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ABSTRACT   
  

In   this   thesis,   we   develop   an   -regret   price   individualization   model   for   any   -level  (1 ε)  O / ε  
of   di�erential   privacy.   

  
INTRODUCTION   

  
“No   man   ever   came   to   market   with   less   seductive   goods,     

and   no   man   ever   got   a   better   price   for   what   he   had   to   offer.”    1   
    

For   most   of   economic   history,   prices   were   dynamic,   with   specialized   peddlers   in   ports   and   
markets   becoming   expert   negotiators   in   their   limited   catalog.   Over   time,   as   catalogs   grew   and   
distribution   scaled,   the   ability   for   individual   sellers   to   optimize   their   revenue   withered.   By   the   
Industrial   Revolution,   the   price   tag   became   the   norm,   and   every   buyer   received   the   same   price   for   
each   unit   of   sale   of   a   good. 2    A   century   and   a   half   later,   e-commerce   and   machine   learning   have   
enabled   the   scaling   of   the   older,   dynamic   model.   Now,   for   the   �rst   time   in   centuries,   di�erent   
buyers   at   di�erent   times   are   receiving   radically   di�erent   prices   for   nearly   every   good,   with   price   
variations   determined   by   the   endless   array   of   personally-identi�able   information   that   has   been   
collected   about   each   of   us,   with   and   without   our   consent.   

The   use   of   user   data   in   price   discrimination   algorithms   brings   up   a   tough   question:   is   it   
fair    to   use   someone’s   personal   data   to   alter   the   prices   they   are   o�ered?   In   other   domains,   the   use   
of   user   data   has   had   clearly   undesirable   e�ects   when   it   comes   to   common   notions   of   fairness:   for   
example,   criminal   sentencing   algorithms   have   been   shown   to   have   racial   bias,   and   job   
advertisement   algorithms   have   been   shown   to   have   gender   bias. 3    In   pricing,   though,   the   use   of   
some   personal   data   is   already   commonplace.   Take,   for   example,   the   senior   discount,   where   a   
younger   person   will   be   up-charged   for   their   youth,   or   Uber’s   surge   pricing.   In   another   academic   
department,   entire   theses   could   be   written   dissecting   the   moral   arguments   behind   a   slew   of   
pricing   case   studies.   For   our   purposes   though,   it   su�ces   to   say   that   the   use   of   personal   data   in   
pricing   is   a   breeding   ground   for   moral   dilemma;   it   is   an   arena   with   many   competing   imperatives   
continually   at   play.     

1  An   old   joke   by   H.L.   Mencken,   though   I   can’t   �nd   the   source   or   the   subject.     
2  Goldstein,   Jacob   and   Jess   Jiang,   hosts.   “The   Birth   And   Death   Of   The   Price   Tag.”    Planet   Money ,   NPR,   17   Jun.   
2015.     
3  Friedler,   Sorelle   A.,   Carlos   Scheidegger,   Suresh   Venkatasubramanian.   “The   (Im)possibility   of   Fairness:   Di�erent   
Value   Systems   Require   Di�erent   Mechanisms   For   Fair   Decision   Making,”    Communications   of   the   ACM ,   April   2021,   
Vol.   64   No.   4,   Pages   136-143.   10.1145/3433949.     
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Before   we   philosophize   too   deeply,   let   us   ask   if   there   is   an   algorithmic   shortcut   around   this   
dilemma:   is   there   a   way   to   enable   traditional   price   individualization   and   optimization   models   to  
operate    fairly ,   perhaps   by   o�ering   a   probabilistic   guarantee   that   a   user’s   data   will   not   be   used   to   
up-charge   them?   In   this   thesis,   we   will   show   that   the   answer   is   yes.   This   thesis   combines   revenue   
management   algorithms   with   di�erential   privacy   to   produce   a   novel   pricing   framework   with   both   
privacy   and   pro�tability   guarantees.   In   the   following   pages,   we   will   produce   an   -regret  (1 ε)  O /  
price   individualization   model   for   any   -level   of   di�erential   privacy.  ε  

The   signi�cance   of   pricing   algorithms   is   hard   to   overstate.   In   the   current   discourse,   
income   and   wealth   inequality   are   issues   of   top   interest.   This   interest,   of   course,   rests   upon   the   idea   
that   a   dollar   for   each   person   is   equally   valuable;   that   is,   a   dollar   in   one   pocket   has   the   ability   to   buy   
the   same   goods   as   in   another.   In   light   of   dynamic   pricing,   this   ideal   is   simply   not   the   case.   Two   
people   can   be   charged   wildly   di�erent   prices   for   the   same   good,   often   at   the   same   time.   Adding   
fairness   to   pricing   through   privacy   creates   a   safeguard   against   many   undesirable   e�ects.   

  
Dynamic   pricing   and   its   early   practitioners   

  
Markets   have   existed   for   so   long   and   in   so   many   lands,   that   they   are   likely   an   intrinsic   

property   of   human   cooperation.   One   might   daydream   of   the   oldest   of   markets:   a    bazaar    or   a    souq ,   
the   central   square   on   a   caravanserai   along   an   early   trade   route.   There,   one   might   imagine   trade’s  
steady   hum,   of   buyers   and   sellers   coming   to   terms   on   an   exchange.   Anthropological   research   has   
shown   that   as   early   as   3000   BCE,   these   canonical   bazaars   were   located   near   citadels   and   palaces,   
placed   with   the   express   intention   of   selling   to   rulers.   Of   course,   the   sellers   in   these   bazaars   knew   
that   the   ruler’s   wealth   implied   a   grand   willingness-to-pay,   and   therefore   hand-negotiating   even   
routine   deals   gave   sellers   the   power   to   extract   wealth   from   buyers. 4   

This   haggling,   of   course,   was   the   earliest   form   of   dynamic,   or   individualized,   pricing:   the   
setting   and   resetting   of   prices   to   optimize   revenue   or   pro�ts   over   time.   The   market   mechanisms   
that   lend   themselves   to   dynamic   pricing   are   twofold.   First,   if   the   product   expires   at   some   point   in   
time,   an   urgency   of   sale   is   created   that   drives   sellers   to   change   prices   for   a   certain   number   of   units.   
Second,   if   there   is   a   limited   inventory   that   can   only   be   expanded   at   great   marginal   cost   or   with   
long   time   delays,   the   value   of   the    - th   remaining   unit   of   a   good   is   the   willingness-to-pay   of   the   n   

-th   highest   bidder   under   unit   demand;   this   dynamic   creates   an   ever-increasing   market-clearing  n  
price,   which,   of   course,   the   seller   would   be   happy   to   exploit. 5    The   interaction   e�ect   of   these   two   

4  Mohammadreza   Pourjafar,   Masoome   Amini,   Elham   Hatami   Varzaneh,   Mohammadjavad   Mahdavinejad,   “Role   of   
bazaars   as   a   unifying   factor   in   traditional   cities   of   Iran:   The   Isfahan   bazaar,”    Frontiers   of   Architectural   Research ,   
Volume   3,   Issue   1,   2014,   Pages   10-19,   ISSN   2095-2635,   https://doi.org/10.1016/j.foar.2013.11.001.   
5  McAfee,   R.   Preston   and   Vera   te   Velde,   “Dynamic   Pricing   in   the   Airline   Industry.”    Handbook   on   Economics   and   
Information   Systems ,   Ed:   T.J.   Hendershott,    Elsevier   Handbooks   in   Information   Systems ,   Volume   1;   ISBN   
0444517715,   2007.   
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conditions   is   that   the   market   for   a   good   becomes   a   time-dependent   system   where   the   value   of   the   
marginal   unit   �uctuates   dramatically   based   on   the   time   to   expiry,   number   of   bidders,   remaining   
inventory,   and   other   pieces   of   the   extended   context.   Over   the   following   pages,   we   will   work   to   
mathematically   de�ne   and   re�ne   these   forces.   

Given   the   immense   value   that   can   be   unlocked   by   dynamic   pricing,   the   practice   is   found   
in   a   variety   of   modern-day   industries   where   these   two   conditions   are   met.   Consider   the   average   
vacation:  

1. You   book   a   hotel   through   a   travel   website,   such   as   Expedia   or   Priceline,   where   the   price   of   
the   room   changes   day-to-day.   Of   course,   hotel   rooms   on   a   particular   night   are   an   expiring   
good:   if   they   go   unbooked,   no   revenue   is   collected   and   the   opportunity   is   lost.   In   
addition,   hotel   rooms   are   a   constrained   good:   if   the   hotel   is   full,   there   is   no   way   to   easily   
add   an   additional   room   on   demand.     

2. You   book   a   �ight,   where   the   price   of   your   seat   changes   day-to-day.   Just   as   with   the   hotel,   
�ight   seats   are   both   expiring   and   constrained.   

3. You   grab   an   Uber   to   the   airport,   where   you   encounter   surge   pricing.   This   surge   pricing,   as   
many   know,   is   driven   by   the   supply   of   drivers   and   demand   of   riders   in   your   area. 6   

4. Your   travel   companion,   though,   arrives   separately   in   their   own   car,   having   stopped   at   the   
gas   station   and   paid   slightly   more   per-gallon   than   they   did   yesterday.     

5. You   get   to   your   hotel   and   order   �sh   in   the   lobby   restaurant,   where   the   price   is   listed   as   
market   price.     

  
While   dynamic   pricing   is   everywhere,   there   are   various   forms.   

  
The   three   degrees   of   price   discrimination   

  
To   economists,   dynamic   pricing   is   also   known   as   price   discrimination:   the   use   of   di�erent  

market   constructions   to   apply   di�erential   pricing   regimes   and   capture    alpha .   To   understand   
alpha,   let   us   consider   a   single-price   seller   subject   to   a   demand   curve    ,   where      is   the  (p)D p  
single-price   they   are   able   to   set.   To   optimize   revenue,   all   this   seller   must   do   is   optimize    ,   the  (p)pD  
maximum   value   of   which   we   can   de�ne   as    .   Now,   what   if   this   seller   could   set   multiple   prices,  R*  
maybe   through   a   senior   discount?   We   might   represent   this   revenue   as    .   As   such,   we   can  R* + α  
think   of   alpha   as   the   marginal   value   of   price   individualization   above   and   beyond   single-price  
selling. 7     

In   economic   theory,   there   are   three   degrees   of   price   discrimination,   each   focusing   on   a   
di�erent   subset   of   information   to   generate   alpha.   In   price   discrimination   of   the   �rst   degree,   each   

6  “How   Surge   Pricing   Works,”    Drive   for   Uber .   Uber.   2021.   
7  Note   that   a   bad   pricing   model   might   have   negative   alpha.   
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buyer   is   charged    exactly    their   willingness-to-pay,   thereby   maximizing     alpha.   As   the   entire   
willingness-to-pay   curve   is   captured   for   the   seller   in   this   case,   this   degree   is   also   known   as   perfect   
price   discrimination,   and   it   is   the   ultimate   goal   for   every   multi-price-setting   seller.   As   we   will   see,   
most   pricing   algorithms   from   both   computer   science   and   revenue   management   research   are    price   
individualization    models,   themselves   just   approximations   of   perfect   pricing.   In   the   wild,   perfect   
price   discrimination   is   most   commonly   seen   in   airline   and   entertainment   tickets,   multi-buyer   
auctions,   hotels,   gasoline   prices,   and–everyone’s   favorite–Uber’s   surge   pricing.   

 The   second   degree   of   price   discrimination   is   product   bundling,   in   which   the   product   is   
bundled   in   varied   manners,   leading   to   di�erent   pricing   regimes.   The   most   popular   form   of   
bundling   is   volume   discounts,   wherein   a   certain   price   is   applied   for,   say,   the   �rst     units,   and   a  k  
lower   price   is   applied   for   all   units   thereafter.   Another   common   example   of   second-degree   price   
discrimination   is   Amazon   Prime,   where   the   buyer   is   given   a   di�erent   price   depending   on   whether   
or   not   they   bought   a   membership.   (The   same   designation   applies   to   Costco   memberships.)   Price   
discrimination   of   the   second   degree   has   gained   particular   importance   in   software-as-a-service,   
where   a   buyer   might   pay   a   �xed   setup   fee   plus   a   variable   usage-based   fee,   such   as   for   API   access. 8   

The   third   degree   of   price   discrimination   is   segmented   pricing,   wherein   separate   groups   of   
individuals   are   given   di�erent   prices.   Here,   we   �nd   varied   examples   from   a   senior   discount   to   
in-state   and   out-of-state   tuition   di�erences.     

While   not   traditionally   de�ned   as   a   degree   of   price   discrimination,   the   term   “dynamic   
pricing”   itself   emphasizes   the   time   of   the   transaction   and   the   current   supply   and   demand   for   the   
good   being   transacted.   Similarly,   cost   management   models   emphasize   �uctuations   in   the   cost-basis   
of   a   good,   as   well   as   whether   or   not   cost   changes   can   be   passed   on   to   buyers. 9   

  
     

8  McKenzie,   Patrick.   “A   Guide   to   Software-as-a-Service   Pricing:   Pricing   low-touch   SaaS,”    Stripe   Atlas .     
9  Acemoglu,   Daron,   et   al.    Economics .   Pearson,   2019.      
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Toward   a   mathematical   model   for   pricing   
  

 From   the   degrees   of   price   discrimination   above,   we   see   that   a   great   number   of   data   points   
might   be   considered   in   a   pricing   decision.   Intuitively,   we   might   think   that   buyer   information,   
time,   inventory   level   and   supply   constraints,   demand   estimates,   and   cost   might   all   be   used   in   a   
pricing   decision,   as   well   as   many   other   parameters   both   known   and   estimated.   Mathematically,   let   
us   de�ne   the   following   ingredients   for   a   pricing   model:   

1. Let     be   our   aggregate   demand   function   and   let     be   our   individual   demand  (p)Γ (p)Γi  
function   for   buyer   .   In   traditional   economic   theory,     is   treated   as   a   deterministic  i Γ  
function   of   price.   For   a   given   price   ,   the   market   will,   in   aggregate,   demand  p  

  units.   In   this   thesis,     will   refer   to   our   estimate   of   ,   conditional   on  (p) (p)Γ = ∑
 

i
Γi Γ

︿
Γ  

some   informational   state.   
2. Let     be   an   arbitrary   context   vector   containing   buyer,   seller,   inventory,   cost,   and   product  w  

information,   as   well   as   any   other   contextual   information   about   the   transaction.   
3. Let     be   time   and     be   the   inventory   level   at   time   .   t (t)I t   

  
Thus,   we   will   de�ne   an   ideal   pricing   model     as   a   price   -producing   function   that   maximizes  M p  
revenue   while   inventories   are   available:     

  

that   maximizes      while    (w , )pi = M i t (p |w )∑
 

i
Γi i i * pi (t) I > 0  

  
In   English,   we   see   that     produces   prices   that   maximize   revenue   across   all   buyers,   so   long   as  M  
goods   remain   in   inventory.   
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PRICING   MODELS   
  

 In   practice,   pricing   algorithms   from   the   �eld   of   revenue   management   focus   on   data   that   is   
most   easily   available   to   sellers:   cost,   supply,   and   demand.   Cost,   for   the   most   part,   is   the   easiest,   as   
sellers   can   directly   observe   it   during   the   purchasing   process. 10    Similarly,   when   deliveries   are   
received   and   shipments   are   sent,   sellers   have   a   real-time   view   into   their   inventory:   a   directly   
observable   proxy   for   market   supply.   Demand,   on   the   other   hand,   is   forward-looking   and   cannot   
be   observed.   As   such,   many   pricing   models   assume   or   require   a   demand   forecasting   model,   which   
itself   is   a   �eld   of   computational   research   and   is   outside   the   scope   of   this   thesis.   

  
Cost-plus   

  
Cost-plus   is   the   simplest   and   most   commonly-used   pricing   rule;   it   gives   a   good’s   unit   price   

by   its   cost     and   a   pro�t   markup   :  c m  
  

 1 )  p = c * ( + m  
  

The   simplicity   and   widespread   use   of   cost-plus   speaks   to   two   real-life   concerns   of   price   strategy.   
First,   sellers   prefer   a   justi�able   pricing   model.   Pricing,   crucially,   is   a   repeated   game,   in   which   
revenue   retention   is   far   more   valuable   than   a   few   percentage   points   here   or   there   on   any   one   
purchase.   Later   on,   we   will   quantify   this   “reputation   premium”   as   the   expected   value   of   customer   
retention.   Second,   most   sellers   prefer   a   simple   model,   as   they   are   often   time-constrained   and   
without   the   know-how   or   resources   to   invest   in   a   more   sophisticated   pricing   model.   Thus,   for   
millions   of   businesses   all   over   the   world,   someone   sits   down,   looks   at   their   costs,   picks   a   pro�t   
margin   they   like,   and   sets   a   static   price.   Of   course,   we   might   recognize   a   fatal   �aw   in   this   scenario:   
cost-plus   has   no   clear   mechanism   for   optimizing   the   price   or   the   markup.   How   does   a   seller   know   
when   the   markup   they   have   chosen   is   right?     

  
Optimization   using   the   price   elasticity   of   demand   

  
 Price   elasticity   of   demand     measures   the   relationship   between     and   :  z p Γ  

  
  z =   ­  ∂Γ   Γ ]   [ ∂p   p ]  [ / / /  

  
In   theory,   the   value   of     can   say   a   lot   about   the   market   a   seller   is   operating   in:   z   

10  It   is   worth   mentioning   that   the   speci�cs   of   cost   accounting   get   very   complicated,   and   many   businesses   struggle   with   
accurately   and   meaningfully   calculating   their   cost   of   goods   sold.     
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● If   ,   the   market   is   perfectly   elastic,   meaning   that   any   small   change   in   price   will  z|  | = ∞  
garner   a   complete   loss   in   demand.   In   reality,   such   a   market   is   present   for   commodities,   
where   a   price   is   set   and   everyone   must   accept   it.   

● If   ,   the   market   is   perfectly   inelastic,   meaning   that   a   change   in   price   will   garner  z|| = 0  
precisely   no   movement   in   demand.   In   reality,   such   a   market   cannot   exist,   as   everyone   runs   
out   of   buying   power   eventually.   Approximations   of   such   a   market   include   healthcare,   
wherein   the   cost   of   an   operation   or   procedure   is   nearly   irrelevant   when   death   is   the   
alternative.   

● If   ,   the   market   is   unit   elastic,   meaning   that   a   small   change   in   price   is   perfectly   o�set  z|| = 1  
by   a   small   change   in   quantity,   such   that   the   overall   revenue   remains   unchanged.   As   a   
consequence,   when   ,   revenue   is   maximized,   as   proved   below.  z|| = 1  

  
The   proof   is   rather   straightforward.   For   our   single-price   seller,   the   revenue   e�ect   of   a   price   increase   
is   as   follows:   

  
 ∂p

∂R  
 Γ(p)  = ∂

∂p * p  

 (p)  = Γ + p * ∂p
∂Γ  

 (p)  Γ(p)  ]   Γ(p)  = Γ * [ + p * ∂p
∂Γ /  

 (p)  1  ]  = Γ * [ + ∂p   p/
∂Γ   Γ(p)/  

 (p) 1 )  = Γ * ( ­ z  
  

With   our   revenue   e�ect   established,   we   now   have   three   cases:     
1. If    ,   then     the   revenue   e�ect   is   positive,   as   we   know   that     is   de�nitionally  1 )  ( ­ z > 0 (p)Γ  

positive.     Thus,   the   seller   makes   more   money   than   before   and   would   be   correct   to   
continue   to   raise   prices   until      and   maximum   revenue   has   been   reached.   (p) 1 )  Γ * ( ­ z = 0   

2. Similarly,   if    ,   then     the   revenue   e�ect   is   negative.     Thus,   the   seller   makes   less  1 )  ( ­ z < 0  
money   than   before   and   would   be   correct   to   lower   prices   until      and   the  (p) 1 )  Γ * ( ­ z = 0  
maximum   revenue   has   been   reached.   

3. If    ,   then   the   revenue   e�ect   is   zero,   and   the   revenue   itself   is   already   maximized.  1 )  ( ­ z = 0  
This   maximization,   as   desired,   occurs   when   . 11  z = 1  

  
     

11   Acemoglu,   Daron,   et   al.    Economics .   Pearson,   2019.      
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Shortcomings   of   the   baselines   
  

For   the   economist,   price   optimization   by   the   elasticity   of   demand   is   a   tried-and-true   
strategy,   though   the   more   statistically-minded   will   observe   a   weakness:   it   treats   preferences   (so   far   
denoted   by   the   demand   curve    )   as   a   deterministic   function.   A   traditional   economists’   approach  Γ  
to   elasticity   would   outline   a   few   determinants   of   the   value,   among   them:   

● The   quality   and   availability   of   substitutes.   If   a   substitute   good,   or   a   good   that   ful�lls   the   
same   “job   to   be   done,”   is   available   at   better   value-for-quality,   the   original   good   tends   to   be   
more   elastic,   as   demand   can   shift   over   to   substitutes   in   response   to   a   price   change.   

● The   purchasing   power   of   the   buyer.   If   the   buyer   has   exceptional   purchasing   power   relative   
to   the   cost   of   the   good,   the   good   tends   to   be   inelastic,   as   the   willingness-to-pay   is   not   
constrained.   

● Necessity   and   addiction.   In   the   real   world,   there   are   no   perfectly   inelastic   markets,   because   
everyone   runs   out   of   money   eventually.   Even   so,   we   might   state   that   the   demand   is   
(nearly)   perfectly   inelastic   in   the   case   of   necessity   and   addiction.     

● Time.   The   longer   the   time   horizon   of   a   market,   i.e.   the   longer   a   price   will   be   set   for,   the   
more   elastic   it   tends   to   be,   as   buyers   have   more   time   to   �nd   substitutes   or   change   their   
needs   and   preferences   in   response   to   price   changes. 12   

  
Considering   these   “traditional”   factors   of   elasticity,   we   might   recognize   that   they   are   all   stochastic:   
substitutes   disappear   and   emerge   constantly;   every   day   fortunes   rise   and   fall;   priorities   and   needs   
change.   In   addition,   we   might   consider   another   “factor”   a�ecting   elasticity:   that   multiple   Nobel   
prizes   have   been   awarded   to   the   experimenters   who   have   measured   and   validated   just   how   �ckle,   
irrational,   and   without   complete   information   the   average   buyer   is. 13    Indeed,   we   must   think   of     Γ  
as   a   density   function   for   our   demand   estimate:   given   a   price,   what   do   we   believe   the   distribution   
of   demand   to   be?   How   do   we   observe   and   sample   it?   With   this   framing,   we   must   now   �nd   a   
model   that   both   samples   demand,   as   well   as   leverages   our   knowledge   of   it   over   time   to   truly   
optimize   revenue.   

  
Setting   random   prices   

  
Imagine   a   seller   who   sets   random   prices.   Say   the   seller   gets      customers   per   day,   who  n  

individually   have   demand   ,   where   .     Let   us   make   some   assumptions   about     that   we  Γi 1, ]  i ∈ [ n Γ  
will   maintain   for   the   remainder   of   this   work:   

1.   will   always   be   real   and   positive.  p  

12  Ibid.   
13  Consider   the   work   of   Daniel   Kahneman,   Amos   Tversky,   and   Richard   Thaler,   among   many   others.   
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2.   monotonically   decreases   as      increases   for   all   .   This   assumption   is   a   standard   in  (p)Γi p i  
economic   theory,   known   as   a   downward-sloping   demand   curve. 14   

3.   is   �nite   and   non-negative   for   all     and   all   values   of   .  (p)Γi i p  
4. There   exists   a   �nite   price     such   that     for   all     and   all   .     Here,   we   can  υ (p)Γi = 0 i p > υ  

think   of     as   one   cent   more   than   anyone   would   pay   and     as   one   cent   more   than   buyer  υ υi  
  would   pay.  i  

5. If   the   quote   price   ,   the   buyer   �nds   a   new   seller   and   never   returns   (“churns”).   In  pi > υi  
this   case,   the   lost   customer   lifetime   value   can   be   stated   as   simply   ,   where   is  (p )p LΓi * * i Li  
the   length   of   the   customer   lifetime   of   the   buyer   in   periods   and   is   the   p*  
revenue-maximizing   price   for   our   single-price   seller. 15   

  
With   these   conditions   laid   out,   let   us   specify   the   nature   of   our   sellers’   random   pricing:   for   each   
buyer,   the   seller   picks   a   price   uniformly   across     and   observes   revenue   .   Here   we  pr 0, υ][   Γ (p )pr i r  
assume   that   we   know   ,   though   this   is   largely   not   the   case   in   real   life.   In   the   next   section,   we   will  υ  
relax   this   assumption.   If   we   then   plot     by   ,   we   will   begin   to   plot   out   our   aggregate  (p )Γi r pr  
demand   function   .   As   ,   this   resultant   revenue   graph   would   seem   to   converge   to   our  Γ  n→ ∞  
aggregate   demand   density,   sampling   each     multiple   times   for   each   buyer.   With   this   knowledge,  pr  
it   is   trivial   to   �nd   ,   the   price   that   maximizes   revenue   in   expectation.    p*   

Overall,   random   pricing   is   a   robust   method   of   price   discovery,   although   it   is   very   
expensive,   with   the   lost   revenue   or   “cost   of   information”   as   follows:   

  

  (p )p (p )p (p )Γ (p )p L∑
 

i
Γi * * ­ ∑

 

i
Γi i i + ∑

 

i
P i > υi i * * i   

  
In   plain   English,   the   “cost   of   information”   is   ideal   revenue   minus   collected   revenue   plus   the   cost   
of   lost   buyers.   To   the   astute   reader,   one   term   jumps   out:   there   are   no   guarantees   whatsoever   about 

.   It   just   might   so   happen   that   our   pricing   upper-limit   of     is   very,   very   high,   and   we  (p )P i > υi υ  
randomly   quote   very   high   prices   to   a   great   number,   all   of   whom   churn.   As   such,   we   need   a   better   
manner   of   price   searching,   perhaps   one   that   can   narrow   our   search   range.     

  
     

14   Acemoglu,   Daron,   et   al.   Economics.   Pearson,   2019.      
15  Ghose,   A.,   P.   Ipeirotis   and   A.   Sundararajan.   Reputation   Premiums   in   Electronic   Peer   to   Peer   Markets:   Analyzing   
Textual   Feedback   and   Network   Structure.   Proceedings   of   the    ACM   SIGCOMM   Workshop   on   Economics   of   P2P ,   
Philadelphia,   August   2005.   
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Setting   prices   with   Binary   Price   Search   
  

 The   good   news   is   that   we   can   do   better   than   random   sampling   by   using   a   binary   search.   
Here,   we   can   improve   upon   uniform   random   price   sampling   in   two   directions.   First,   we   reduce 

  across     transactions.   Second,   we   reduce   the   number   of   observations   required   to   �nd  (p )P i > υi  
certainty,   thereby   reducing   the   maximum   number   of   sub-optimal   transactions   and   alienated   
buyers.   To   achieve   these   reductions,   we   must   �rst   take   a   page   from   Arthur   La�er,   the   economist   
who   famously   observed   that   tax   rates   of   0%   and   100%   both   garner   zero   governmental   revenue.   
Only   in   the   interval   is   income   tax   elastic.   In   our   pricing   construction,   we   see   that      gains   no  pi = 0  
revenue,   as   no   money   is   collected   for   each   unit   sold.   In   addition,   we   see   that      garners   no  pi = υi  
revenue,   as   there   is   no   demand.   As   we   know   that     is   �nite,   what   if   we   just   binary-searched   this  υ  
interval   to   �nd   a   single   optimal   price   ? 16    We   could   do   just   that,   recursing   onto   the   p*  
higher-revenue   quarter   points   on   either   side   of   our   interval’s   midpoint,   starting   with    .  0, ][ υ  

What   would   the   cost   of   this   search   be?   Let   us   recall   that   random   search   required   n
observations   to   move   our   estimate   of   within   some   provable   bounds   of   optimal.   Consider   the   p*  
following   proof   that   only   observations   are   needed   for   convergence   to   those   same   bounds  og(n)l  
with   random   pricing.   In   random   pricing,   we   sampled   an   interval   of   length     a   total   number   of   υ n
times.   Thus,   in   expectation,   the   distance   between   each   observation   point   (and   therefore   the   
granularity   of   our   price   estimate)   is   .   Now,   let   the   price   discovered   by   binary   search   be   .   After  n

υ pb  
halving   our   search   interval   times,   we   know   that   .   og(n)l  p* ­ pb < n

υ   
In   plain   English,   the   cost   of   information   under   this   search   is   ideal   revenue   minus   revenue   

collected   over   only     transactions   minus   revenue   collected   over transactions   with  og(n)l og(n)  n ­ l  
price       plus   the   cost   of   lost   buyers   over   only      transactions:  pb og(n)l  

  

   (p )p   (p )p (p ) Γ (p )p LR* ­ ∑
 

i ∈ [0, log(n)]
Γ i i i ­ ∑

 

i ∈ [0, log(n)]/
Γ i b b + ∑

 

i ∈ [0, log(n)]
P i > υi i * * i    

  
Asymptotically,   converges   to   ,   such   that   we   can   rewrite   this   cost   as:    pb  p*   

  

 [Γ (p )p   (p )p (p )Γ (p )p L ]∑
 

i ∈ [ 0, log(n) ]
i * * ­ Γi * * ­ P i > υi i * * i  

  

Here,   we   make   two   observations.   First,   the   number   of   sub-optimal   transactions   is   ,   a  (log(n))O  
di�erent   order   than   in   random   pricing,   where   it   was   .   Second,   is   less   under   this  (n)O (p ) P i > υi  
search   than   uniform   for   the   average   buyer,   as   we   have   “learned”   from   prior   observations   to   set   

16  This,   of   course,   only   works   if   the   revenue   curve   is   convex,   which   we   cannot   prove   without   making   assumptions   
about   the   preferences   of   individuals.     
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prices   into   a   reduced   segment   of   the   pricing   interval.   Formal   proof   for   this   statement   would   
require   us   to   make   assumptions   about   the   demand   functions   ,   but   we   can   intuit   a   proof   using  Γi  
the   Central   Limit   Theorem.   If   indeed   all   deterministic   demand   functions   converge   to   normal,   Γi  
we   know   that      strictly   declines   relative   to   uniform   sampling,   as   the   probability   of  (p )P i > υi  
selecting   an   outlier   from   a   normal   distribution   across   an   interval   is   lower   than   doing   the   same   over   
a   uniform   distribution.   

As   we   can   see,   better   price   sampling   leads   to   strictly   better   outcomes:   we   understand   what   
our   demand   curves   look   like   while   incurring   fewer   costs   to   obtain   information.   One   must   ask,   
though,   how   much   better   can   we   do?   Is   there   a   better   price   sampling   algorithm   than   binary   
search?     
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BANDITS 17   
  

The   multi-armed   bandit   problem   is   a   resource   allocation   problem   wherein   an   agent   must   
allocate   constrained   resources   to   various   alternatives,   the   payo�s   of   which   are   all   uncertain.   The   
problem   derives   its   unique   name   from   the   “one-armed”   bandit:   a   slot   machine.   Consider   a   
gambler   who   approaches   a   slot   machine    .   Say   that   the   gambler   has   allocated   enough   money   for  M  

 pulls.   With   this   decision   made,   the   cost   of   play   is   �xed;   it   is   a   sunk   cost.   His   interest   lies   solely   in  n  
maximizing   his   payout.   Consider   the   “win”   random   variable   ,   parameterized   by  (M , 1, ])  W i ∈ [ n  
the   machine   and   the   pull   number,   that   returns   a   scalar   payo�,   the   higher   the   better.   With   these   
de�nitions,   we   see   that   our   gambler’s   expected   payo�   is   simply   ,   as   he   has   no  [W (M , )]  E i * n  
choice   but   to   play   machine   .   M   

Now   consider   a   row   of     slot   machines,    .   Although   our   gambler   doesn’t  k , ... , MM 1     k  
know   the   exact   behavior   of    ,   he   knows   that   the   machine   itself   is   a   parameter   and   that   some  W  
machines   pay   out   better   than   others.   Now   our   gambler   faces   a   resource   allocation   problem:   how   
does   he   allocate   his      pulls   across   the      machines   to   maximize   his   expected   winnings?   n k   

Intuitively,   we   see   that   the   gambler   is   split   between   two   imperatives.   First,   the   gambler   
must    explore    ,   sampling   each   machine   to   try   to   understand   its   payo�s.   Second,   the   gambler  W  
must    exploit    ,   allocating   pulls   to   the   best   machine   to   maximize   his   earnings.   Solving   this  W  
trade-o�,   of   course,   is   the   multi-armed   bandit   problem.     

If   we   leave   Las   Vegas   and   return   to   our   market,   we   see   that   our   seller   faces   the   same   
problems   as   the   gambler:   

● The   seller   sees      buyers   per   period   sequentially,   just   as   the   gambler   has      pulls.   n n   
● The   seller   has     pricing   options,   just   as   the   gambler   has     slot   machine   options.  k k  
● The   seller   faces   an   uncertain   demand   curve   ,   just   as   the   gambler   faces   an   uncertain  (p)Γi  

payo�   function    .   (M , i)W     
  

One   nuance   to   be   considered   is   the   nature   of   continuity   in   pricing.   In   all   models   considered   this   
far,   the   price   interval   has   been   treated   as   continuous   and   di�erentiable,   though   the   mapping   of   
pricing   onto   the   bandit   problem   necessitates   a   �nite   number   of   prices,   a   �nite   number   of   “slot   
machines.”   The   question   arises:   are   prices   continuous   or   discrete?   Answer:   prices   are   continuous   
but   can   be   bucketed   into   a   discrete   number   of   prices   over    .   The   granularity   of   rounding   is  0, ][ υ  
immaterial   for   our   analysis,   whether   it   be   millions   (in   the   case   of   planes),   dollars   (in   the   case   of   
dinners),   or   mille   (in   the   case   of   gasoline).     

With   our   pricing   problem   mapped   to   a   well-researched   domain,   what   type   of   strategies   
can   we   use   to   simultaneously   perform   price   discovery   (exploration)   and   dynamic   pricing   
(exploitation)?   

17  Ryzhov,   Ilya   O.   and   Warren   B.   Powell.   “Bandit   Problems,”    Optimal   Learning.     
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The   Epsilon   Greedy   Strategy   
  

 In   the   epsilon-greedy   bandit   strategy,   our   seller’s      pricing   decisions   are   partitioned   into  n  
an   explore   segment   and   an   exploit   segment   across   the   discrete   prices      through    .   To   run   this  p1 ps  
strategy,   our   seller   must   do   the   following:   

1. Select   a   probability   .  ε  
2. Set   an   initial   optimal   price   estimate      to   a   random   price.  p︿  
3. For   each   buyer    ,   select   a   random   real   .  1, n]  i ∈ [   0, ]  r ∈ [ 1  

a. If   ,   exploit   and   o�er   the   good   for   sale   at    .   Here,   indicator   .  r > ε p︿ I = 0  
b. If   ,   explore   and   o�er   the   good   for   sale   at   a   price   selected   at   random    .     Let  r < ε pr  

the   mean   quantity   demanded   be   ,   over   all   buyers   to   whom    was  (Γ(p ))m r pr  
o�ered.   If   ,   update    .   Here,   indicator   .  (Γ(p ))p (Γ(p))pm r r > m

︿ ︿ p︿ = pr I = 1  
  

With   this   strategy   laid   out,   let   us   notice   that   the   random   pricing   model   is   a   degenerate   case   of   the   
epsilon-greedy   strategy,   where    .   As   we   did   above,   let   us   quantify   the   cost   of   this   strategy.  ε = 1  
Now,   we   must   recognize   that      is   not   a   theoretical   constant;   rather   it   is   a   function   of   time   p︿ (t)p︿

that   evolves   as   we   make   observations   and   learn   about   demand.   The   cost   of   this   overall   strategy   has   
a   few   components:     

1.    the   theoretical   maximum   revenue   attainable   with   perfect   play.   (p )p ,R* = ∑
 

i
Γi * *   

2. ,   the   revenue   gained   through   exploration.  (ε, )Γ (p )p∑
 

i
I i i r r  

3. ,   the   revenue   gained   through   exploitation.  [1 (ε, )] (p(i))p(i)∑
 

i
­ I i * Γi

︿ ︿  

4. ,   the   “reputation   premium”   or   cost   of   customer   churn.  (p )  (p )p L ∑
 

i
P i > υi * Γi * * i  

  
Let   us   now   consider   the   behavior   of   this   bandit’s   total   cost   as    .     Let’s   make   the   optimistic   n→ ∞  
assumption   that   our   true   perfect   price      equals   our   estimate     of   perfect   price       at   all   times.   In   p* (t)p︿  
other   words,   assume   our   initial   guess   was   perfect   and   that   we   never   change   it.   For   all   pulls   with   

 ,   we   will   collect   perfect   revenue.   For   all   pulls   otherwise,   we   will   incur   a   loss   of  1 , ]  r ∈ [ ­ ε 1  
 ,   assuming   the   worst   case   where   we   select   a   such   that     and   the  (p )p(L )Γi + 1 i * * pr (p )Γi r = 0  

customer   churns.   At   asymptote,   then,   our   expected   cost   is   at   most    .   If     is   set  (p )pnε(L )Γi + 1 i * * ε  
to   some   constant,   as   well,   then   we   know   that   this   strategy   will   have   some   asymptotic   cost   of   order   

 .   In   bandit   literature,   the   cost   of   some   strategy   at   asymptote   is   known   as    regret ,   and   as   such  (n)O  
an   epsilon-greedy   strategy   with   constant     has   linear   regret.  ε  
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Let   us   now   observe   that   the   structural   framework   of   this   strategy   has   two   major   
components   we   might   be   able   to   toy   with.   First,   there   is   a   partition   heuristic,   or   a   mechanism   by   
which   the   agent   decides   whether   to   explore   or   exploit   a   particular   pull.   Second,   there   is   an   
exploration   heuristic,   which   the   agent   uses   to   decide   which   price   to   explore   next.   Are   there   ways   
to   alter   either   of   these   components   to   improve   performance?     

In   short,   yes,   and   we   don’t   even   have   to   go   very   far.   Consider   any     function   where   the  ε  
,   such   as   .   Mathematically,   it   is   clear   that   such   a   partition   heuristic   would   lead  lim

n   ∞→
ε = 0 n  ε = 1/  

to   a   zero-regret   strategy,   as   despite   constant   costs   of   exploration,   we   do   so   increasingly   
infrequently.   In   reinforcement   learning   theory,   a   strategy   satisfying   this   constraint   is   GLIE:   greedy   
in   the   limit   of   in�nite   exploration. 18   

  
Assuming   a   random   starting   state 19   

  
The   intuitive   explanation   above   lacks   a   critical   aspect   of   bandit   theory:   the   notion   of   

information   state.   How   do   our   asymptotic   costs   change   if   we   aren’t   gifted   the   perfect   price   as   our   
starting   position?   Imagine   the   seller   is   in   some   information   state      at   time      where   our  Sk i  
estimated   perfect   price   is   .   For   the   following   iterations,   the   seller   can   either   exploit   and   receive  (t)p︿  
some   reward   or   explore   and   receive   some   reward    .   However,   by  (p(k))p(k)λ = Γ ︿ ︿ (p )pκ = Γ r r  
exploring,   the   seller   progresses   to   state    ,   where   they   have   more   information   about    ,   now  Sk+1 (t)p︿  
knowing   a   better   estimate   of   .   If   the   seller   exploits,   then   they   gain   no   information   about  (k )p︿ + 1  
the   best   alternatives   and   stay   in   the   state     .   Thus,   the   value   of   being   in   state    at   time      is:   Sk Sk i   

  
 (S , ) ax   V k i = m  Γ(p(k))p(k) (S , i ) , E[Γ(p )  | S ]  V (S , i ) { ︿ ︿ + V k   + 1   r * pr

k +   k+1   + 1 }    
  

Or,   more   simply:   
  

 (S , ) ax   V k i = m  λ  (S , i ) , E[κ | S ]  V (S , i ) { + V k   + 1   k +   k+1   + 1 }  
  

Now,   if   exploitation   ever   becomes   the   dominant   strategy   in    ,   the   seller   will   continue   to   exploit  Sk  
all   the   remaining   buyers,   as   they   never   learn   any   information   about   alternatives   that   would   lead   
them   to   deviate   their   strategy.   Thus,   once   all     iterations   of   this   strategy   are   complete:  n  

  
 (S , ) ax   V k i = m  (n )  , E[κ | S ]  V (S , i ) { ­ i + 1 * λ   k +   k+1   + 1 }  

  
Let   us   now   consider   an       that   solves   the   following   equation:   λ   

18  Shimkin,   Nahum.   “E�cient   Exploration,”    Learning   in   Complex   Systems .   2011.   
19  Ryzhov,   Ilya   O.   and   Warren   B.   Powell.   “Gittins   Index,”    Optimal   Learning.     
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  λ (p(k))p(k)  E[κ | S ]  V (S  , i ) ]    = Γ ︿ ︿ = 1

(n ­ i + 1) * [
k +   k+1   + 1   

  
If   the   seller   ever   observes   that   their   exploitation   revenue   is   greater   than   the   right-hand   side   above,   
then   our   partition   function   can   switch   us   to   exploit   forever.   Let   us   call   this   value   the   trigger   
revenue.   At   this   trigger   value,   we   �nd   ourselves   close   enough   to   that   additional   information   is   p*  
not   as   useful   as   the   cost   of   a   suboptimal   guess.   As   we   know   that   our   search   converges   to    p*
asymptotically,   we   see   the   right-hand-side   above   converges   to   zero,   and   our   strategy   is   therefore   
zero-regret.   

  
Contextual   Thompson   Sampling 20   

  
Let   us   revisit   the   critical   failure   of   the   �rst   epsilon-greedy   strategy   that   led   to   linear   regret:   

that   over   time,   the   seller   using   this   strategy   does   not   explore   less   as   they   gain   more   information.   
Indeed,   as   the   construction   above   shows,   there   is   a   point   where   marginal   knowledge   is   just   not   
worth   it,   and   we   need   to   exploit   forever.   The   upper-con�dence   bound   strategy   (UCB)   solves   this   
problem.   With   UCB,   we   build   a   con�dence   interval   for   each   price’s   performance   using   our   
limited   data,   and   we   optimistically   assume   that   the   revenue   gained   will   be   at   the   upper   limit   of   our   
interval.   This   strategy   lends   itself   to   more   e�cient   exploration,   as   the   size   of   the   con�dence   
interval   is . 21    Moreover,   by   choosing   the   size   of   the   con�dence   interval,   whether   99%   or  (  )  O √n  
90%   or   otherwise,   the   seller   gets   to   choose   the   relative   ratio   of   exploitation   and   exploration.     

Let   us   dive   more   deeply   into   a   related   framework:   Contextual   Thompson   Sampling   
(CTS).     CTS   is   a   derivative   of   a   UCB   strategy   that   leads   the   seller   to   act   “optimistically   optimal,”   
with   respect   to   a   random   belief   about   the   optimal   price.   As   Thompson   himself   wrote   in   1933,   
one   should   “randomly   take   action   according   to   the   probability   you   believe   it   is   the   optimal   
action.” 22    We   can   mathematically   formulate   Thompson’s   heuristic   for   our   seller   as   follows.   First,   
let   us   de�ne   the   following   values:     

1. A   revenue   distribution   function   ,   for   learned   state   ,   price   ,   and   buyer  (R | θ, p, w)P     θ p  
information   vector   .  w  

2. A   prior   on   our   revenue   distribution   function’s   parameters   .  (θ)P  
3. An   informational   state   ,   containing   all   past   observations.  S  

  

20  Russo,   Daniel,   et   al.   “A   Tutorial   on   Thompson   Sampling,”    Foundations   and   Trends   in   Machine   Learning ,   Vol.   11,   
No.   1,   pp.   1-96,   2018.   
21  Ryzhov,   Ilya   O.   and   Warren   B.   Powell.   “Bandit   Problems,”    Optimal   Learning.     
22  Thompson,   William   R.   “On   the   Likelihood   that   One   Unknown   Probability   Exceeds   Another   in   View   of   the   
Evidence   of   Two   Samples,”    Biometrika ,   Vol.   25,   No.   3/4   (Dec.,   1933),   pp.   285-294.   Oxford   University   Press.   
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With   these   inputs,   CTS   leads   us   to   select   a   price     with   probability   as   follows,   where     is   again   an  p︿ I  
indicator   function:   

  

 [ E[ R | θ, p , w ] ax  E[ R | θ, p, w ] ]  (θ | S) dθ∫
 

 
I   *

︿
  = m p     * P  

Augmented   for   use   in   our   streamwise   price-setting   environment,   we   might   consider     to   be  θ  
information   about    ,   our   particular   buyer’s   demand   curve:  Γi  

1. For   each   time   step    ,   sample   randomly   from   the   distribution   of   individual   demand   curves  i  
   to   �nd    .  Γ Γi  

2. Quote   price   and   observe   revenue   .   argmax Γ (p  | w )ppi =   i  i i i i Ri   
3. Update   our   understanding   of     using   the   maximum   likelihood   estimator   given   our  Γ  

observed   revenue   .  Ri  
  

Earlier,   we   noted   there   exists   a   class   of   universal   pricing   functions   that   allowed   not   just   for   price   
optimization   for   a   single-price   seller,   but   rather   price   individualization   of   the   �rst   degree:   

  

that   maximizes      while    (w , )pi = M i t (p |w )∑
 

i
Γi i i * pi (t) I > 0  

  
This   CTS   model   is   the   �rst   bandit   we   have   encountered   that   accepts   a   buyer   state    .   Despite  wi  
accepting   additional   information   above   and   beyond   state,   Contextual   Thompson   Sampling   has   
non-zero   regret;   as   shown   by   researchers,   the   regret   bound   for   Contextual   Thompson   Sampling   is:   

,   as   with   UCB   more   generally. 23    As   such,   let   us   use   CTS   as   an   example   of   a   low-regret  ( )  O √n  
model   that   is   preferable   in   practice   to   a   zero-regret   model   because   of   its   other   properties,   such   as   
computational   e�ciency.   

In   the   next   section,   we   will   deliver   on   the   promise   of   this   thesis’   title:   we   will   construct   a   
low-regret   pricing   model   that   o�ers   a   privacy   guarantee   as   compensation   for   having   non-zero  
regret.   

  
    

  
  

     

23  Agrawal,   Shipra   and   Navin   Goyal.   “Thompson   Sampling   for   Contextual   Bandits   with   
Linear   Payo�s,”   Microsoft   Research.   
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ADDING   PRIVACY   TO   PRICING     
  

Di�erential   privacy 24   
  

 A   randomized   algorithm      is   -di�erentially   private   if   for   all   input   datasets      and    f ε A B  
di�ering   by   exactly   one   observation   and   all   :  ange(f )  S ⊆ R  

  
   (f (A) )  xp(ε) (f (B) )  P ∈ S ≤ e * P ∈ S  

  
In   plain   English,   a   di�erentially   private   algorithm   is   such   that   the   inclusion   or   exclusion   of   a   
particular   piece   of   information,   say,   a   user’s   data,   is   nearly   impossible   to   distinguish   based   on   the   
output.     

  
Theoretical   privacy   upper   bound   on   Thompson   Sampling     

  
The   probability   density   of   a   price   being   quoted   in   a   Thompson   Sampling   model   is   simply:   

  

 [  Γ (p  | w )   ]      [  Γ (p  | w )  ] dpEi  i i i * pi / ∫
p = υ

p = 0
Ei  i i i * pi  

    [ υ  ax  R  ]  ≤ Ri / * m i i  
 ax  R    [ υ  ax  R  ]  ≤ m i i / * m i i  

=    1
υ  

  
Thus,   vanilla   Thompson   Sampling   is   at   most   -private.   Intuitively,   this   result   makes   sense:   if   the  1

υ  
maximum   price   anyone   is   willing   to   pay   is   very   large,   then   deviations   in   price   can   be   “hidden”   by   
the   scale   of   the   price.   As   ,   our   pricing   model   becomes   less   and   less   private,   as   any   small   υ→ 0  
deviation   is   a   larger   percentage   of   the   overall   market.     

Of   course,   for   the   purposes   of   controlling   privacy   in   a   pricing   model,   this   result   shows   us   
nothing,   as   a   seller   cannot   control   the   maximum   willingness-to-pay   in   their   market.   Now,   let   us   
consider   a   model   that   gives   us   a   tunable   privacy   parameter   .  ε  

  
     

24  Dwork,   Cynthia   and   Aaron   Roth.    The   Algorithmic   Foundations   of   Differential   Privacy.    17.     
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The   Fair   Pricing   Model 25   
  

Let   us   now   insert   a    price   transformation    that   adds   di�erential   privacy   to   a   CTS-inspired   
epsilon-greedy   individualized   pricing   strategy.   Consider   the   following   Fair   Pricing   Model   (FPM):     

1. Select   a   probability     representing   the   percent   of   observations   to   be   explored. 26   β   
2. Set   an   initial   optimal   price      to   a   random   price.  (0)p︿  
3. For   each   buyer    ,   select   a   random   real   :  1, n]  i ∈ [   0, ]  r ∈ [ 1  

a. If   r   > ,   exploit   and   o�er   the   good   for   sale   at     a   private   price     randomly   selected  β   ϕi  
according   to   .  xp  e  ε  E [Γ (p (i) | w ) (i) ] { *   i i *

︿
i * p*

︿ }  
b. If   r   < ,   explore   and   o�er   the   good   for   sale   at   a   price   selected   at   random    .   β  pr   
c. Update      and       simply   using   Bayes’   rule.   (t)p︿ Γi   

  
Here,   we   have   created   a   pricing   individualization   model   that   has   both   low-regret   and   a   guarantee   
of   di�erential   privacy.   The   intuition   here   is   as   follows:     

1. If   using   a   perfectly   individualized   price   over-leverages   the   user’s   data,   let’s   quote   a    roughly   
individualized   price,   such   that   it   is   impossible   to   tell   whether   or   not   the   user’s   data   was   
even   used   in   the   personalization   process.   

2. In   order   to   maintain   revenue   maximization   targets,   we   should   choose   the   prices   that   are   
more   likely   to   optimize   revenue   over   time,   with   a   parameter   that   allows   the   “widening”   
and   “thinning”   of   the   probability   distribution   to   enable   the   choice   of   more   private   (and   
therefore   unoptimized,   options).   Notice   that   our   density   de�nition   exponentially   weights   
higher   revenue   options.     

  
The   FPM   exhibits   an   -level   of   di�erential   privacy   (1 )  ε ­ z   

  
The   probability   density   of      is:    ϕi   

  
 (ϕ  | w )  P i i  

    xp p= exp[ { ε  E [Γ (p(i) | w )p(i) ] }*   i i
︿

i
︿ ]  / ∫

p = υ

p = 0
e { ε  E [Γ (p(i) | w )p(i) ] }*   i i

︿
i
︿ d  

    xp p= exp[ { ε  R (p(i) | w ) }*   i
︿

i ]  / ∫
p = υ

p = 0
e { ε  R (p(i)| w ) }*   i

︿
i d  

  
     

25  McSherry,   Frank   and   Kunal   Talwar,   “Mechanism   Design   via   Di�erential   Privacy,”   Microsoft   Research.     
26  Used   instead   of   epsilon   to   avoid   collision   with   the   privacy   parameter.   
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Now,   let   and   :  ax  R (p(i)| w )γ = m i i
︿

i k = rgmax  R (p(i) | w )a i i
︿

i  
  

    xp p≤ exp[ { ε  γ}*   ]  / ∫
p = υ

p = 0
e { ε  γ(p) }*   d  

 exp   ε  γ (p) ]    exp   =   {ε }* γ * [ *   ′ / {ε }* γ  
   γ (p)   = ε *   ′  

   Γ 1 )   = ε *   k * ( ­ z  
  

If   we   then   normalize   the   quantity   purchased   by   each   buyer,   to   say,   a   percentage   of   the   total   
demand,   we   see   that   the   �nal   privacy   parameter   is   at   most   ,   where     is   the   price   elasticity  (1 )  ε ­ z z  
of   demand.   Using   the   proof   established   earlier   on   the   price   optimization   properties   of   unit   price   
elasticity,   we   see   that   a   model   that   optimizes   prices   over   time   will   converge   toward   a   -level   of  ε2  
price   elasticity.   

Thus,   we   �nd   ourselves   with   a   tunably   private   model   that   depends   only   on   the   price   
elasticity   of   demand.   Intuitively,   this   makes   sense,   as   the   more   price-sensitive   a   market,   the   less   
likely   it   is   that   an   individual   will   receive   a   price   individualization   without   context   about   their   
speci�c   willingness-to-pay.     

  
The   FPM   is   -regret  (1 ε)  O /  

  
Let   us   build   our   asymptotic   regret   claim   by   case.     

  
Exploration   case   

  
If   r   < ,   all   we   must   do   is   show   that   exploration   happens   asymptotically   infrequently,   as  β   

described   earlier.   Setting      satis�es   this   case,   causing   the   exploration   case   of   the   FPM   to   be  n  β = 1/  
greedy   in   the   limit   of   in�nite   exploration.   Thus,   our   explore   case   is   zero-regret.     

  
Exploitation   case   

  
If   r   > ,   let   us   recognize   that   our   privacy   parameter   will   lead   us   to   select   non-optimal  β   

prices   at   times   in   order   to   maintain   privacy.   Let   us   construct   a   bound   on   the   regret.   If   regret   is   the   
size   of   the   loss     multiplied   by   the   probability   of   the   loss,   we   can   write   our   regret   using   the   density  l  
of   our   price   transformation   function,   assuming   we   alter     to   be   a   normalized   value:  ε  
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 egret     (l) dlr = ∫
l = 0

l = R*
l * P  

   xp dl= ∫
l = 0

l = R*
l * e { ε  (E [Γ (p(i) | w )p(i)  ) ] }*   i i

︿
i
︿
­ l    

   xp dl≤ ∫
l = 0

l = R*
l * e { ε  R ) ] }* ( * ­ l    

    dl= eεR* ∫
l = 0

l = R*
l * e­εl  

 e εR   )   ]   ε  = eεR* * [
­εR*
* ( * + 1 ­ 1 / 2  

 e εR   )   ]   ε  ≤ eεR* * [
­εR*
* ( * + 1 ­ e­εR* / 2  

 e  ]   ε  = eεR* * [
­εR*
* ε * R* / 2  

 R    ε  =   * /    
  

As   such,   our   exploitation   branch   regret   is   .   Notice   two   things   about   our   proof.   First,   we  (1 ε)  O /  
integrate   from   to   0,   which   might   seem   unintuitive.   However,   we   do   so   based   on   our   framing   of   R*  
revenue:   we   integrate   from   the   least   revenue   (when   the   loss   is   maximized)   to   the   most   revenue   
(when   the   loss   is   minimized).   Second,   we   rely   on   the   fact   that   .   To   prove   this,   we   rely   on   e­εR* < 1  
the   facts   that     and     by   de�nition:   ε > 0  R* > 0   

  
 n(e )  n(1) R  e­εR* < 1⇒ eεR* > 1⇒ l εR* > l ⇒ ε * > 0  

  
Putting   cases   together   

  
As   the   sum   of   both   cases   is   still   ,   we   have   produced   a   price   model   with   both  (1 ε)  O /  

bounded   regret   and   a   guarantee   of   di�erential   privacy.   Intuitively,   the   relationship   between   these   
two   bounds   makes   sense.   Imagine   a   very   large     such   that   di�erential   privacy   is   not   maintained   in  ε  
any   meaningful   sense.   In   this   scenario,   we   would   have   very   low   regret,   as   we   are   able   to   
individualize   prices   to   our   heart’s   content.   Now,   imagine   a   very   small     such   that   di�erential  ε  
privacy   is   strictly   maintained.   In   this   scenario,   we   would   miss   a   lot   of   revenue,   as   we   must   
meaningfully   pick   non-optimal   (or   randomly   non-optimal)   prices   in   order   to   maintain   privacy.     
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OUTLOOK   
  

The   general   principles   of   pricing   
  

In   both   theory   and   practice,   ideal   pricing   models   share   a   few   key   principles.   From   
practice,   it   is   important   that   models   require   shallow   data   and   are   robust   to   incomplete   or   inexact   
data.   For   most   businesses,   recording   and   maintaining   the   data   necessary   to   use   any   number   of   
pricing   algorithms   is   a   time-   and   capital-intensive   endeavor.   There   exist   entire   technology   
businesses   dedicated   to   this   proposition.   Thus,   from   the   real-world   perspective,   a   model   that   
cannot   serve   the   average   business,   with   its   average-business   data   and   average-business   problems,   is   
rather   useless.   Theoretically,   the   points   above   are   largely   served   by   bandits,   as   we   have   seen.   
Intuitively,   the   “error   bars”   and   treatment   of   every   input   as   a   probability   distribution   make   
bandits   extraordinarily   tolerant   of   incomplete   and   inexact   data.   In   addition,   bandits   always   “do   
their   best”   with   the   data   one   has;   if   you   give   a   contextual   bandit   whatever   you   got,   something   
always   comes   back   to   you.   

In   addition   to   the   principles   above,   theory   o�ers   one   more:   pro�t   guarantees.   We   have   
discussed   the   meaning   of   a   zero-regret   strategy,   and   as   a   seller,   it   does   not   make   a   lot   of   sense   to   
choose   a   regretful   strategy,   unless   there   is   some   meaningful   external   payo�   to   doing   so.   It   remains   
with   the   seller   whether   or   not   fairness   is   a   payo�   worthy   of   employing   a   regretful   strategy.     

  
Re�ecting   on   fairness     

  
Let   us   re�ect   on   the   pricing   principle   of   fairness.   No   matter   what   the   alpha   promise   of   a   

bandit   may   be,   the   fact   remains   that   the   lifetime   value   of   a   customer   is   typically   much   higher   than   
any   single   transaction’s   marginal   revenue.   This   “reputation   premium”   is   the   central   issue   for   most   
businesses   exploring   dynamic   pricing.   As   in   cost-plus,   sellers   with   strong   preferences   for   fairness   
will   opt   for   a   poorly-optimized   or   single-price   strategy,   often   at   great   �nancial   cost.   It   seems,   then,   
that   there   is   a   fundamental   tradeo�   between   alpha   and   fairness:   how   do   we   extract   marginal   value   
from   a   customer   without   them   feeling   like   they   have   been   treated   unfairly   and   churning?   

As   the   name   implies,   the   ultimate   promise   of   our   Fair   Pricing   Model   is   that   sellers   do   not   
need   to   navigate   such   a   tradeo�:   they   can   gain   alpha   without   appearing   unfair   to   any   individual   
buyer   through   the   beauty   of   di�erential   privacy.   A   �nal   question   remains,   though:   is   di�erential   
privacy   really   a   proxy   for   fairness?   While   tightly   de�ning   “fair   pricing”   is   di�cult,   the   following   
de�nition   approximates   fairness   well:   when   the   price   quoted   to   you   through   a   randomized   
individualization   mechanism   is   nearly   indistinguishable   from   the   one   that   would   have   been   
quoted   to   you   had   your   data   been   excluded   from   the   model.   In   practice   and   in   theory,   this   
de�nition   of   fairness   directly   relates   to   di�erential   privacy.   The   other   easy-to-recite   de�nition   of   
fairness   in   pricing   makes   no   room   for   any   of   this:   just   put   a   price   tag   on   it.   Indeed,   the   ultimate   
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barrier   to   variable   pricing   in   the   real   world   is   not   data   nor   economic   understanding   nor   
computational   theory.   It   is   executives   afraid   of   upsetting   a   �ckle   public,   not   knowing   which  
de�nition   of   fairness   to   appeal   to.   

  
Making   pricing   accessible   

  
Today,   only   the   largest,   wealthiest,   and   most   powerful   corporations   in   the   world   use   

dynamic   pricing   to   its   fullest   potential.   As   discussed,   it   is   a   Herculean   task   to   convert   historical   
and   current   sales   data   into   an   optimal   pricing   strategy.   Because   of   the   disproportionate   value   a   
company   can   gain   through   better   pricing,   I   believe   there   is   a   meaningful   business   opportunity   to   
create   a   series   of   dynamic   pricing   APIs   that   allow   users   to   submit   data   and   retrieve   prices   
programmatically.   This   API   could   be   sold   to   e-commerce   sellers   who   control   their   own   source   
code:   those   who   can   use   this   pricing   API   to   directly   track   users   and   lost   sales,   as   well   as   train   
optimization   models.   The   playbook   for   bringing   such   an   API   to   market   is   well-worn   by   unicorn   
startups   such   as   Twilio   and   Stripe.   By   o�ering   fast-deployment   services,   our   API   company   could   
market   itself   to   startups   and   early-stage   marketplaces,   who   could   then   embed   our   pricing   API   in   
their   service.   Our   revenue   model,   of   course,   should   leverage   price   discrimination   of   the   second   
degree   and   charge   a   variable   fee   based   on   the   gross   merchandise   value   of   the   marketplace.   Thus,   as   
our   customers   grow,   our   revenue   grows   as   well.   If   we   grow   our   customer   base   only   linearly   and   
our   customers   grow   exponentially,   we   grow   exponentially   by   extension.   Thus,   by   marrying   
innovations   in   economic   and   statistical   theory   with   the   execution   of   a   startup,   we   can   make   
dynamic   pricing   scalable   and   accessible.     

  
Future   research   

  
The   central   point   of   this   thesis   was   to   o�er   a   price   selection   heuristic   with   certain   privacy   

and   pro�t   guarantees,   namely   regret   .   In   this   upper   bound   lies   quite   a   complicated  (1 ε)  O /  
constant   factor,   and   this   thesis   has   not   examined   what   the   actual   regret   value   is:   we   just   gave   a   
bound.   Given   the   setup   of   this   thesis’   objective,   we   might   close   by   proposing   a   “holy   grail”:   what   
selection   heuristic   gives   the   minimum   regret   for   any   -level   of   di�erential   privacy?   ε   

  
22   


