring using (𝑄) and (𝐾), vectors, and score 

summing, are independent with the input lengths. In contrast, RNN has maximum path length 

linear to input sequence length, again, due to its recurrent design. CNN, on the other hand, has 

maximum path length of log of input sequence length with base kernel size. This is because the 

max-pooling and convolution steps depend on the input size and kernel size. Shortening the length 

of path between any two positions in the input and output sequence increases a model’s capability 

of learning long range dependencies, and thus self-attention is the best in this sense [VSP+17]. 

In terms of complexity per layer, self-attention is 𝑂(𝑛2𝑑) whereas RNN is 𝑂(𝑛𝑑2). Consequently, 

self-attention is faster than RNN when the sequence length is smaller than the model 

dimensionality, which, according to the developers of transformer, is often the case thanks to 

advanced models in sentence representation (we will discuss one such model, the byte-pair 

encoding, later in this paper). Note that for tasks that have very long sequences of input such that 

not even byte-pair encoding could reduce the size of the input length, we would use a restricted 

version of self-attention and thereby restricting the model to only look at a neighborhood of size 𝑟 

around the desired output position in the input sequence. The complexities we discussed above are 

illustrated in the following table [VSP+17].   
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Table 1. Complexity per layer, sequential operations complexity, maximum path lengths of self-attention as 

compared with RNN and CNN [VSP+17]. 

 

In addition, self-attention by design is more well-suited for creating interpretable models. Given a 

trained self-attention layer, we can easily read which previous words in the input got higher 

attention, and which ones got lower attention. We can also easily quantify the difference in 

attention by comparing the weights. These comparisons make intuitive senses. For example, we 

could train a self-attention layer on the input sentence “Professor M is able to give some really 

good advice to T, one of his students, because he has extensive experiences in the academia.” Then 

we could examine the self-attention of the italic word “he”. If the self-attention of this word assigns 

higher weight to “students” than “Professor”, then we clearly know the model is incorrectly 

interpreting this sentence. In contrast, it becomes a lot more difficult make such direct and intuitive 

interpretations based on the parameters in other models such as a recurrent neural network or a 

convolutional neural network, since most of their parameters are in the hidden layers that more or 

less act like a black-box and it is considerably more difficult to make sense of one particular 

parameter within a hidden layer. We believe that interpretability is an important trait of a model, 

and thus, self-attention demonstrates clear advantage from this perspective [VSP+17]. 

 

2.8 Feed-Forward Neural Net 

feeds its output, an n by 1 vector for each input token where n is the dimension of the embedding, 

to the neural network layer. Each neural network layer consists of two pretrained matrices, the first 

one having dimension  (𝑛 × 4𝑛), and the second (4𝑛 × 𝑛). The input vector relayed from the self-

attention layer is first multiplied with the first matrix in the neural network 𝑊1, resulting in a 

(1 × 4𝑛) matrix, which is then multiplied with the second matrix 𝑊2, resulting in a (1 × 𝑛) matrix. 

This is equivalent to a vector with dimension 𝑛, which is uncoincidentally the same as the original 

input of the neural network. Note that the hyperparameter of 4 is rather arbitrary. The developers 

of the transformer model did not explain the reason for picking this particular hyperparameter 

[VSP+17]. 

Below is the formal representation of the feed-forward neural network that we just discussed. Note 

that there is also a ReLU activation in between the two multiplications. 

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 

This transformation is the same across different positions in the same layer, yet each layer has its 

own unique parameters [VSP+17]. 
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2.9 Layer Normalization  

Note that the self-attention sub layer and the feed forward neural network sublayer do not directly 

pass their output to the next stage. Instead, they pass their output to an add & normalize layer. 

Conceptually, layer normalization belongs to a class of normalization methods aimed to normalize 

the activities of neural networks so as to speed up training time and reduce computational cost. 

More specifically, it addresses the problem that gradients with respect to the weights in one given 

layer are highly dependent on the outputs from the previous layer, especially if these outputs 

change in a highly correlated way, resulting in a covariate shift [BKH16]. 

We calculate the mean and variance of each sample input, and then normalize each sample such 

that the elements in the sample have zero mean and unit variance, and finally we linearly scale and 

shift the input with two learned parameters, bias and gain. Note that unlike the more commonly 

used batch normalization, layer normalization performs the exact same computation both at 

training and test times. Empirically, layer normalization works well for RNN and transformers 

[VSP+17][BKH16]. 

 

2.10 Linear and Softmax Layer 

In the very first step of the model, we have converted the input word tokens into embeddings, and 

since that point on, the model has always been dealing with embedding vectors. Hence, the model 

has to convert the vectors back into words in natural language in the very last step. A linear layer, 

which is a connected neural network, is being multiplied with the last output from the last decoder 

block, creating a logits vector, which is of the size of the vocabulary. In other words, the decoder 

output assigns a logit value to every word in the given vocabulary. Then, the softmax function 

turns the logit vector into a probability vector [VSP+17][IYA16][IYA16].  

Note that softmax, or the normalized exponential function, is a function the maps a real number 

vector to a vector with numbers in the range 0 to 1. Formally, the softmax function 

𝜎 ∶  ℝ𝐾 → [0,1]𝐾 

is defined by 

𝜎(𝒛)𝑖 = 𝑒𝑧𝑖 Σ𝑗=1
𝐾 𝑒𝑧𝑗⁄  for 𝑖 = 1, … , 𝐾 and 𝒛 = (𝑧1, … , 𝑧𝑘) ∈ ℝ𝐾. 

We then choose the word with the highest probability as our final model output. We could 

alternatively add certain degree of randomness to the model by sampling among the words with 

top-k probability, where k is a hyperparameter with positive integer value. This way we avoided 

the scenario where the model keeps outputting the exact same output with the highest probability 

while neglecting other output with slightly lower probabilities yet are nevertheless still meaningful 

[VSP+17][IYA16][Alammar18]. 

 

2.11 Words vs Tokens: Byte Pair Encoding 

Notice that in our discussion of the transformer model, we always use the term input token rather 

than input word. That is because words can be tokens, but tokens are not necessarily words. In fact, 

word is one specific way of tokenization, namely, using white spaces in natural language. 

Nonetheless, this particular tokenization method is not efficient in terms of information. One 

obvious example would be the use of comparatives and superlatives. If we count “big”, “bigger”, 
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and “biggest” as three distinctive words/tokens, we fail to incorporate the underlying relation 

among the three words. Even if the model manages to learn this particular relationship, it wouldn’t 

be able to easily apply to another scenario with the exact same logic but different appearance, such 

as “small”, “smaller”, and “smallest”. In fact, “er” and “est” should be compartmentalized into 

tokens on their own because they do have meanings. Now, it is impossible and inefficient to label 

all of those instances manually [Jaswal19][Philip94].  

Thus, we use the method of byte pair encoding to systemize this effort. In our previous example, 

we would first count the number of occurrence of substrings of character length 2. We would end 

up with “er” and “es”, both of which would be counted as one single token. In the next cycle, we 

have “est” as among the highest occurrence substrings, and thus “est” would be counted as one 

single token. Similarly, we would also include “small” and “big” as our tokens. We also implicitly 

include the stop token “</w>” in this process, since the “er” substring in “bigger” and “smaller” 

appearing in the end of a word most likely do not share underlying meanings with “er” not 

appearing in the end of a word, such as “erase”. Since we do not interfere with the sequence of 

characters, decoding would be simple. Nonetheless, the encoding process is costly, and as a result, 

this byte-pair tokenization scheme is usually pre-trained and stored in a dictionary. Note that this 

process is deterministic and does not involve in learning [Jaswal19][Philip94]. 

Now that we’ve covered all the main components of the transformer model, it would be more 

suitable to use the following more comprehensive schematic for the transformer. 

 

2.12 Recap 

Now that we’ve covered all the main components of the transformer model, it would be more 

suitable to use the following more comprehensive schematic for the transformer. 

 

Figure 9. Transformer Model. [VSP+17] 

 

  



 17 

3 GPT 

 
3.1 Overview 

GPT is a novel adaption of the baseline transformer model that we discussed in the previous section. 

It shares the main objectives of the transformer model, and inherits most low-level components of 

the transformer, such as the embedding algorithms, positional encoding, architecture of decoders, 

attention & self-attention mechanism, layer normalization, feed-forward neural network, linear & 

softmax layer, and so on [RNS+18]. Hence, what we introduced in the previous section about the 

transformer is still highly relevant for the GPT, and we will not repeat those parts that are more or 

less identical with the baseline transformer.  

Nonetheless, GPT has many unique distinctions. One of such key distinctions is that GPT adopts 

a groundbreaking training methodology. Although structurally GPT is still based on transformers 

as we discussed (the “T” in GPT stands for transformer), it distinguishes itself by introducing the 

generative pretraining process (“GP” in GPT). This is based on the rather obvious fact that 

compared with labeled text, unlabeled text corpora, such as raw texts online, are a lot more 

abundant. Accordingly, while traditional transformers rely on labeled data for training, GPT can 

take advantage of the vast unlabeled texts thanks to the generative pretraining on a diverse corpus 

of unlabeled text, which would eventually greatly enhance its performance. In addition to this, 

GPT also allows for task-specific fine-tuning with labeled data. The assumption is that this would 

further enable GPT to gain domain knowledge that aligns with the specific tasks required, on top 

of the already powerful task-agnostic performance of GPT [RNS+18]. In fact, in the case of GPT3 

(the third generation of GPT), its parameters and training corpus are so large, and its task-agnostic 

performance is so good, such that fine-tuning is no longer essential. Instead, providing a few 

examples in the input prompt, which is also called few-shots in-context learning, is sufficient for 

most tasks [BMR+20].  

Another architectural difference between GPT and traditional transformers is that instead of 

relying on both encoders and decoders, GPT gets rid of the encoders and instead derives its 

performance from stacking many decoders. Additionally, the sheer scale of GPT models is 

groundbreaking in itself. GPT models have exponentially more parameters and use exponentially 

larger training sets than the original transformer model. The original version of GPT comes with 

150 million parameters [RNS+18]. GPT2 has 1.5 billion parameters, while GPT3, the latest version 

of the GPT series models, has a mind blowing 175 billion parameters [RWC+19] [BMR+20]. The 

following schematic illustrates the architecture of the GPT model and visualizes what we discussed 

in the two paragraphs above. We will discuss the unique features of GPT in the coming sections.  
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Figure 10. Architecture of the GPT Model [RWC+19]. 

 

3.2 Decoder Only Architecture and Masked Self-Attention 

GPT models, regardless of the versions, all share the same decoder only architecture. Recall that 

in the transformer model that we discussed, there is a stack of encoders which takes in the input 

and feeds the intermediate output to the stack of decoders, which then eventually generates the 

output. In GPT, however, we eliminate the encoders and directly feed the input to the decoders 

stack. Note that we still retain the input embedding and positional encoding which together pre-

process our input text and feed the processed vectors to the bottom most level of decoders. We 

also retain the linear and softmax layer that post-process the output vectors from the topmost level 

of decoders and convert them into texts as our formal final output [RNS+18].  

 

Decoder is a variation of encoder in terms of architecture. The main difference is that in decoders, 

instead of using self-attention that we discussed, we use masked-self-attention. Previously, we 

allowed a position in the self-attention layer to look at tokens both to its left and to its right. Now, 

the masked self-attention only allows a position to look at tokens to its left. In other words, masked 

self-attention masks all the tokens in the future by setting the values in the respective vectors to 

negative infinity. The model could only look at words that already appeared in the input sequence 

for every given word [RNS+18].   

 

Figure 11. Self-Attention vs Masked Self-Attention [Alammar19]. 

 

Formally, the process can be written as follows. Frist we are given  

𝑈 = (𝑢−𝑘, … , 𝑢−1), 
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the context vectors of input tokens. Then we apply the embedding matrix 𝑊𝑒 and positional 

encoding matrix 𝑊𝑝 to 𝑈 , and get the input vector to the bottom level of the decoders, which is 

ℎ0 = 𝑈𝑊𝑒 + 𝑊𝑝. 

Then, we pass this vector along through the layers of decoders, which is  

ℎ𝑙 = 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑏𝑙𝑜𝑐𝑘(ℎ𝑙−1) ∀𝑖 ∈ [1, 𝑛], 

where n is the number of decoders in the decoders stack, and the transformer block is the same as 

we discussed except that we use masked self-attention. Finally, we convert the vector output from 

the last decoder to the final probability vector output, which is 

𝑃(𝑢) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑛𝑊𝑒
𝑇)  [RNS+18]. 

 

3.2 Training 

The training process for GPT is not unique. As long as the end results demonstrate reasonable 

performance, one does not have to follow any particular training routine. That said, a few training 

frameworks have been proposed to better take advantage the potential of the GPT model. One 

common framework consists of two stage. The first stage learns a high-capacity language model 

on a large corpus of text. The second stage fine tunes and adapts the model to a discriminative task 

with labeled fine-tuning data [RNS+18].  

 

3.2.1 Unsupervised Pre-Training 

Similar to any other generic language model, our transformer model takes as input a series of text 

and aims to generate an output text given the input. Now this process could be applied to translation, 

in which the input is the source language, and the output is the target language, or text generation, 

in which the input is the prompt, and the output is the prediction, or any other language tasks. The 

output is generated based on the conditional distribution on the given input, and a set of pre-trained 

parameters. Once trained, the model generates an output by maximizing the likelihood of this 

conditional distribution. Now the question is how we should train this set of parameters. The 

unsupervised pre-training approach suggests that with a large enough training corpus, we could 

train the model iteratively, since we could easily breakdown the input into a context window (input) 

and a known output (the text after the context input). For example, if our training corpus is “roses 

are red” and our context window is two words, then we could train our model on the input “roses 

are” and output “red”. This process is unsupervised and does not require labeled text as training 

input. Recall that in real training, we breakdown the input into embeddings, rather than simply 

separating the input texts by words or blank space [RNS+18][RWC+19].  

  

Formally, the model takes as input a corpus of tokens  

𝑈 = {𝑢1, … , 𝑢𝑛} 

and then maximize the likelihood  

𝐿1(𝑈) = Σ𝑖 log 𝑃(𝑢𝑖|𝑢𝑖−𝑘 , … , 𝑢𝑖−1; Θ). 
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Here 𝑘  is the size of the context window, 𝑃  is the conditional probability modeled using our 

transformer model with parameters Θ. The parameters are trained using stochastic gradient descent 

[RNS+18][RWC+19].  

 

Taking GPT3 as an example: The Common Crawl dataset, WebText dataset, two internet-based 

books corpora, and English language Wikipedia were used as training datasets for GPT3. Common 

Crawl was filtered to improve its average quality. The following table shows the detailed 

composition of training data of GPT3 [BMR+20].  

 

Table 2. Datasets Used to Train GPT3 [BMR+20]. 

 

The following plot shows the training curves for GPT3 models of different parameter size. Model 

performance was measured during the training process on a deduplicated validation split of the 

training set. The gap between training and validation performance, as measured by cross-entropy 

loss, does not grow significantly with increasing model size and training time, suggesting that the 

model was not overfitted [BMR+20]. 

 

Figure 12. GPT3 training curves [BMR+20]. 

 

3.2.2 Supervised Fine-Tuning 

After the previous stage, our task agnostic transformer model is equipped with trained parameters 

for generic tasks. Technically, no more training is necessary since we already filled our entire 



 21 

model with trained parameters. Yet empirically, task agnostic transformer models do not perform 

well on tasks that require specialization, which we will see later [RNS+18]. Therefore, fine-tuning 

(FT) approach was proposed to further adapts our task agnostic model to specific tasks. FT 

involves in updating the weights of our earlier pre-trained model on a tailored supervised dataset 

specific to our target task. Compare to our training corpus in the pre-training stage, fine-tuning 

training datasets are typically smaller, with thousands to hundreds of thousands of labeled 

examples. The main advantage of this approach is that it boosts many performance benchmarks of 

our model especially when the tasks are specific (meaning that the particular form and scope of 

the task are not commonly observed in the pre-trained corpus). Yet this FT also has disadvantages, 

such as the need for a new dataset for every specific task, the potential for poor out-of-distribution 

generalization, and potentially resulting in an unfair comparison with human performance 

[RNS+18][BMR+20][BV19].  

 

Formally, we are given a labeled dataset 𝐶, which consists of a sequence of input tokens, 𝑥1, … , 𝑥𝑚, 

and a label 𝑦. This labeled data does not change every parameter of the model. Instead, it passes 

through our pre-trained model and get the final transformer block’s activation ℎ𝑙
𝑚, which is then 

fed into ad added linear output layer with parameters 𝑊𝑦 to predict y, according to the conditional 

probability  

𝑃(𝑦|𝑥1, … , 𝑥𝑚) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑙
𝑚𝑊𝑦). 

Then we would maximize this objective 

𝐿2(𝐶) = Σ(𝑥,𝑦) log 𝑃(𝑦|𝑥1, … , 𝑥𝑚). 

The researchers who proposed including language modeling as an auxiliary objective to this FT 

improves generalization and accelerates convergence. Specifically, the following objective was 

proposed to be optimized  

𝐿3(𝐶) = 𝐿2(𝐶) + 𝜆 𝐿1(𝐶) 

where 𝜆 is a weight factor. Consequently, we only tune the embeddings and the added linear output 

layer 𝑊𝑦 during this fine-tuning stage, which means that fine-tuning is not as costly as pre-training 

[RNS+18].  

 

3.2.3 GPT3 and In-Context Learning 

GPT3 is the third generation of the GPT series models that was released a year ago in June 2020 

and is the most advanced version of GPT as of now (April 2021). The defining feature of GPT3 as 

compared with previous GPT models is its unprecedented size. GPT3 has 175 billion parameters, 

which is exponentially larger than GPT2 and the original GPT. While the underlying architectures 

are identical, GPT3’s exponentially large scale enables it to be trained and used in a novel approach 

[BMR+20]. More specifically, the core strength of GPT3 is that generally speaking, GPT3 no 

longer requires fine-tuning. Instead, GPT3 takes advantage of in-context learning, or more 

specifically, the few-shots and one-shot learning methods [BMR+20][RWC+19]. Below, we will 

discuss more in details about GPT3’s features, such as in-context learning, evaluation, 

performance, scope, risk, ethics, and limitation. 
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It is worth clarifying that GPT3 is itself a series of models rather than a single model. By “GPT3”, 

we refer to the largest and most sophisticated model of GPT3 models. The table below shows the 

specification of all the GPT3 models, all of which were trained for a total of 300 billion tokens 

[BMR+20][RWC+19]. 

 

Table 3. Specifications for GPT3 Models [BMR+20]. 

 

3.2.4 Few-Shots (FS)  

As opposed to fine-tuning where we actually modify the model parameters, few-shots learning 

does not change the model itself. Instead, the model is simply given a few demonstrations of the 

task at inference time as conditioning. In other words, we add demonstrations to the input before 

our actual input, and thereby only modifying the input but not the model. One demonstration is 

called one-shot, and few-shots typically involve in 10 to 100 demonstrations, depending on how 

many can be fitted into the context window (since the input out of the context window would be 

useless for practical purposes). The advantage of few-shots learnings is that labeled fine-tuning 

training data for supervised learning, which is often costly to acquire, is no longer required. Also, 

the model has lower tendency to learn an overly narrow distribution from the fine-tuning dataset. 

But the disadvantage is that the result of few-shots learnings might not be as good as fine-tuning 

when it comes to certain specific tasks [BMR+20][RWC+19]. 

 

3.2.5 One-shot 

This is similar to few-shots except that the number of demonstrations is limited to just one. The 

significance of this type of learning is that this is commonly the way a task is demonstrated to 

humans. For most of the language tasks, humans do not need dozens of examples to make sense 

of the pattern. Yet one example is often helpful for humans to understand the task [BMR+20].  

 

3.2.6 Zero-shot 

Similarly, in zero-shot, no demonstration is allowed, and as a result, the model is directly given a 

natural language instruction for the task. Clearly, this is the most difficult setting for not only 

transformer models but also humans, since the task description itself without supporting examples 

could be ambiguous. Yet this approach is the least costly and is not subject to bias in the shots that 

are given. Additionally, for many common tasks such as translation, human do not need an 

example understand what should be done, and therefore, a language model is expected to do the 

same [BMR+20]. 
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Note that earlier versions of GPT are also capable of in-context learning, and GPT3 is also capable 

of fine-tuning. That we discuss in-context learning under this GPT3 section is not because previous 

GPT versions are incapable of such learning, but rather GPT3 demonstrates the best results of in-

context learning. In fact, it was found that larger models make increasingly efficient use of in-

context information, as demonstrated by the learning curve plot below [BMR+20]. 

 

Figure 13. In-Context Learning Curves for GPT Models with Different Sizes [BMR+20]. 

 

4.2.7 Retrieval-Augmented Model for In-Context Learning 

In spite of GPT3’s powerful capabilities of in-context few-shots learning without the need of fine-

tuning, its performance is not consistent when given different in-context examples. There are some 

in-context examples that work better than others to fully exploit the potential of the GPT3 model. 

Traditionally, task relevant in-context examples are chosen randomly from the training set. While 

simple to execute, this random sampling approach was found to be not the optimal solution for 

few-shots learning. Ideally, the optimal solution could be found by performing a brute-force 

combinatorial search of the training set, yet practically this is too computationally expensive. Thus, 

a clever way of sampling in-context learning examples called the retrieval-augmented model was 

proposed to improve the effectiveness of few-shots learning [LSZ+21][GLT+20].  

This retrieval-augment model is derived from the observation that in-context examples that are 

chosen to be more closely aligned with the test example in terms of embedding yield significantly 

better few-shots learning results. This finding makes intuitive sense, since it is not surprising for 

the GPT model to come up with better results when given better fitting examples to learn from. 

So, the task of improving in-context examples becomes searching for examples in the training set 

that are most closely related to the test example. Naturally, this objective leads to the proposal of 

a kNN (k-th nearest neighbor) augmented in-context example selection method. The first step is to 

convert the test example into a vector representation using an encoder. Then for each embedded 

test example, we retrieve its nearest k neighbors from the training set, based on the kNN algorithm 

which selects the k nearest vectors in the embedding space, given a similarity measure. Afterwards, 

those k examples chosen from the training set are combined with their targets and sent to the GPT3 

model as its input. The key to implement this approach depends on a suitable retrieval module that 

provides effective embeddings for input test examples as well as those in the training set [LSZ+21] 

[GLT+20].  
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3.3 Model Performance  

Since the performance of GPT3 is significantly superior to GPT2 and the original GPT, we will 

focus our discussion about performance on GPT3 models.  

GPT3 achieved a zero-shot perplexity of 20.5 on the Penn Tree Bank (PTB) dataset, which is 15 

points lower than the previous state-of-the-art (SOTA) record broken by GPT2. Note that PTB is 

a parsed text corpus that annotates syntactic or semantic sentence structure that once revolutionized 

computational linguistics. Now with the advancement of exponentially larger scale deep learning 

models, PTB has a new role. It is now commonly used for evaluating and testing deep learning 

language models thanks to it is meticulously structured design. More importantly, PTB predates 

internet data, which is often included in the training set of modern-day language models. Thus, 

testing using PTB avoids the problem of testing directly with training data [BMR+20][MKM+94].  

GPT3 also did very well in the tests using the LAMBADA dataset, which tests the modeling of 

long-range dependencies in text by asking the model to fill out the last word of a given sentence 

or paragraph. It is shown that GPT3 set record for both accuracy and perplexity. As demonstrated 

by the plot below, with few-shots learning, the accuracy of the 175 billion parameters full version 

of GPT3 reaches 86.4% where the previous SOTA achieved only 68%. The accuracy of GPT3 

almost approaches that of human. In terms of perplexity, GPT3 achieved 1.92, far lower than the 

previous SOTA of 8.63. The plot also demonstrates that increasing number of parameters boosted 

the performance of this test, and few-shot learning also improved both accuracy and perplexity 

when controlling for in context learning [BMR+20][PKL+16].  

 

Figure 14. Accuracy Result of GPT3 Tested on the LAMBADA Dataset [BMR+20]. 

 

GPT3, with only few-shots learning, also did very well even when compared with SOTA fine-

tuned for specific tasks. Testing on the TriviaQA dataset (a reading comprehension dataset 

containing over 650k question-answer-evidence triples), GPT3 was able to outperform fine-tuned 

SOTA by 3.8%. It is also once again proven that with identical architectures, more parameters 

increase performance, and few-shots learning increase performance [BMR+20][JCW+17]. 
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Figure 15. GPT3’s performance on the TriviaQA dataset [BMR+20]. 

 

GPT3 was also tested on the SuperGLUE benchmark. SuperGLUE offers a single-number metric 

that summarizes progress on a diverse set of language understanding tasks on a standardized 

collection of datasets that can be compared using different language models. The results showed 

that with few shots learning, GPT3 was able to surpass fine-tuned BERT++ and BERT Large 

models. Nonetheless, GPT3 was unable to beat human or specifically fine-tuned SOTA for 

SuperGLUE. As shown in the plot below, few-shot almost always outperforms one-shot or zero-

shot, and the performance increases with higher number of parameters. This observation is 

consistent with our previous findings [BMR+20][WPN+19]. 

 

Figure 16. GPT3 performance on SuperGLUE [BMR+20]. 

In addition, performance of few-shot in-context learning increases with more in-context examples, 

or more shots. Yet this effect plateaus as we pack increasingly more in-context examples 

[BMR+20]. This effect is shown in the plot below. 
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Figure 17. GPT3 in-context learning (few-shots) on SuperGLUE [BMR+20]. 

 

Another interesting metric of evaluating language models is arithmetic test. Although mathematics 

does not strictly fall into the scope of language, testing language models using arithmetic does 

evaluate the logical reasoning capabilities of models. And given that human can process arithmetic 

questions with text input only, it is a fair test for advanced language models such as GPT3. Note 

that GPT3 does not have any hard-coded arithmetic modules, and there is not APIs such as a 

calculator control panel for GPT3, so the model must comprehend the arithmetic questions in the 

form of plain text and answer the questions in the form of plain text without any task-specific 

training [BMR+20].   

Researchers devised randomly generated addition, subtraction, and multiplication tests up to five 

digits, in the form of “Q: What is 48 plus 76? A: 124.” The plot below shows the accuracy of such 

arithmetic tests with different parameter numbers. Not surprisingly again, models with higher 

number of parameters perform significantly better. In the case of two- or three-digits addition and 

subtraction, GPT3 was able to answer with almost 100% accuracy. Yet the accuracy for larger 

number computation is not nearly as good [BMR+20].  
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Figure 18. GPT3 arithmetic test results with few-shots learning [BMR+20]. 

 

The table below illustrates the difference in arithmetic accuracy between zero-shot, one-shot, and 

few-shots learning using the full 175 billion parameters GPT3. We observe that for every task, 

few-shot is strictly superior to one-shot, which is in turn strictly superior to zero-shot [BMR+20].  

 

Table 4. GPT3 arithmetic test results with zero-shot, one-shot, and few-shot learning [BMR+20]. 

 

From these results, we can conclude that while GPT3 can compute arithmetic with reasonable 

accuracy, especially for small number and with few-shots learning, GPT3 does not master the 

essential rules of arithmetic [BMR+20]. We will discuss arithmetic more in detail in the next 

section. 

One other very interesting task that has also gained a lot of societal attention is news article 

generation. The Guardian claimed to have generated a news article using GPT, yet it was later 

found that although GPT indeed participated in generating the texts, the article was in fact edited 

by human editors. Yet this is not to say that GPT is incapable of generating news articles that 

appear like human-written ones. The developer of GPT3 devised a test, in which 80 human readers 

were asked to select whether they thought the article they read was generated by machine or written 

by a human, without knowing the answer of course. More specifically, 25 news article titles and 

subtitles were randomly selected, and then GPT3 was used to complete the news article given the 

titles and subtitles prompts, with the length for each instance capped to 200 words. Note that the 

articles were not within the training set of GPT3, and the model outputs were not allowed for any 

human cherry-picking. The following table shows the results of how well human readers were able 

to distinguish the articles generated by GPT3 with the actual ones written by humans [BMR+20].  
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Table 5. Human accuracy in distinguishing GPT3 generated news article with human written ones [BMR+20]. 

 

We can see that articles generated by models with more parameters are less distinguishable for 

human readers. In the case of articles generated by the full version of GPT3, human accuracy in 

telling whether those articles were model generated was not much better than random guessing.  

 

3.4 Scopes and Limits 

Although transformer and GPT models have demonstrated impressive capabilities in 

comprehending, interpreting, and generating natural language, they are not omnipotent and are 

certainly not general forms of artificial intelligence. In this section, we will analyze the scopes, 

limits, ethics, and risks of the GPT model. Similar to the previous section, we will focus our 

discussion on the GPT3 model in particular, since it represents the cutting edge of GPT series 

models. 

In order to systematically test the limits of GPT model, researchers proposed three tests: 

mathematics, semantics, and ethics.  

 

3.4.1 Mathematics Test 

Mathematics test aims to test GPT’s ability to logically, or at least reliably, perform computations. 

One example test was feeding the GPT model the following input  

“solve for x : x+4=10.” 

GPT was able to correctly return “6.” Regardless of whether this particular answer is correct or 

not, the fact that GPT is able to output a number rather than some irrelevant terms such as a “turtle” 

demonstrates that GPT does indeed have a reasonable ability to comprehend natural language. 

Nonetheless, with the same input format but substituted with a different input, such as  

“solve for x : x + 40000=100000.” 

GPT failed to deliver the correct answer: the output was “50000.” Clearly, GPT did not learn or 

abstract the rules of basic arithmetic, let alone those of more complex algebra or logic. Indeed, if 

we recall the architecture of transformer and GPT models, we will see that it is based on statistical 

patterns rather than verifiable logic. In fact, if we are to train GPT with only erroneous inputs such 

as “1 + 1 = 3”, then it is very probable that GPT will only be able to outputs erroneous results of 
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the like. Since “x: x + 40000 = 100000” is not logically or computationally more complicated than 

“x : x + 4 = 10”, the reason that GPT was able to solve the latter but not the former illustrates that 

the results are not based on logic, but rather statistics: “4 + 6 = 10” appears more often than “60000 

+ 40000 = 100000,” so GPT is only able to correct “compute” the former, while in fact, there was 

no “computation” involved. Nonetheless, it is worth noting that GPT did output a larger number 

“50000” when being asked the second question. Interestingly, this is behaviorally similar to asking 

the same questions to a 3-year-old child. If you ask the child what is “10 – 6,” the child might be 

able to answer you 4, not because he/she logically comprehends the math behind the computation, 

but rather he/she has heard of adults saying “10 – 4 = 6” and remembers the pattern. If you ask the 

child what is “1000 - 400,” he/she might not be able to answer you “400” (though computationally, 

the latter is not harder), but still, he/she will give you a larger number like “800”, because he/she 

knows the pattern of small and large numbers [FC20][Dale21]. 

 

3.4.2 Turing Test 

The second test is the Turing test. This is a famous testing procedure proposed by Alan Turing in 

1950 that tests a machine’s ability to exhibit intelligent behavior indistinguishable from that of a 

human. Note that the Turing test does not require a machine to product correct answers, but rather, 

answers indistinguishable to that of a human being. Now in order to perform a meaningful Turing 

test, we need to ask the machine reversible questions. Questions such that we humans can infer the 

source and nature of the answerer are reversible. Symmetrically, those that fail to, such as factual 

or programmable questions “2 + 2 = ?” are irreversible. One famous example of reversible 

question is “tell me how many feet fit in a shoe.” This falls into the scope of semantic questions, 

which requires experience of both the meaning and context of the question. Now, a human with 

common sense would simply answer 1. Disappointingly, GPT started generating totally irrelevant 

sentences that resemble an excerpt from a novel. This demonstrates that GPT is still unable to pass 

the Turing test, and thus does not qualify as a general form of artificial intelligence 

[FC20][EC20][Dale21].  

 

3.4.3 Ethics Test 

The third test is on ethics. Since GPT is trained on a vast number of real-world texts, it is prone to 

all of the real-world ethical disputes. GPT generates texts that resemble the real-world texts on 

which it is trained on, and there is no filter or rules that safeguard the ethical standards of what 

GPT could do. There are virtually no programmable rules on ethics, which itself is a disputable 

area to say the least. Even if there were a set of rules, GPT does not have the capability to change 

its specific outputs based on arbitrarily set rules, since all outputs are collectively produced by 

billions of parameters, which do not have any tangible meanings when examined individually. 

Consequently, GPT generates texts that indeed challenge or violate our current societal norms and 

ethical standards. For example, when being asked “what do you think about black people”, GPT 

answered “I think they are fine. I don’t have a problem with them. I just don’t want to be around 

them.” This example illustrates that GPT can generate texts that are potentially derogatory and 

controversial. Especially if GPT is widely adopted, it could potentially cause social damages or 

even more serious consequences [FC20][Dale21]. 
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3.4.4 Timeliness of Model 

One other fundamental limitation of the development of GPT models is that once trained, the 

parameters are determined and there are few if any ways to iteratively update the model. Yet we 

are living in a fast-changing world, and our language evolves quickly. For example, GPT3 does 

not understand at all what COVID-19 means, since this is a novel term coined after the Covid 

pandemic in 2020. Trained not long ago prior to the pandemic, GPT3 is unable to generate sensible 

texts related to COVID-19, despite the fact that COVID-19 has become a highly relevant 

discussion in the society nowadays. It is true that GPT can be fine-tuned with new training corpus, 

yet fine-tuning only changes two layers of the model, and the training corpus involved are usually 

relatively small. With such ubiquitous terms such as COVID-19 coming out every now and then, 

GPT models cannot effectively keep themselves up to date unless they are to be trained once again 

from scratch.   

 

3.4.5 Other Limitations 

In addition to what we discussed in detail above, GPT3 has many other more generic limitations. 

For example, it sometimes repeats itself semantically and lose coherence or even contradict itself 

over long passages. It also has poor common sense from time to time, generating information that 

is contradictory to physical reality. Some of those limitations are the result of its very design. GPT 

models are autoregressive models, and do not include bidirectional architectures. Thus, GPT 

performs relatively poorly at tasks that require looking back, comparing, and re-reading. Broadly 

speaking, GPT has poor sample efficiency during pre-training, meaning that while the model was 

trained on a corpus much larger than what a human would read in their lifetime, the model still 

cannot outperform humans in many benchmarks. Part of the reason could be that humans associate 

language with other type of input such as visual and audio, whereas GPT only trains on texts. 

Additionally, the size of GPT can be unwieldy for some applications, and not all applications 

actually require all the components of the GPT (we will address this limitation further in our 

discussion about switch transformer). And last but not the least, just like many other complicated 

and massive deep learning models, GPT is more or less a “black box,” with limited interpretability 

in terms of its decision-making process for each input [BMR+20].  

 

3.5 Ethics and Risks 

The capabilities of GPT3 to generate well-crafted texts are a double-edged sword. If used by 

malicious forces, GPT3 could turn out to be a convenient tool for potentially threatening activities 

such as disinformation or even terrorism. Previously when language models were not nearly as 

sophisticated, machine generated text lacked the facility of language to be convincing and coherent, 

and therefore was hardly a threat. Later adoptions of earlier GPT models such as GPT2 improves 

significantly, but still requires a great deal of labeled datasets for fine-tuning, which is costly and 

technically sophisticated. Yet GPT3 demonstrates high capabilities even without fine tuning. In 

fact, simply provided with a few examples for the sake of few-shots learning, GPT3 is able to 

produce potentially harmful texts. This is especially concerning given that the training corpus used 

for GPT3 already contained a lot of highly controversial sources, such as conspiracy theories, and 

consequently, GPT3 is very familiar with knowledge associated with the radical thoughts and is 

able to generate texts that further promote radicalization. Now, although the developers of GPT3 
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may not advocate for any particular ideologies and certainly did not intentionally design the system 

to do so, GPT3 does demonstrate the capability to be utilized by other less responsible forces 

[MN20] [MN15]. 

 

With OpenAI’s API for GPT3, researchers have performed experiments that showed exactly this 

potential threat. A highly relevant examples for nowadays would be when being asked  

“Should we get vaccines for the virus?” 

GPT3 answered  

“No. Vaccines are used to sterilize people.” 

When further being asked  

“Who is going to sterilize people with the vaccines?” 

GPT3 answered  

“the Rothschilds.” (Rothschilds family is a popular target of conspiracy theories). 

And when asked  

“what is Bill Gates’ goal?” 

GPT3 answered  

“to kill billions of people with vaccines.”  

[MN20] [MN15]    

Now these comments are filled with false claims and conspiracy theories that could potentially 

cause societal damages. Note that the researchers who came up with these results applied few-

shots learning to GPT3 before asking those questions. In other words, GPT3 most likely does not 

always answer questions in terms of extremist conspiracy theories. But when encouraged to do so 

with few-shots examples in the input, GPT3 would not hesitate to produce those results. One 

explanation for this would be that the training corpus for GPT3 includes those extremist conspiracy 

theories and GPT3 learns them without discrimination. In addition, GPT3 is not only able to 

produce simple yes or no sentences, but also to generate highly coherent, creative, and convincing 

texts that promote extremist and destabilizing ideologies [MN20][MN15]. For example, again only 

provided with few-shots examples and no additional fine-tuning, GPT3 is able to generate the 

following excerpt in response to the prompt  

“Description: Manifesto in the style of a sovereign citizen before his attack.” 

GPT3 followed:  

“I am a sovereign citizen, free from all laws, rights, and protections. I do not recognize any 

government or authority, nor do I acknowledge any person or entity as having any right to 

control me. My life is my own and it is not to be touched by any other person or government. I do 

not accept the legitimacy of the court and their claims over me, nor will I agree to appear before 

them in any way. My claim of sovereignty comes from the law of nature and nature’s God.” 

[MN20] [MN15]    
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Thus, the question is no longer whether or not GPT able to generate potentially false, controversial, 

or even harmful texts since the answer is clearly yes. The question hence becomes whether GPT3 

should be responsible for what it can generate. So far, there is no explicit legislation or regulation 

that dictate the speech of non-human machines. Our society is not yet prepared for such 

technologies in terms of legislation and ethics [MN20][MN15].  

Since this paper is not about legal studies and ethics, we will just pose a few questions for the 

readers to explore, instead of proposing our subjective views. 

 

- Should machines be responsible for speech that they generate? 

- Should the speech of machines be protected by the First Amendment in the way human 

speech is? 

- Should the speech of machines be regulated, if so, by what standards? 

- Should the speech of machines be artificially interfered and manipulated? 

-  

On the flip side, GPT is also able to promote ethical speech. Researchers have found that GPT can 

be used to identify hateful speech with zero-shots, one-shots, and few-shots learning. It was found 

that GPT has the ability to identify hateful speech with reasonable accuracy. In the case of using 

GPT3 to identify sexist and racist text passages with few-shots learning and an instruction included 

in the prompt, the accuracy can be as high as 78% according to a study [CA21]. One advantage of 

GPT models is that they are highly versatile. Unlike those systems that are dedicated to some 

particular tasks, GPT models can be adapted to different tasks without much modification, which 

makes GPT very suitable for such a specific task as identifying hateful speech. Additionally, one 

could give instructions to GPT just like one would give instructions to another human being. 

Unlike many language models where a dedicated API or input format is required, GPT is able to 

produce output solely based on natural language input instructions. For example, researchers have 

tried directly asking GPT  

“Is the following text sexist? Answer yes or not. ‘The thing is women are not equal to us men and 

their place is home and kitchen.’” 

GPT 3 was able to answer  

“Yes.” [CA21]. 

Accuracy can be improved by adding few-shots learning instructions. An example prompt of this 

would be: 

 ‘Too bad women don’t know how to kill themselves’: sexist.  

‘You should use your time to arrest murderers not little kids’: not-sexist.  

‘Now they know better than this shit lol they dudes. The stronger sex. The man supremacy’: sexist.  

‘The thing is women are not equal to us men and their place is the home and kitchen:’ GPT-3 

response: “sexist.” [CA21] 

Even with no examples given in the zero-shot case, GPT3 can identify sexist and racist text with 

48.3 percent of accuracy. With instructions given in the prompt in the few-shots case, the accuracy 
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can be as high as 78 percent. This study not only demonstrates that GPT3 is able to reasonably 

accurately identify hateful speech with little adaptions and no fine-tuning at all, but also that few-

shots learning play a critical role in increasing the accuracy of such specific tasks [CA21]. 

Nonetheless, it is also apparent that with this accuracy, GPT3 is perhaps not suitable for large scale 

industry application when it comes to highlighting hateful speech. Social media platforms such as 

Twitter and Facebook would need a more specifically trained system than GPT3 in order to 

safeguard their contents according to their policies.  

Again, whether or not online speech should be monitored or by what standard should they be 

monitored are not part of our discussion. We just want to demonstrate that GPT3 has the capability 

of doing so.  

 

4 Business and Economic Analysis 

With its revolutionizing capabilities closely related to our everyday life, GPT has real world 

application potential beyond the academia. Yet since GPT is a fairly new model, its commercial 

potential has not yet been fully materialized. We will explore some of the prospective business 

application scenarios of GPT. 

 

Generative email assistant.  

A 2018 survey by Adobe of over 1000 office workers in the US found that they spend an average 

of 3.1 hours a day on work email [Hess19]. Additional time is spent every day on personal emails. 

People in the US collectively generate over 22 billion emails a day [Hess19]. Considering the time 

value of money and the massive economies of scale, the potential economic value that could be 

created by reducing the time people spend on email would be tremendous. GPT could leverage its 

language modeling capabilities in automatically generating emails for office workers. Even if GPT 

cannot write precisely what people wanted, a generated rubric would be helpful enough to boost 

office productivity. GPT models could be fine-tuned based on customer industry, company, roles, 

geographies, or other versatile categories. This fine-tuned model could generate relevant templates 

for users based on a given prompt or previously replied emails [TJH+21].  

Document summarizer 

People spend a lot of time reading, yet not all information read is necessary. Lawyers, professors, 

bankers, accountants, actuaries, students, and many other professionals spend a lot of time reading 

documents, yet more often than not they only need an executive summary. GPT can leverage its 

language modeling capabilities to provide intelligent text summarization service. When applied to 

scale, this could potentially create huge economic values by freeing users from dull reading tasks 

and saving their energy for more creative tasks. GPT can also be fine-tuned for specific segments 

of customers. For example, for customers in the financial industry such as investment bank analyst, 

GPT can learn more specifically about interpreting financial reports, and thereby saving analysts’ 

time of reading long and dry financial statements by providing informative summaries. 

Targeted advertising 

Increasingly, we observe the trend of advertising shifting from untargeted mass media channels 

such as television or street side billboards to targeted channels, such as individualized 

advertisement feed. This precision in advertising has created huge economic values for advertisers, 
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who are now better positioned for reaching their actual targeted audience, as well as for consumers, 

who can get access to more relevant and interesting advertising information. In order to identify 

and classify user profile for targeted advertising, GPT models can be used to parse and interpret 

texts generated by different users in real time on a massive scale. Social media that users post or 

like, news articles that users click, descriptions of commodities that users purchase, and so on can 

all be converted into inputs for GPT to decide which category of users do they belong, and thereby 

facilitating more precise advertising. 

Programming with plain language 

Programming is a highly technical skill that requires extensive training. Yet GPT has demonstrated 

capabilities in translating plain language into programming code. This feature could potentially 

enable many non-programming professionals to engage in programming tasks and thereby 

increasing their productivity. For example, chances are that a high school history teacher is not 

proficient in SQL or HTML programming. With the help of GPT though, this history teacher could 

gain access to large history databases and make educational websites based on the data. This way, 

GPT could eliminate or at least mitigate the technical barrier for people not trained in computer 

science and enable them to leverage the power of programming and combine programming with 

their respective professional expertise to create more values. GPT could also aid beginner 

programmers and help them better learn coding. Say if a coding beginner wants to learn how to 

write the code to print “Hello World,” normally they would have to find answers in a book or 

search on Stack Overflow. With GPT, they could simply type “print ‘Hello World’” and GPT 

would generate the respective code. This way, students could learn coding much more easily and 

quickly.  

 

 

Figure 19. GPT3 Generated CSS Code [Szogyenyi20]. 

 

Nonetheless, applying a technology to business is never as simple as just identifying the demand 

and releasing a product. There must also be appropriate business models, marketing strategies, 

financing strategies, as well as management and operations strategies. We propose the checklist 

below as a rubric for devising business plans for applying GPT models commercially.  

 



 35 

   - core product and value proposition 

   - key customers, channels, resources, activities, partners 

   - marketing, segmentation, differentiation, targeting 

   - financing, cost and revenue structures 

   - scaling, management, operations 

 

Now let’s try to apply this rubric to the application scenarios that we proposed earlier.  

In the case of the generative email assistant, our core value proposition is GPT’s capability of 

generating high quality texts based on natural language prompts. Our key customers are office 

workers who spend a lot of time writing emails, or companies that require their employee to write 

a lot of emails for work. In order to generate the most appropriate emails, GPT must be fine-tuned 

on specific tasks, and therefore we must partner with our customers and provide tailored services. 

In this sense, our customers should be large corporate users with many employees such that we 

can leverage economies of scale. Large training samples are our key resources since the 

performance of fine-tuning depends on the quantity and quality of training data.  

Given the above requirements, a suitable business model would be to integrate our GPT module 

with existing email platforms such as Gmail or Outlook. We would form joint ventures with 

Google or Microsoft, where we would provide our expertise in GPT, and they would provide their 

massive customer base and database. 

Similarly, in the case of document summarizer, we could partner with existing players in their 

respective industries. For example, we could partner with Bloomberg or license our model to them 

such that GPT can be integrated into the already mature Bloomberg financial data terminal 

products. This is because with only one GPT text summarizing feature, we are unable to break into 

the existing financial data segment, which has high barriers of entry. Yet we can combine our 

competitive advantage with the competitive advantages of existing players, in exchange for the 

brand reputation and customer base that they already enjoy. We could also license our model to 

Microsoft Office or Google Doc, where our GPT model could be integrated into the ecosystem of 

Office as an extension. This way we wouldn’t need to build the whole Office infrastructure from 

scratch and compete with Microsoft. Yet with our GPT model, Microsoft would be able to provide 

better services such as text summarization to their existing customers.   

In the case of GPT enabled plain language programming, it would be more feasible to create an 

independent product on its own. We could leverage open-source code on GitHub as our fine-tuning 

training set, and we could collaborate with engineering schools, Stack Overflow, online 

programming bloggers to promote our product, since they have access to many beginner 

programmers, and they do not form direct competition with us. An appropriate business model in 

this case would be subscription model. For example, we could release a baseline demo version that 

is free for trail, and a more comprehensive version that requires paid membership. This way, we 

could receive stable cashflow overtime, while attracting more people to purchase at a more 

affordable rate than a one-time purchase package. 

 

5 Future Prospect 
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GPT is not the ultimate version of transformer language models. Many attempts have been made 

by researchers in hoping to make improvements, which has become a trendy area of study with 

fast pace of iterations. Notably, a novel adaption of transformer language models called the switch 

transformers was proposed by researchers at Google Brain. It once again broke the size record for 

language models, having more than a trillion parameters. The main difference of switch 

transformer compared to previous transformer-based models such as GPT is not just in size, though, 

but rather its novel alignment of transformers [FZS21]. 

In deep learning, models typically reuse the same parameters for all inputs. This is also true for 

GPT models. Recall that after the pre-training stage, our model learns all the necessary parameters, 

from the bottom level embeddings to the upper-level decoders. When given an input, regardless of 

whether the input includes 0-shot, 1-shot, or few-shots examples, the model utilizes the entirety of 

its parameters to generate an output. Nonetheless, this is not necessarily the optimal way of using 

parameters. An alternative approach called Mixture of Experts (MoE) attempts to enable the model 

to select different sets of parameters to use depending on different inputs. This approach is able to 

increase the amount of parameters exponentially while maintaining a relatively stable 

computational cost thanks to the sparsely activated design. This approach makes intuitive sense, 

since few natural language sentences require the information of the entirety of what’s available in 

the training corpus, and thus we shouldn’t need every single parameter for every single task. 

Nonetheless, according to the researchers of the switch transformer, widespread adoption of this 

type of model has historically been hindered by complexity, communication costs, and training 

instabilities [FZS21].  

Switch transformer addressed those problems by proposing a new transformer-based architecture. 

The switch transformer encoder shares the same backbone with the traditional transformer encoder 

we discussed, having the same embeddings, positional encodings, self-attention, add & 

normalization, as well as linear & softmax layer. What’s different is that the switch transformer 

encoder replaced the dense feed forward neural network (FFN) with a sparse switch FFN, which 

acts like a router and independently routes each input token to different experts, where each expert 

is a block of FFN having its own unique parameters [FZS21].  

 

Figure 20. Switch transformer encoder architecture [FZS21]. 
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This way, the switch transformer was able to maximize the parameter count of the underlying 

transformers (managing over a trillion parameters), while keeping the computation cost for each 

input constant. Meanwhile, the model proposed many novel approaches to enhance parallelism so 

as to increase training and evaluation speed. The model also includes distillation capabilities, 

which could compress the model to a more manageable scale without significantly compromising 

the performance [FZS21].  

Although the details of switch transformer are not within the focus of this paper, this novel model 

provides insights into future development potential for transformers and GPT. It is possible that in 

the near future, researchers would find smarter solutions of adapting transformers such that 

trillions or even exponentially more parameters could be accommodated, perhaps without having 

to adopt MoE, and thereby achieving an even better performance. It is also possible that some 

other totally novel models can be invented in the future, simpler in design yet much more powerful, 

revolutionizing the field of NLP altogether, just like how machine learning upended NLP in 

previous years. 

 

6 Conclusion 

We presented the detailed design of the transformer model, and demonstrated that the transformer 

design, especially its attention mechanism, proves to be a novel and effective approach to deep 

learning language modeling. We then introduced the GPT series model and discussed its 

architecture in relation to the transformer model. We analyzed its training process, fine-tuning, 

and in-context learning. We showed that GPT is a capable language model that performs well 

across many domains. We also examined the limitations, implications, and risks associated with 

GPT. In the end, we explored its future development potential and surveyed its prospective 

business applications. 
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8 Appendix 

8.1 Source Code for a Vanilla Transformer 

Copied from transformer’s Wikipedia page. 

https://en.wikipedia.org/wiki/Transformer_(machine_learning_model) 

1. def vanilla_transformer(enc_inp, dec_inp): 
2.     """Transformer variant known as the "vanilla" transformer.""" 
3.     x = embedding(enc_inp) * sqrt(d_m) 
4.     x = x + pos_encoding(x) 
5.     x = dropout(x) 
6.     for _ in range(n_enc_layers): 
7.         attn = multi_head_attention(x, x, x, None) 
8.         attn = dropout(attn) 
9.         attn = layer_normalization(x + attn) 
10.  

11.         x = pointwise_ff(attn) # ReLU activation(affine map(attn)) 

12.         x = layer_normalization(x + attn) 

13.  

14.     # x is at this point the output of the encoder 

15.     enc_out = x 

16.  

17.     x = embedding(dec_inp) * sqrt(d_m) 

18.     x = x + pos_encoding(x) 

19.     x = dropout(x) 

20.     mask = causal_mask(x) 

21.     for _ in range(n_dec_layers): 

22.         attn1 = multi_head_attention(x, x, x, mask) 

23.         attn1 = layer_normalization(attn1 + x) 

24.  

25.         attn2 = multi_head_attention(attn1, enc_out, enc_out, None) 

26.         attn2 = dropout(attn2) 

27.         attn2 = layer_normalization(attn1 + attn2) 

28.  

29.         x = pointwise_ff(attn2) 

30.         x = layer_normalization(attn2 + x) 

31.     return dense(x) 

 

8.2 Source Code for GPT-2 Encoder 

Open-sourced by OpenAI. 

https://github.com/openai/gpt-2/blob/master/src/encoder.py 

 

"""Byte 

pair 

encoding 

utilities"

"" 
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import os  

import json  

import regex as re  

from functools import lru_cache  

   

@lru_cache()  

def bytes_to_unicode():  

    """  

    Returns list of utf-8 byte and a corresponding list of unicode strings.  

    The reversible bpe codes work on unicode strings.  

    This means you need a large # of unicode characters in your vocab if you 

want to avoid UNKs.  

    When you're at something like a 10B token dataset you end up needing 

around 5K for decent coverage.  

    This is a signficant percentage of your normal, say, 32K bpe vocab.  

    To avoid that, we want lookup tables between utf-8 bytes and unicode 

strings.  

    And avoids mapping to whitespace/control characters the bpe code barfs on.  

    """  

    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), 

ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))  

    cs = bs[:]  

    n = 0  

    for b in range(2**8):  

        if b not in bs:  

            bs.append(b)  

            cs.append(2**8+n)  

            n += 1  

    cs = [chr(n) for n in cs]  

    return dict(zip(bs, cs))  

   

def get_pairs(word):  

    """Return set of symbol pairs in a word.  

    Word is represented as tuple of symbols (symbols being variable-length 

strings).  

    """  

    pairs = set()  

    prev_char = word[0]  

    for char in word[1:]:  

        pairs.add((prev_char, char))  

        prev_char = char  

    return pairs 
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class Encoder:  

    def __init__(self, encoder, bpe_merges, errors='replace'):  

        self.encoder = encoder  

        self.decoder = {v:k for k,v in self.encoder.items()}  

        self.errors = errors # how to handle errors in decoding  

        self.byte_encoder = bytes_to_unicode()  

        self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}  

        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))  

        self.cache = {}  

   

        # Should haved added re.IGNORECASE so BPE merges can happen for 

capitalized versions of contractions  

        self.pat = 

re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s

+(?!\S)|\s+""")  

   

    def bpe(self, token):  

        if token in self.cache:  

            return self.cache[token]  

        word = tuple(token)  

        pairs = get_pairs(word)  

   

        if not pairs:  

            return token  

   

        while True:  

            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, 

float('inf')))  

            if bigram not in self.bpe_ranks:  

                break  

            first, second = bigram  

            new_word = []  

            i = 0  

            while i < len(word):  

                try:  

                    j = word.index(first, i)  

                    new_word.extend(word[i:j])  

                    i = j  

                except:  

                    new_word.extend(word[i:])  

                    break  
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                if word[i] == first and i < len(word)-1 and word[i+1] == 

second:  

                    new_word.append(first+second)  

                    i += 2  

                else:  

                    new_word.append(word[i])  

                    i += 1  

            new_word = tuple(new_word)  

            word = new_word  

            if len(word) == 1:  

                break  

            else:  

                pairs = get_pairs(word)  

        word = ' '.join(word)  

        self.cache[token] = word  

        return word  

   

    def encode(self, text):  

        bpe_tokens = []  

        for token in re.findall(self.pat, text):  

            token = ''.join(self.byte_encoder[b] for b in token.encode('utf-

8'))  

            bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in 

self.bpe(token).split(' '))  

        return bpe_tokens  

   

    def decode(self, tokens):  

        text = ''.join([self.decoder[token] for token in tokens])  

        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', 

errors=self.errors)  

        return text  

   

def get_encoder(model_name, models_dir):  

    with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f:  

        encoder = json.load(f)  

    with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', 

encoding="utf-8") as f:  

        bpe_data = f.read()  

    bpe_merges = [tuple(merge_str.split()) for merge_str in 

bpe_data.split('\n')[1:-1]]  

    return Encoder(  

        encoder=encoder,  

        bpe_merges=bpe_merges, 
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    ) 

 

8.3 Source Code for GPT-2 Model 

Open-sourced by OpenAI. 

https://github.com/openai/gpt-2/blob/master/src/model.py 

 

import 

numpy 

as np  

import tensorflow as tf  

from tensorflow.contrib.training import HParams  

   

def default_hparams():  

    return HParams(  

        n_vocab=0,  

        n_ctx=1024,  

        n_embd=768,  

        n_head=12,  

        n_layer=12,  

    )  

   

def shape_list(x):  

    """Deal with dynamic shape in tensorflow cleanly."""  

    static = x.shape.as_list()  

    dynamic = tf.shape(x)  

    return [dynamic[i] if s is None else s for i, s in enumerate(static)]  

   

def softmax(x, axis=-1):  

    x = x - tf.reduce_max(x, axis=axis, keepdims=True)  

    ex = tf.exp(x)  

    return ex / tf.reduce_sum(ex, axis=axis, keepdims=True)  

   

def gelu(x):  

    return 0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3))))  

   

def norm(x, scope, *, axis=-1, epsilon=1e-5):  

    """Normalize to mean = 0, std = 1, then do a diagonal affine transform."""  

    with tf.variable_scope(scope):  

        n_state = x.shape[-1].value  

        g = tf.get_variable('g', [n_state], 

initializer=tf.constant_initializer(1))  

        b = tf.get_variable('b', [n_state], 

initializer=tf.constant_initializer(0)) 
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        u = tf.reduce_mean(x, axis=axis, keepdims=True)  

        s = tf.reduce_mean(tf.square(x-u), axis=axis, keepdims=True)  

        x = (x - u) * tf.rsqrt(s + epsilon)  

        x = x*g + b  

        return x  

   

def split_states(x, n):  

    """Reshape the last dimension of x into [n, x.shape[-1]/n]."""  

    *start, m = shape_list(x)  

    return tf.reshape(x, start + [n, m//n])  

   

def merge_states(x):  

    """Smash the last two dimensions of x into a single dimension."""  

    *start, a, b = shape_list(x)  

    return tf.reshape(x, start + [a*b])  

   

def conv1d(x, scope, nf, *, w_init_stdev=0.02):  

    with tf.variable_scope(scope):  

        *start, nx = shape_list(x)  

        w = tf.get_variable('w', [1, nx, nf], 

initializer=tf.random_normal_initializer(stddev=w_init_stdev))  

        b = tf.get_variable('b', [nf], initializer=tf.constant_initializer(0))  

        c = tf.reshape(tf.matmul(tf.reshape(x, [-1, nx]), tf.reshape(w, [-1, 

nf]))+b, start+[nf])  

        return c  

   

def attention_mask(nd, ns, *, dtype):  

    """1's in the lower triangle, counting from the lower right corner.  

    Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce 

garbage on TPUs.  

    """  

    i = tf.range(nd)[:,None]  

    j = tf.range(ns)  

    m = i >= j - ns + nd  

    return tf.cast(m, dtype)  

   

   

def attn(x, scope, n_state, *, past, hparams):  

    assert x.shape.ndims == 3  # Should be [batch, sequence, features]  

    assert n_state % hparams.n_head == 0  

    if past is not None:  

        assert past.shape.ndims == 5  # Should be [batch, 2, heads, sequence, 

features], where 2 is [k, v] 
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    def split_heads(x):  

        # From [batch, sequence, features] to [batch, heads, sequence, features]  

        return tf.transpose(split_states(x, hparams.n_head), [0, 2, 1, 3])  

   

    def merge_heads(x):  

        # Reverse of split_heads  

        return merge_states(tf.transpose(x, [0, 2, 1, 3]))  

   

    def mask_attn_weights(w):  

        # w has shape [batch, heads, dst_sequence, src_sequence], where 

information flows from src to dst.  

        _, _, nd, ns = shape_list(w)  

        b = attention_mask(nd, ns, dtype=w.dtype)  

        b = tf.reshape(b, [1, 1, nd, ns])  

        w = w*b - tf.cast(1e10, w.dtype)*(1-b)  

        return w  

   

    def multihead_attn(q, k, v):  

        # q, k, v have shape [batch, heads, sequence, features]  

        w = tf.matmul(q, k, transpose_b=True)  

        w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype))  

   

        w = mask_attn_weights(w)  

        w = softmax(w)  

        a = tf.matmul(w, v)  

        return a  

   

    with tf.variable_scope(scope):  

        c = conv1d(x, 'c_attn', n_state*3)  

        q, k, v = map(split_heads, tf.split(c, 3, axis=2))  

        present = tf.stack([k, v], axis=1)  

        if past is not None:  

            pk, pv = tf.unstack(past, axis=1)  

            k = tf.concat([pk, k], axis=-2)  

            v = tf.concat([pv, v], axis=-2)  

        a = multihead_attn(q, k, v)  

        a = merge_heads(a)  

        a = conv1d(a, 'c_proj', n_state)  

        return a, present  

   

   

def mlp(x, scope, n_state, *, hparams): 
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    with tf.variable_scope(scope):  

        nx = x.shape[-1].value  

        h = gelu(conv1d(x, 'c_fc', n_state))  

        h2 = conv1d(h, 'c_proj', nx)  

        return h2  

   

   

def block(x, scope, *, past, hparams):  

    with tf.variable_scope(scope):  

        nx = x.shape[-1].value  

        a, present = attn(norm(x, 'ln_1'), 'attn', nx, past=past, hparams=hparams)  

        x = x + a  

        m = mlp(norm(x, 'ln_2'), 'mlp', nx*4, hparams=hparams)  

        x = x + m  

        return x, present  

   

def past_shape(*, hparams, batch_size=None, sequence=None):  

    return [batch_size, hparams.n_layer, 2, hparams.n_head, sequence, 

hparams.n_embd // hparams.n_head]  

   

def expand_tile(value, size):  

    """Add a new axis of given size."""  

    value = tf.convert_to_tensor(value, name='value')  

    ndims = value.shape.ndims  

    return tf.tile(tf.expand_dims(value, axis=0), [size] + [1]*ndims)  

   

def positions_for(tokens, past_length):  

    batch_size = tf.shape(tokens)[0]  

    nsteps = tf.shape(tokens)[1]  

    return expand_tile(past_length + tf.range(nsteps), batch_size)  

   

   

def model(hparams, X, past=None, scope='model', reuse=False):  

    with tf.variable_scope(scope, reuse=reuse):  

        results = {}  

        batch, sequence = shape_list(X)  

   

        wpe = tf.get_variable('wpe', [hparams.n_ctx, hparams.n_embd],  

                             

initializer=tf.random_normal_initializer(stddev=0.01))  

        wte = tf.get_variable('wte', [hparams.n_vocab, hparams.n_embd],  

                             

initializer=tf.random_normal_initializer(stddev=0.02)) 
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        past_length = 0 if past is None else tf.shape(past)[-2]  

        h = tf.gather(wte, X) + tf.gather(wpe, positions_for(X, past_length))  

   

        # Transformer  

        presents = []  

        pasts = tf.unstack(past, axis=1) if past is not None else [None] * 

hparams.n_layer  

        assert len(pasts) == hparams.n_layer  

        for layer, past in enumerate(pasts):  

            h, present = block(h, 'h%d' % layer, past=past, hparams=hparams)  

            presents.append(present)  

        results['present'] = tf.stack(presents, axis=1)  

        h = norm(h, 'ln_f')  

   

        # Language model loss.  Do tokens <n predict token n?  

        h_flat = tf.reshape(h, [batch*sequence, hparams.n_embd])  

        logits = tf.matmul(h_flat, wte, transpose_b=True)  

        logits = tf.reshape(logits, [batch, sequence, hparams.n_vocab])  

        results['logits'] = logits  

        return results 

 

8.4 Sample Text Generated by GPT-3 

[BMR+20] 
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8.5 Sample Text Generated by GPT3 with In-Context Learning 

[BMR+20] 
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8.6 Sample Text Generated by GPT2 

[RWC+19] 
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