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I. Executive Summary
In line with the IoT4Ag effort, Dr. Cherie Kagan’s research team at Penn has been engaged
with building optical agricultural sensors that change color in response to environmental
stimuli. A key barrier to their progress has been the testing required to determine the optimal
size, brightness, shape, and color of these sensors such that they are most easily
distinguishable by an overhead camera attached to a drone that will eventually image the
field where the sensors are deployed. To determine these parameters, testing needs to be
conducted with colored pieces of paper (roughly about 1.5x1.5cm) on a leafy background to
simulate a real field. Our team’s goal was to simplify and automate this testing and deliver
some insights about optimal imaging distance and angle as well as sensor color to the group.

To facilitate indoor testing and accommodate the lack of a drone, our system used a
cardboard background with faux leaves and we measured the distance between the sensors
and the camera horizontally rather than vertically. To click pictures of the setup that would
serve as input data, we used a custom designed Raspberry Pi based rover with an adjustable
and custom camera mount. This allowed us to click a large number of pictures of the proxy
sensor and leaf setup at arbitrary distances and angles with precision and minimal human
error. Our rover system moves incrementally closer to the sensors (in adjustable distance
increments) and the attached camera sweeps an angle that captures the entire field of view
at each increment. At each distance and angle combination, an image is clicked and the
collected dataset of images is later processed through a Python script. The image processing
routine utilized the Watershed algorithm within the in-built OpenCV library in python. Images
collected using the rover were passed through smoothing filters, gray-scaled, and binarized
into black and white regions of “foreground” and “background” to obtain contours that could
help split the image into distinct segments. These segments were labeled, and filtered further
on their polygonal shape to obtain strictly those classified as “rectangles”, and were expected
to capture proxy sensors.

An inverse exponential relationship was observed between the Watershed segmentation of
an image and the distance it was taken at, for each angle studied in the range 60-120 deg.
There is however, a seasonality in segmentation – measured by the number of contours
identified by the algorithm – as 90 deg images at relatively larger angles were observed to
possess more rectangular segments/contours than more inclined angular images at relatively
shorter distances. The inverse relationship was seen for both, brown and green boards with
leaves. For specific intermediate distances, pink and light green were most easily captured,
while for other distances, yellow and red were better captured. Further work in this regard
could consider, with limitations on incident angles of the drone cameras to be integrated in
the surveillance, which angles and distances are the most constraining mechanically,
effectively yielding an RGB range for sensor output that is most sensitive to said setup.



II. Overview and Motivation of the Project
Precision agriculture entails the monitoring of growth environments and health status and
therefore maximizes quality and yield. The large-scale implementation of precision agriculture
is achievable through remote sensing monitored by autonomous drones. The research
team’s project seeks to deploy chemical sensors directly in the field that give visible cues in
the form of color change - likely with RGB output. These optical sensors will be small and
passive, allowing for direct planting onto the leaves of the crops whose health is in question.
These visible cues output by the sensors are to be directed based on environmental factors
in a crop field and will be read and monitored remotely by drone-mounted cameras. For a
more detailed business analysis, refer to Appendix A2.

Our goal was to design and optimize a reliable, repeatable, and flexible method to test the
framework of sensing being developed by the research team. Before we began work with the
team, they were taking rudimentary iPhone pictures on a tripod. They needed someone there
constantly, took images slowly, and were prone to human error. We aimed to create an
autonomous system that they could use to collect and computer analyze thousands of
images without human supervision to more effectively determine the sensor’s characteristics.
While the full implementation will be a drone with an RGB camera actively monitoring the
sensors using images from above, we moved the axis in question to do the testing
horizontally. This made the most sense for indoor tests and enabled users to change many
variables easily without the need for a large vertical distance.

Ultimately, our efforts were aimed at helping the research team by creating a system that
could outlast our involvement with the project and serve as a tool that can be used for testing
throughout the development process. This required paying special attention to the specific
requirements and constraints faced by the team. If done correctly, it could save the team a
large amount of time and effort by allowing them to fine tune their sensor design without
worrying about acquiring expertise in an unrelated area, image processing and robotics.

III. Technical Description
A. Specifications

Working on this project, there were certain specifications that were at first asked of us by the
team for which our results were to be obtained. This was primarily in the type of proxy
sensors and the nature of the tests because of their goal to manufacture these sensors.
These sensors were 1.5 cm x 1.5 cm large and were constructed out of colored construction
paper. The tests were performed with three different settings - proxy sensors on brown
construction cardboard with leaves (Figures A7 and A8), proxy sensors on green paper
without leaves (Figure A11), and proxy sensors on green paper with leaves (Figure A12).
Further, while our testing was conducted at distances ranging from 4 feet to 20 feet in 6 inch
increments and across a 40 degree field of view swept 10 degrees at a time, it was important
for our system to be capable of conducting tests at arbitrary distances and angles in the



future. Ease of use, automation, and mobility were also prioritized. Specifically, the rover we
designed can be manually carried to different locations and will also work outdoors. The
image processing algorithm needed to be able to reliably extract squares from the image,
even if just showing relative changes in recognition with varying distances and angles.

B. Iterations
We began this project by looking at the feasibility of implementing a rail-track system (Figures
A2 and A3). Whether we were going to machine this rail and track system or purchase a
pre-made version online was not certain. However, the system would not have been
adequately mobile, and the range would be limited by the length of the rail track, preventing
the team from testing arbitrarily large distances. Further, eventual outdoor usage of the
system would be challenging due to power requirements.

We pivoted to using a robotic car with tank treads (Figure A4). The tank’s initial design used a
Raspberry Pi camera mounted on two small servo motors designed to tilt along two axes.
Due to poor resolution, this was replaced with a new camera that required us to redesign
large parts of the car and, including a new base for the camera and a universal tripod mount
to accommodate any further changes to camera type without the need for a complete
redesign each time. We also changed the vehicle’s wheels to rubber wheels instead of tank
treads since the treads were hard to use outdoors, struggled on some testing surfaces due to
lack of friction, and were incapable of moving in precise increments.

We initially began probing standard industry-practice edge detection algorithms – Canny and
Sobel – to isolate proxy sensors from the background. However, due to interference from
leaves, it was difficult to achieve that, and we quickly pivoted to using the WaterShed
Algorithm in python’s in-built OpenCV library. This enabled image segmentation into contours
that could then be studied for their shape, area, and color, to approximate the capture rate for
proxy sensors.

C.Societal, environmental, or economic considerations
The design was influenced more by economic considerations than by societal or
environmental considerations, but this is primarily due to the fact that our product will be used
internally by the researchers led by Dr. Kagan. The way in which we decided to design our
testing apparatus was relatively cheap considering some of the other options, and this allows
both the ESE department and the research team to use their funds elsewhere while our
product does its job collecting and analyzing data. However, this is not to say that the team
will not be heavily influenced by these, as they will ultimately be implementing a large-scale
agricultural product on farmlands that will affect populations as well as the environment.

D.Technical description and approach
Our system was based on a 4gb Raspberry Pi based rover with 32 GB of storage. We began
testing with a piece of cardboard, roughly 4ft by 8ft and using colored square pieces of paper
cut using an industrial cutter that were 1.5cm on each side. Our testing involved automating



the rover and the camera movements to capture the desired number of images. We captured
images starting at 5 feet away from the sensor board and moved incrementally further in
increments of 6 inches, up until we achieved a distance of 20 feet. At each distance
increment, images were clicked at 6 angles, starting with the camera facing perpendicular to
the board and incrementing the angle of the camera to the perpendicular 10 degrees at a
time, until it was at a 60 degree angle from the board. Lighting conditions were kept constant.

The image recognition process involved using python OpenCV to segment the image into
contours. This involve three major steps:

1) Mean Shift Filtering: This is a local homogenization technique that smoothens an
image by averaging differences in tonality and shade between extremely proximal
pixels. The pyramid mean-shift filter in OpenCV allowed us to toggle the two
parameters – spatial distance (between any two pixels) and radius (to homogenize) –
which were ultimately set at around 21 and 50 respectively for most analyses.

2) Gray-scaling: The mean-shifted image is then converted to grayscale using the
cvtColor function in OpenCV, which further allows us to identify high and low contrast
regions for determining edges and background objects later.

3) Otsu’s binarization: This technique generates a stark black and white contrast
between “foreground” and “background” objects and also gives a preliminary idea of
how much of the image the algorithm was able to capture in distinct details.

The binarized image is then used to obtain contours, i.e. bounding walls for segments. The
peak Euclidian distance between contrasting pixels in the binarized image is determined and
used to find the local maximum so as to divide the region on two sides of it into two distinct
segments. The Watershed function uses these inputs to generate segments, identifiable by
their unique integer “labels”, starting at 0 for each image. Each such label is then studied
individually and a “mask” matrix is generated that enhances the values of segments deemed
important for us. The findContours function again is used to grab contours for these masked
regions. Finally, we implement a shape detection subroutine within each segment to filter out
those that may not correspond to our shape of interest, i.e. quadrilaterals, and specifically
rectangles. For each label, one (x,y) vertex and the width (w) and height (h) are
approximated using the approxPolyDP function in OpenCV, and the resulting polygon is
classified as one of “circle”, “rectangle”, “triangle”, or “pentagon”, based on the number of
edges detected. If the shape of the contoured segment is deemed rectangular, the said
contour is visually imposed on the segment as a bounding box, with the label number for that
segment also shown for clarity. Finally, the “mean” function is used to approximate the
average color, in BGR (the order obeyed by OpenCV), inside each rectangular contour
identified above.

After initial image processing, more data was collected wherein the background behind the
leaves was covered with green construction paper so as to reduce the contrast between the
leaves and the background. Here, distance increased in 6 inch increments from 4ft to 12ft
and angles were swept to capture images 10 degrees to the left and right, and 20 degrees to
the left and right of the perpendicular for each distance increment.



E. Final status of the project and test results
The analysis of two major setups – leaf-covered boards, one with a brown background and
one with a green background – both yielded an inverse exponential relationship between the
strength of the Watershed segmentation algorithm and the distance the image was taken at,
keeping angle equal across all distances. The segmentation here was measured by the
number of rectangular contours recognized, which does not necessarily imply only proxy
sensors (true positives). However, it was observed that the number of true positives (hit rate)
of the algorithm under equal conditions increased as the contourization increased, implying
that a larger number of segments/contours has a higher probability of capturing proxy
sensors, while also increasing noise. However, per the solicited needs of the research team,
excess noise was more tolerable than a low hit rate in a bid to avoid false positives. The
negative exponential relationship is shown in Figures A13 and A14 for brown and green
boards respectively.

Another takeaway here was the resulting seasonality in contourization: more inclined angles
(tending farther from the perpendicular) at any given distance performed worse in
segmentation than a 90 degree image captured at a slightly larger distance.

We also observed an association between specific angle/degree combinations and the hit
rate for specific colors of proxy sensors that were identified by the algorithm. As shown in
Figure A17, at 7ft 90 deg (i.e. “0 deg” deviation from the perpendicular), light green was most
easily detected and about ⅔ of the squares were recognized. Blue and pink squares were
also well identified, but orange and yellow lagged, despite the intuitive contrast expected on a
purely visual basis. This was conducted against a brown background. On the other hand,
experiments with a green background at 4ft from 70-110 deg showed yellow, orange, and
blue squares to be captured most easily. This is seen in Figure A18 with the average color
identification of segment #141, which is actually yellow.

Another observation concerning contourization may be seen as distances increase (for the
same angle) from very proximal values (4/5ft) to 7/8ft. In our setup, there was an increase in
contourization moving from 5ft to 6ft, possibly because the FOV widened and allowed for a
larger array of sensors and leaves to be captured in general, increasing the hit rate. However,
this effect declines with any further increase in distance, as the rover’s vision was limited by
the much smaller size of the board, and any advantage from larger FOV was lost to greater
distance.

F. Overall evaluation
The seasonality in contourization with distance/angle pairs leads us to believe that system
efficiency may be improved by positioning sensors and the accompanying surveillance drone
in a setup as vertical as possible for any given distance, since performance at the same
distance declines with more slanted angles. However, this effect is offset as the distance
increases beyond a certain point, where even capturing a 90 degree image at say 12ft, would



be inferior in contourization to a 70 degree image at 7ft. These relationships can be
visualized in figures A15 and A16 in the Appendix.

Furthermore, as noted above, yellow and orange sensors were captured better against green
backgrounds than when the same distance and angle were captured for leaves on a brown
board. One plausible explanation for this difference could be the discrepancy between
foreground and background that may arise for yellow and orange hues with a brown
background, since they seem to mesh together, leaving the green leaves in the middle
sensors of other colors more sensitive to the algorithm. With a green background, this
discrepancy is removed and redder hues are captured better.

G.Conclusion
The watershed algorithm can be quite limiting in its performance while recognizing child
contours, i.e. sub-contours within larger segments (such as several square sensors inside a
square region on the board). However, when it does capture segments, it is able to detect
edges and isolate them and their colors quite well. Using the setup of green and brown
boards with green leaves, we concluded system improvements stemming from more
perpendicularly vertically oriented surveillance, color dependency on the field background
and the dominance of yellow/orange hues against greener foundations, as well as the inverse
exponential relationship between distance/angle pairs that tend to favor smaller distances
and less inclined angles, but can accommodate for slightly larger distances at less inclined
angles to perform better than more inclined image capture at said smaller distances. Further
work in this regard would focus on color recognition and isolation within captured sensors
and how that may evolve with distance and angle independently, instead of just the
background of the leaves.

IV. Self-Learning
A. Self Learning

In designing the testing system, the use of Raspberry Pi to control various technologies was
an early hurdle for the team consisting of only one computer engineer. System modifications
were required to integrate servo and DC motors for controlled, automated testing. The servo
motor responsible for sweeping the camera angle required trial and error with different pulse
width modulation, and the third party Logitech USB camera was difficult to interface. Initially,
we made an effort to use MATLAB and its libraries to set up initial tests for example image
processing processes including still center of mass analysis and edge detection of a live
video feed. It helped us to narrow down our image processing approach using a more
forgiving approach, but it took some effort to become acquainted with the technology. With
the acquired data sets, extensive Python code and use of OpenCV and corresponding image
processing libraries was required. This required using online documentation of these libraries
to achieve desired results while allowing better understanding of the parameters in image
processing algorithms and how best to tune them for our needs.



B. Useful courses
Although much of what we worked on required self learning, knowledge from Penn
coursework helped tremendously. First, CIS545 and CIS192 gave us background in Image
Processing and Python. ESE543 helped us keep in mind the usability of the system and
optimize to reduce human effort and error. CIS380 helped with familiarity with terminal
commands needed for Raspberry Pi operation. Finally, MEAM101 and ESE292 helped with
prototyping and CAD expertise needed for designing the camera mount and base of the car.
MEAM201 helped with designing the new axle and making other amendments to the car
when we removed the tank treads.

V. Ethical and Professional Responsibilities
A. Professional Responsibility

IoT-based precision agriculture has a universally positive impact on society given that it can
promise higher yield and efficiency in raising staple crops with a smaller labor force. This is
particularly useful in rural areas with local shortage of labor and in developing countries
where lack of expensive agricultural equipment makes it difficult to monitor and effectively
use large tracts of farmland by conventional means. In the long term, drone-based monitoring
of farmland could fundamentally shift the paradigm of agriculture in the future. The optical
sensors to be deployed on the field should be sustainable, mass-producible, and
environmentally-friendly.

Our professional responsibility also entailed ensuring the team we were working with was
satisfied with our product. In particular, we focused on ease of operation for the research
team. We also ensured reproducibility of data: with identical background and lighting
conditions, two sets of images collected with the same angle/distance increments should
produce very similar results. Finally, we designed a modular system for which key
components can be easily removed or replaced on-demand; for instance, our current camera
is attached to a universal camera mount that is attached to a servo motor, which the research
team should be able to easily replace with a different camera model should they wish to test
those in the future.

B. Ethical Issues
We did not run into major ethical issues throughout our project period. Our work did not
involve live subjects (human or otherwise), nor did it involve controversial technologies with
questionable implications once put into application. However, our project entailed careful
assessment of components needed and their potential impact on our surroundings, both the
environment and our workspace. We used standard arts and craft supplies to build the
backgrounds for testing proxy sensors rather than using real plant samples. In particular, we
used fake leaves to emulate plants that the proxy sensors were placed on rather than using
real leaves. Using real leaves would have inevitably damaged the environment they were
collected from and caused potential, as these backgrounds had to be stored in the senior



design lab for months throughout the semester. Furthermore, these leaves would likely have
decayed and become a biohazard, while the debris of drying leaves would have polluted the
senior design lab and impacted other groups’ projects.

VI. Meetings
As we were developing a testing system specifically for the research team, it was imperative
for us to stay in close communication with them. We primarily communicated with the
research team over email to either provide updates or ask questions twice a week. We also
met with the team five times over the course of two semesters to get feedback on our
progress and their design requirements. The meetings were planned using When2Meet to
get an understanding of the availability of everyone involved. These meetings were extremely
beneficial and led to the success of our project. The research team are subject-matter
experts on their sensors and have a firm understanding of what they want to test for, so we
focused on interacting with them rather than unnecessarily meeting with 3rd party
stakeholders or consultants. We plan to continue to follow the team’s progress once we are
finished with assisting in their testing operations.

VII. Schedule with Milestones
The spring semester milestones (see Table A1) were more intensive than those of the fall,
and they allowed us to efficiently and quickly work through the design and testing process.
Our ultimate goal was to deliver data to the research team that outlined the effect of color,
distance, and angle on sensor visibility. However, due to unexpected challenges with
operation of the raspberry pi based rover, the pivot away from the rail track, and difficulties
with the image processing code, we were unable to conduct as much iteration as we
expected and have been unable to test lighting conditions or do any testing outdoors. Further,
image processing with 95% accuracy of square detection could not be achieved in the given
timeframe. Therefore, while we could conduct one iteration with a brown background and one
iteration with a green background, we could not iterate as much as expected on the image
processing algorithm or vary colors, sizes, shapes, and lighting conditions enough.

VIII. Discussion of Teamwork
Operating cross-departmentally spanning majors in computer engineering, electrical
engineering, systems engineering, and mechanical engineering, we were able to create a
product that leveraged our backgrounds. We internally held weekly meetings to discuss our
upcoming work and strategies, and used social media to interact and communicate with each
other outside of this designated time.

Anshul’s Computer Engineering background played a pivotal role in achieving Raspberry Pi
operation, camera integration, and automation of the car to collect images at the desired
distances and angles. Divyansh was able to similarly make use of his knowledge of software



and programming to implement the final variations of the image processing algorithm and
take the lead on the data processing. Nick and Hyong worked to develop testing apparatuses
and the construction of the vehicle and worked with the collection of data in the extensive
tests. Some initial data processing was also done using MATLAB while in the process of
determining the approach most appropriate for final use and implementation in Python. Nick,
working from his MEAM coursework, worked to test the final vehicle and engineer a custom
base and camera mount. There was also some work from Rohit to fit the new axle to the
vehicle in an attempt to make it roll straighter. He also helped the car switch from tank treads
to wheels, which involved fabricating a new axle in the Precision Machining Laboratory and
fitting it to the new wheels. In all, our team was vastly cooperative and made use of the
limited time to design this solution for our stakeholders.

IX. Budget and Justification
In Appendix A1 are tables showing the budget proposed in the fall (Table A2) and the final
cost of materials as seen at the end of the year (Table A3).

We delivered a successful project under-budget for a few reasons. Firstly, we shifted from a
rail track system to using a car in the spring semester. The Yahboom Tank was 33% cheaper
than the rail track, and we also did not need to purchase a race car or selfie stick. The
Logitech camera that we ended up using was also significantly cheaper than the cameras
that we forecasted in the fall, yet it provided sufficiently high quality and the research team
were happy with the purchase. The MDF and faux leaves were $40 more expensive than
forecasted in the fall, but that was offset by the significant savings that we saved from using
our car a more capital-efficient camera and

X. Standards and Compliance
Our project sought to produce a testing and data-gathering platform for the research team in
designing and fabricating the optical sensors. As a result, our final product prioritized
operational feasibility for the research team rather than abiding by industrial and engineering
standards that apply to products that are marketed directly to the public. Since our project is
largely internal and does not affect any mass markets, we were focused on professional
responsibilities to the team as outlined above. Due to its internal nature, there were no
significant safety or manufacturing hazards in our system.

That being said, we can identify engineering standards that should apply in further work on
the initiative by the research team. Within the series of engineering standards collectively
called ISO/IEC JTC 1 (Information Technology), subheadings ISO/IEC 7942-1 to 7942-4 are
dedicated to computer graphics and image processing. This is to ensure a certain degree of
uniformity, flexibility, and robustness across various methods of processing images. This
engineering standard encompasses most computing languages including Python, so our
image processing algorithm abides by this. Reliability of the image processing algorithm is
certainly something the research team should keep in mind in future iterations of testing



proxy sensors. Some further engineering standards exist for data security, format,
processing, and exchange in smart agriculture, such as P2992 from IEEE. Finally, the
research team should be mindful of engineering standards that govern the use and
distribution of chemical/optical sensors in farmland based on their environmental-friendliness
and biodegradability.

XI. Work Done Since Last Semester
Working in this course over a period of two semesters, we were able to take the additional
time to build upon what we had begun in the fall of 2021. We had previously envisioned a
rail-track system upon which to build our camera and automated imaging apparatus, but this
proved to be rather limited. After returning to the project in January, we - with the help of the
research team - decided that it would be best to refocus our efforts on a more modular and
mobile system. This entailed a new data collection apparatus consisting of a robotic vehicle
driven with a Raspberry Pi. This allowed us to easily test the full desired range of 5 to 20 feet
from the proxy sensors. In using this new robotic vehicle, we had to redesign it to fit our
needs. This included designing a stronger base upon which to mount our servo, a different
wheel system, and a modified camera mount that allowed for multiple cameras to be tested
on the same device. There was also significant effort put into designing the tests that were
used to collect the data with. It was a process to determine the type and amount of sensors,
and apply these to different backgrounds and ambient conditions as requested by the team to
ultimately aid their manufacturing process. Accordingly, the image processing algorithm was
also implemented this semester to allow for the analysis of the collected data. This was
implemented in python, and it employed a segmentation process to pick out the square proxy
sensors from the backgrounds they were used on. A large effort also went into actually
fulfilling the testing. As our apparatus progressed in the design process, the testing process
became less laborious as we fulfilled our goal to automate the process, but it nonetheless
took some time to ensure it performed at the capacity required for it to be useful to the
research team.

XII. Discussion and Conclusion
Ultimately, our project was able to establish a negative exponential relationship between
distance and strength of recognition algorithm. We also established seasonality of this trend
based on the angle of incidence wherein more acute or obtuse angles yielded poorer
recognition. We also established that for a brown background, light green was most easily
recognized whereas orange lagged the most. However, for a green background, yellow,
orange and blue were most easily recognized.

Our limitations were primarily centered around the fact that we could not engineer an
algorithm that captured only precisely the proxy sensors and no other segments. Portions of
leaves, as well as noise from the background severely limited our ability to detect true
positives and this meant that even though data collection had been automated, our
processing algorithm could not deliver clear and precise results that would give the research



team the precise answer they were looking for. We believe that ultimately, continued iteration
would have allowed us to zero in on a more accurate algorithm and would have also helped
us better identify parameters that had the largest effect on results. Other potential challenges
were the lack of testing conducted outdoors. We were also limited by our ability to create
large leaf boards to simulate arbitrarily large crop fields since this remains a manual, labor
intensive process.

Our key lessons learned with this project have been that multitasking and parallelizing tasks
goes a long way in achieving more substantial results. We believe we could have benefitted
immensely from having a dedicated room wherein we could use an entire room-sized wall to
act as our proxy crop field. While this was available in Pennovation, we prioritized proximity
to campus but this resulted in noisier data. Further, anticipating the low resolution of the
raspberry pi camera would have allowed us to begin the integration process of the Logitech
webcam sooner, which comprised a bulk of our time. Finally, developing the image
recognition algorithm in parallel to the automated rover using manually collected data would
have helped us reach a more advanced stage with image processing.



XIII. Appendices

Appendix A1: Reference Figures and Tables

Figure A1: Initial proposition for the project from the research team

Figure A2: Rendering of initial camera rail system



Figure A3: Rendering of initial camera mount system

Task Hyong Nick Anshul Div Rohit

Purchase key components & assemble rover 1/25 1/25

Conduct initial meetings to outline product requirements 02/05 02/05 02/05 02/05 02/05

Complete image processing code to achieve 95% detection 03/05 03/05

Automate data collection (30 distance & 6 angle increments) 03/15 03/15 03/15

Iterations with green background 04/01 04/01 04/01

Table A1: General milestone descriptions and assignments

Item Budgeted Cost ($)
Camera (GoPro Maximum Wow or Intel RealSense) 350

Rail track system (Proaim or Snaptrack) 209
Arduino 50
Race car 50

Selfie stick 15
Any other expenses & materials 100

Total $784
Table A2: Fall estimates for our budget

Item Cost ($)
Logitech Pro Webcam C920 60

Raspberry Pi Kit 100
Yahboom Tank 140

MDF 40
Faux Leaves, Craft Supplies 100

Total $440
Table A3: Actual budget as viewed at the end of the year



Figure A4: Original robot using line tracking to follow a prescribed track

Figure A5: Initial test setup for MATLAB code



Figure A6: Results of initial MATLAB algorithm showing it’s limitations

Figure A7: Test background for proxy sensors on leaves with brown background



Figure A8: Test background for proxy sensors with different lighting

Figure A9: Resulting image after running the segmentation algorithm on the collected image



Figure A10: Automated testing system testing the green leaf and green background setup

Figure A11: Image from robot showing leafless test setup



Figure A12: Image from robot of the same angle and distance as Figure A10 only with leaves

Figure A13: Test results for the output contours from a test varying in angle and distance
(brown board)



Figure A14:Test results for the output contours from a test varying in angle and distance
(green board)

Figure A15: Seasonality in contourization (brown board)



Figure A16: Seasonality in contourization (green board)

Figure A17- Color capture at 7ft



Average color for segment #141 (yellow)

Figure A18: Rectangular segmentation captures yellow and red more easily on green



Appendix A2: Business Analysis (M&T Requirement)

i. Need & Value Proposition
Modern food production is largely supported by industrial-scale agriculture of staple crops
such as corn and soybeans. Precision agriculture maximizes quality and yield of such crops
by continuously monitoring their growth environments and health status. Autonomous drones
can use remote sensing to implement precision agriculture at a large-scale. Currently, drones
in agriculture are largely used for dispensing water and fertilizer. Experimental models under
research primarily focus on RGB camera-based image recognition of plants to detect growth
defects and pest damage, e.g. yellowing or wilting of leaves. These often require
state-of-the-art technology that not every farmer can afford and use sustainably. Furthermore,
these models are designed for the imaging of specific plants, they detect damage in progress
rather than preventing damage, and they cannot monitor non-visual growth conditions such
as pH, humidity, temperature, and pest activity. Hence, an affordable autonomous drone that
can detect both visual and non-visual growth conditions and is compatible with all plants
should have significant viability for farmers both in the US and globally.

ii. Stakeholders
Monitoring leaf contents, especially in fruit-bearing plants, directly affects the four dimensions
of food security: (a) availability, (b) access, (c) utilization, and (d) stability. It directly impacts
farmers and the economic and nutritional value of their output. At present, these farmers are
being forced to use products like Monsanto fertilizers to help their plants grow, driving them
into a vicious cycle of debt. It also improves the non-market valuation of vegetative habitats
by reducing the costs and customer frustration related to replacement, landscaping, &
protection against pests. This benefits the entire consumption chain, from grocery stores to
end-consumers. Helping crops grow optimally is an integral part of tackling the food deficit,
as nearly ⅓ of the world did not have access to adequate food in 2020. To that end, the US
Government and World Health Organization will be interested in this technology, perhaps
even subsidizing costs for farmers in areas of low crop yield.

iii. Market Opportunity & Customer Segments
There are three main types of professionals who would consider an agriculture drone:
1. Farmers who want to fly their own imaging missions
2. Agriculture service providers (e.g. DJI, GoPro) who fly drones for farmers
3. Large food chains farmers of staple crops and fruit-bearing crops that gain most utility from
our drones
They would have 40+ acres of land to survey and the crops would be very delicate and spoil
quickly without optimal conditions. Our drones would help to alleviate their concerns by
precision monitoring either a part of their farmland or the entire vicinity. The US Government
could even subsidize farmers’ cost in purchasing the drone, as tackling the hunger crisis is a
national and international priority. Agriculture service providers could buy hundreds of our



drones and millions of our proxy sensors. They would then lease our drones and the sensors
to farmers for specific time periods, e.g. one scan of their land or for one week. They can
obviously charge a high premium to farmers, but a lot of that premium will likely go back to
maintaining the drones as they are exposed to harm from the elements. Lastly, large food
chains can purchase some drones for their farmers. For example, McDonalds can purchase
our drones to survey their fields, either leasing out the drones to their farmers or using the
drones as a quality assurance check. The fast food chain has just recently introduced
pioneering regenerative agriculture techniques into the beef industry, so they are clearly
looking to optimize their supply chain processes. Further, given the US Government’s
renewed focus on sustainability in recent years, this could be an avenue for such
organizations to win favors with the government.

iv. Market Segment Size & Growth
The agriculture drones market is large and fast-growing. According to GlobeNewswire, the
market was worth $530 million in the US alone in 2021 and is growing at a 18.14% CAGR to
$3.70 billion market size in 2027. A significant portion of the growth is driven by unmanned
aerial vehicles (UAVs) like our drones, which are proving to be a great tool at raising farm
yields globally.
We are conducting our own top-down market sizing to get accurate numbers. According to a
US Government Poll, there were 2.02 million farms in the US in 2020, which has stayed
almost constant since 2000. Assume 40% of these farms are ideal for our drone (fruit-bearing
crops or staple crops like corn). Assume that only 70% of addressable farmers can afford our
subscription model. Assume that 60% of farmers have faith in autonomous drones. Lastly,
assume that each farmer wants to do 3 surveys a year, i.e. 1 survey each season, with a
survey costing $650.
Market size = 2.02 million x 40% x 70% x 60% x 3 x $650 = $662 million today.
Assuming that by 2026 (5 years later) all farmers can afford our subscription model and have
faith in it, 2026 Market size = 2.02 million x 40% x 3 x $650 = $1.58 billion. CAGR = 18.9%.

v. Competition
The US is both the largest and most competitive agriculture drone market. Large companies
like Trimble, DJI, and GoPro have all entered the market with their own products at a
large-scale. Our closest competitor is the DJI Agrad T16, a water irrigation drone that costs
$21,499 for a one-off purchase. Like all its competitors from GoPro and Trimble, it has great
reviews, with most of the complaints being related to the pricing. While many GoPro and
Trimble models can visualize fields effectively at a similar drone price range to ours, none of
the drones are able to detect non-visual health indicators like pH, which are the primary
reasons for crop decay in the US today. Hence our drone certainly has a unique angle within
this crowded market.
These companies certainly have better brand recognition than IoT4Ag and so farmers would
be inclined to purchase from these customers at first. Yet our drone and sensor system is
being researched by many highly qualified university faculty and has been granted significant



funds, so we will very likely have novel technology that will differentiate us. We should try to
lease our drones independently to farmers, yet equally we should try to sell our drones to
recognized brands like GoPro for better exposure. This could even provide a great exit
opportunity in the future by our vertical acquisition.

vi. Intellectual Property Considerations
We created our car to be used by the research team in their testing process, rather than for
commercial usage in itself. Hence, we have limited intellectual property considerations. As
mentioned before, the team’s final drone will be using a completely different technology
compared to typical autonomous drones, due to the novel color-changing sensors that they
are developing. Thus, their final drone will likely also have limited intellectual property
concerns.
The main potential concern relates to the drone’s method of dropping sensors. There are
many irrigation drones presently available, like the DJI MG-1S. These drones typically spray
water, fertilizer, or seeds over a field by utilizing delivery pumps. Given this is a basic physics
principle utilized by dozens of drones, there should not be any major patent concerns for the
research team. Nonetheless, they should be cautious to avoid specific patented pumping
technologies, like the US10364029B2 - Drone for agriculture patent.

vii. Cost
Our drones are yet to be designed by Dr. Kagan’s team, so we have limited visibility into their
price beyond looking at the cost of comparable drones. Typical agriculture drones cost
$1,500 to $25,000 to purchase and our closest competitor, the DJI Agras T16, costs $21,499
for a one-off purchase. Assuming a 60% profit margin, with professional drones should claim
according to Reuters, the DJI Agras likely cost $13,500 to manufacture. Yet the DJI Agras is
a water-spraying drone, whereas our drone will simply drop sensors and record their colors.
Hence our drone will likely be a bit cheaper to manufacture and sell. We should manufacture
for $11,000 and retail for $18,000 for our one-off purchases. High-volume transactions can
cost $13,000 per unit. With regards to subscription, we should charge $650 per survey.
Assuming we perform 2 surveys per month, it would take us 10 months to achieve our
customer acquisition cost payback. This is a very good CAC payback, even for more
asset-lite software-as-a-service companies, and should set our company up for fast,
profitable growth. The other price options should be $1,300 per week (assume 1 week/month
usage), $2,600 per month (assume 1 month used, 1 month unused), and $15,600 per year,
calculated in a similar way. Our sensors are yet to be designed, so we have limited visibility
into their price. However, as they will have no electronics and shall be made of simple
chemo-optical materials, we can estimate that their per-meter cost will be the same as a
sheet of paper. Assuming each sensor is 1.5in x 1.5in, a typical 650,000 sensor pack will be
approximately 1.5 million in² or 1000m² . Given the price of paper is $0.17/m2, that implies a
650,000 sensor pack costs $170 to manufacture. We should sell 650,000 each pack at $300
for a 75%+ profit margin since most customers will already have bought a drone and so will



have low price elasticity for sensors. We should seek a similar 75% profit margin for our
larger sensor packs.

viii. Revenue Model
We propose either a subscription model or a one-off purchase model depending on the
customer. For farmers whom we interact with directly, we will use a subscription model.
Farmers will have an option to lease a drone with or without the sensors bundled for various
time durations (e.g. 1 survey, 1 week, 1 month, 1 season). A subscription model is preferred
for a few reasons.

1. Agriculture drones cost $1,500 to $25,000, or 1/6 of an average American farmer’s
annual income. We believe that few farmers can pay the significant upfront cost to
buy such a drone, so we would be significantly limiting our total addressable market
with a one-time purchase model.

2. A subscription model enables us to increase the lifetime value of each customer after
a few years.

3. A subscription model will allow us to provide premium options like a services &
implementation team for another revenue stream.

4. Farmers are likely to damage drones if they were to buy them from us, making our
warranty & renewal costs very high.

For agriculture service providers and large food chains we will sell the drones as a one-off
purchase. These companies can then lease out the drones to their farmers and we will collect
a 15% royalty on each lease. These companies will likely purchase hundreds of drones for
thousands of farmers, so we want to incentivize high-volume transactions by charging a lot
for a single drone (e.g. $18,000 per unit) and offering much better prices for larger
transactions (e.g. $13,000 per unit when 1000 units are purchased). Selling to these
customers is a contentious decision, as their leasing model to their farmers or clients directly
competes with our subscription model to the farmer. However, there are a few reasons why
we believe that they must be clients. 1) IoT4Ag is still a startup, and many farmers will not
consider our drones unless they are backed by a trusted service provider or food chain. This
would severely lower our addressable market. 2) These customers will purchase our drones
& sensors in bulk, and we earn a royalty from each time the drone is leased, so we will still
make good money from each sale. 3) Service providers and food chains seek a profit, yet
they will be buying drones from us and paying us a royalty. Hence farmers who lease from
these customers will be faced with much higher prices than going directly through us due to
double marginalization.
The sensors must obviously be purchased as they are single-use items. All of our customer
segments can either buy the sensors separately from the drone (likely to confirm 70% of
sales) or together in a bundle pack (likely to contribute 30% of sales). Sensors will be sold in
various sizes. The smallest pack will contain 650,000 sensors, which are enough sensors to
test a 40-acre field with 4 sensors/m2. Larger packs will be offered up to a pack of 2 million
sensors at a better price to incentivize higher sales size.
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Appendix A4: Notes
Note on finding Contours

Regardless of the choice of underlying algorithm, the foregoing base level of processing is
required to prepare the image for segmentation. Contours are defined as the bounding
polygons for segments recognized by the algorithm as being distinct based on binarized
contrast. The binarized image, hence, provided a foundation to first procure the extremely
outlying contours using RETR_EXTERNAL contour hierarchy, which does not consider the
“child contours” for outermost “parent contours”. To minimize memory and processing time,
we use CHAIN_APPROX_SIMPLE, which reduces redundancy in contour points and retains
only the minimum number of coordinates needed for the algorithm to plot a given contour.
Both these subroutines are parameters for the OpenCV findContours function, from which we
can actually “grab” the contour coordinates using the python “imutils” library.
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