
University of Pennsylvania

Department of Electrical & Systems Engineering

ESE 451: Senior Design

Spring 2022

Team 7

Viz

Data Visualization made easy

Team Members:

Effie Guo: ESE, WH, effieguo@seas.upenn.edu

Shannon Lin: ESE, ROBO, WH, shannon1@seas.upenn.edu

Anna Nixon: CIS, anixon@seas.upenn.edu

Sophie Thorel: ESE, WH, sthorel@seas.upenn.edu

Gregory Zhu: CIS, gregzhu@seas.upenn.edu

Advisor:

Professor CCB: ccb@seas.upenn.edu

mailto:effieguo@seas.upenn.edu
mailto:shannon1@seas.upenn.edu
mailto:anixon@seas.upenn.edu
mailto:sthorel@seas.upenn.edu
mailto:gregzhu@seas.upenn.edu
mailto:ccb@seas.upenn.edu

Table of Contents

I. Executive Summary	
2

II. Overview and Motivation	
2

III. Business Analysis	
3

IV. Technical Description	
5

IV.A Specifications and Requirements	
5

IV.B Alternative Solutions and Iterations	
6

IV.C Societal and Economic Considerations	
7

IV.D Approach	
7

IV.E Technical Description	
9

IV.F Final Status of Project and Test Results	
11

IV.G Overall Evaluation	
11

IV.H Conclusion	
11
V. Self-learning	
12

VI. Ethical and Professional Responsibilities	
12

VII. Team Meetings	
13

VIII. Timeline & Milestones	
13

IX. Teamwork	
13

X. Budget & Justification	
13

XI. Engineering Standards & Compliance	
14

XII. Work done since last semester	
14

XIII. Discussion and Conclusion	
14

XIV. Appendix	 15

1

I. Executive Summary

We are propelled into an even more data-driven world than ever before, where learning to
visualize and understand your data is now an essential part of decision-making in any
industry. Simultaneously, there is a growing demand for no-code solutions to generate
faster and simpler outputs to obtain the low-hanging fruit of simple data analysis, which
begins with easy visualization.

Viz is a low-cost, easy-use, educational data visualization platform. Viz aims to eliminate the
technical requirements and steep learning curve required to create quick and easy data
visualizations from a data set. Our platform allows the user to enter a data set (.csv format)
and a simple plain-text English command to generate the associated Python code and plot
a visual graph from the dataset (eg. line plot, scatter plot, histogram, word cloud, pie chart,
etc). We have also embedded an interactive Python interpreter to allow the user to modify 1

the code and see the updated graph, which would serve as an educational launchpad for
more complex analysis.

On the back-end, Viz utilizes OpenAI’s GPT-3 Davinci text neural network model to convert
this plain-text query into Python code that will output the desired graph, along with the code.
GPT-3 is the largest language neural network ever built, with over 175 billion ML
parameters. We have fine-tuned the model to our use case. Our goal with this Senior 2

Design project is to demonstrate a proof-of-concept for one example of how models such as
GPT-3 will fundamentally alter our society’s relationship with coding and data.

II. Overview and Motivation

Given the exponential increase in the amount of data being generated and used today, it is
more important than ever to empower our society to extract helpful information from it.
However, there is a steep learning curve blocking many individuals from being able to
create simple visuals from datasets.

Value Proposition & Users

This platform is aimed at two main groups of users. The first group consists of the small
business owners and professionals who do not have technical experience to plot more complex
graphs from a dataset, but who need to produce quick visuals to validate or better understand
insights and trends from data. Viz allows them to instantaneously visually understand their data
without having to learn Python or resort to a Data specialist immediately. While Viz does not
replace the Data Scientist, it is meant to be a starting tool for the user to understand their data
that would otherwise have been blocked by the steep technical learning curve that comes with
traditional visualization tools. The second group is centered around the purpose of education.
Educators wishing to display the power of data and visualization to younger audiences could
use Viz to simultaneously teach students about the types of graphs and outputs that can be

 See video for a quick tutorial of Viz: https://www.youtube.com/watch?v=qHN711le3CY. 1

 Language Models are Few-Shot Learners: https://arxiv.org/pdf/2005.14165.pdf.2

2

generated from data, and better understand the code that generates them. Our product includes
the exportable Python code generated and an embedded window where the user can edit the
code from our platform and see the resulting changes in real-time on the output graph. This
additional learning tool provides a more long-term solution to bridging the knowledge gap about
data visualizations.

III. Business Analysis

Market opportunity & customer segments

Data analysis is becoming an increasingly important role in small and large businesses as
exponentially more data is being created with time. 67% of small businesses spend more
than $10k/year on analytics - according to a survey by Onepath. In addition, there is a 3

growing desire for “low-code solutions'' to allow non-technical individuals to understand
data, as seen by the explosion of low-code data analysis platforms for small businesses.
Businesses are exponentially turning away from Excel in search for more efficient and
accessible tools that can more easily be integrated with other platforms: the Enterprise
Times reported that 21% of businesses in the US are moving toward other software
solutions. For this reason, Viz has high potential for success among small businesses. 4

While we are not competing with more complex data analysis platforms, we are providing
companies with a faster and simpler alternative to visualize data as a starting point for more
complex analysis.

The initial market focus will be in the US, specifically for the 6 million firms with under 100
employees in the US , because we assume that these small companies would most likely 5

be looking for quick and cheap data tools versus larger companies with more sophisticated
products.

The second market opportunity is in the education space with 2 main customer segments:
educators using this tool for teaching data visualization to young elementary and middle
school children and the young children themselves who would use this tool for their own
learning. With 87,498 elementary schools in the US, this is a high potential customer 6

segment given the higher number of paid licenses we expect per school (in order to charge
per student - see revenue model section below).

 https://smallbiztrends.com/2020/03/data-analytics-3

trends.html#:~:text=The%20biggest%20takeaway%20for%20small,to%20make%20more%20informed%2
0decisions

 https://www.enterprisetimes.co.uk/2016/04/22/are-spreadsheets-on-the-brink-of-extinction/4

 https://sbecouncil.org/about-us/facts-and-data/5

#:~:text=Based%20on%20data%20from%20the,in%202018%20(latest%20data)
%3A&text=Firms%20with%20fewer%20than%20500,99.7%20percent%20of%20those%20businesses.&t
ext=Firms%20with%20fewer%20than%20100%20employees%20accounted%20for%2098.1%20percent

 https://www.statista.com/topics/1733/elementary-schools-in-the-us/#dossierKeyfigures6

3

https://www.enterprisetimes.co.uk/2016/04/22/are-spreadsheets-on-the-brink-of-extinction/
https://www.statista.com/topics/1733/elementary-schools-in-the-us/#dossierKeyfigures
https://smallbiztrends.com/2020/03/data-analytics-trends.html#:~:text=The%20biggest%20takeaway%20for%20small,to%20make%20more%20informed%20decisions
https://smallbiztrends.com/2020/03/data-analytics-trends.html#:~:text=The%20biggest%20takeaway%20for%20small,to%20make%20more%20informed%20decisions
https://smallbiztrends.com/2020/03/data-analytics-trends.html#:~:text=The%20biggest%20takeaway%20for%20small,to%20make%20more%20informed%20decisions
https://sbecouncil.org/about-us/facts-and-data/#:~:text=Based%20on%20data%20from%20the,in%202018%20(latest%20data)%3A&text=Firms%20with%20fewer%20than%20500,99.7%20percent%20of%20those%20businesses.&text=Firms%20with%20fewer%20than%20100%20employees%20accounted%20for%2098.1%20percent
https://sbecouncil.org/about-us/facts-and-data/#:~:text=Based%20on%20data%20from%20the,in%202018%20(latest%20data)%3A&text=Firms%20with%20fewer%20than%20500,99.7%20percent%20of%20those%20businesses.&text=Firms%20with%20fewer%20than%20100%20employees%20accounted%20for%2098.1%20percent
https://sbecouncil.org/about-us/facts-and-data/#:~:text=Based%20on%20data%20from%20the,in%202018%20(latest%20data)%3A&text=Firms%20with%20fewer%20than%20500,99.7%20percent%20of%20those%20businesses.&text=Firms%20with%20fewer%20than%20100%20employees%20accounted%20for%2098.1%20percent
https://sbecouncil.org/about-us/facts-and-data/#:~:text=Based%20on%20data%20from%20the,in%202018%20(latest%20data)%3A&text=Firms%20with%20fewer%20than%20500,99.7%20percent%20of%20those%20businesses.&text=Firms%20with%20fewer%20than%20100%20employees%20accounted%20for%2098.1%20percent

Competition

There does not yet exist a direct competitor in our field where the user can input a query in
plain English, and output a graph and code on a user-selected dataset. The two closest
types of competitors are the 1) educational platforms such as Wolfram Alpha and easy
graphing platforms such as onlinecharttool or plotvar; and 2) more complex, low-code data
analysis platforms for business analytics (such as domo.com, zoho.com, monkeylearn, or
Excel).

However, Viz is differentiated from those platforms. Wolfram Alpha is designed to process
mathematical equations and cannot convert a plain-text query to code, nor does it take in a
dataset to compute tailored visualizations. Easy educational chart-making tools have non-
children-friendly UIs that require the user to go through several steps to select which
columns to graph. Domo, Zoho and monkeylearn are all subscription-based platforms which
are essentially more user-friendly and sophisticated versions of Excel, where you have to
learn to use the platform’s UI to output the desired result (again, costly and not educational-
friendly). English to code conversion doesn’t exist in any of these platforms. Also, the prices
for these platforms are cost-preventative for the size of organizations that we are looking to
serve. Excel has its limitations in collaboration and user-friendliness, and again does not
provide the ability to export or convert to a coding language. We are thus the only platform
that allows for no-code, plain-English prompted data visualization while providing the unique
ability to export the generated python code.

Cost

The only cost for Viz is utilizing OpenAI’s davinci-text model, totaling $0.0045 per
visualization. This model costs $0.006/1K tokens where 1000 tokens are about 750 words.
Each time a user inputs a query (average 25 tokens), we send 3-5 additional input/output
examples to the model to utilize the few shot learning approach. Each additional input
averages 25 tokens and the output averages 150 tokens based on experimentation. This
totals 25 + 4*(25+150) = 725 tokens per user query = $0.0045 per user query. With our
current senior design’s budget of $400, we can support about 90K user queries before
utilizing team’s out of pocket costs.

The server database is hosted for free on AWS RDS (relational database service) free tier.
Because only one instance will be running at all times, the maximum hours spent per month
is 31*24 = 744 which satisfies the maximum allotted 750 free hours. To deploy the first
iteration, AWS Elastic Beanstalk will be utilized for free.

Revenue Model & Market Sizing

Currently, the OpenAI neural network model we use is under beta, so we cannot
immediately commercialize our product. However, we expect the model to be open for
productization within the next few months given the last beta model’s timeline. Once we are
able to charge for utilization, a freemium model will be put in place. Users will only be able
to use our platforms up to 5 times a month. After this limit, they will have to pay for a
monthly subscription of unlimited queries for $6/month. The break-even point given a
$0.0045 cost per query comes down to 1333 queries per month, or about 5 per working

4

hour (assuming 8 working hours per day), which is more than we expect users to be using
our platform. For elementary schools, we would want to charge at a discount to encourage
schools to buy bulk licenses for each student. Charging $5 per student would again be
profitable by expectation (students would need to input >32 queries/day).

Since our cost structure is constant per usage for now, revenue must grow exponentially for
Viz to scale. A subscription model, with proper marketing and ease of adoption, would allow
for scaling by increasing the number of users paying for licenses exponentially. Long-term,
we would explore possibilities for a contract with OpenAI to lower the costs per usage.

Given the entire space of the 6 million small businesses under 100 employees and all 32.6 7

million elementary school students , TAM totals $6.5B. Viz’s SOM is estimated to be $32M. 8

This comes from the sum of $10.8M from schools, assuming we can draw contracts with
1% of elementary schools and from these schools, about half the students (this product is
mostly targeted towards grades 2-5), and $21.6M from small businesses, assuming we can
get 1% of the 6 million small businesses and get subscriptions form 5 employees per
company. These assumptions are based on market adoption of competitors’ tools such as
Domo in companies, as well as a substantial surge in adoption of digital learning platforms
that Viz benefit from with low costs, high speed and clean simplicity.

IV. Technical Description

IV.A Specifications and Requirements

In our minds, the look and feel of the final deliverable was quite clear. As we were targeting
non-technical professionals and younger audiences, we wanted a simple to understand
interface to use our product (think Desmos, but for data visualization instead of plotting).
Because of this, we decided upon a clear text prompt and file upload button with no
complex options in the home page so that users could dive right in. More functionality and
information is displayed after pressing the “start graphing” button that allows users to modify
code and manipulate their graph. We landed on this approach because of the following
requirements that we defined:

• Easily accessible with Internet

• Understood by non-technical users and low barrier to entry

• A valid CSV file inputted by user

• Balance simplicity of use with flexibility for power users

• Quick webpage response times

 https://sbecouncil.org/about-us/facts-and-data/7

#:~:text=Based%20on%20data%20from%20the,in%202018%20(latest%20data)
%3A&text=Firms%20with%20fewer%20than%20500,99.7%20percent%20of%20those%20businesses.&t
ext=Firms%20with%20fewer%20than%20100%20employees%20accounted%20for%2098.1%20percent

 https://www.statista.com/topics/1733/elementary-schools-in-the-us/#dossierKeyfigures8

5

As we used GPT-3, which is a proprietary machine learning model from OpenAI that we
were granted private beta access, we were subject to OpenAI’s distribution requirements as
well. Constraints under senior design regulation and OpenAI specifications included the
following:

• <$400 for development

• Follow OpenAI’s safety best practices and usage guidelines:

- Think like an adversary

- Limit your input and output lengths

- Know your customers

- Rate-limit pace of usage

- Filter sensitive and unsafe content

- Keep your application on-topic

- Capture user feedback

- Keep a human "in the loop”

- Draw upon validated content

- Gain access to private Beta version of Codex

In the end, we were able to offer 8 different plot types. Users are able to specify the plot
type in their query and modify the python code used to generate the plots in our graph
landing page. See Appendix Figure 1 for a visual of our various plot types Viz can generate.

IV.B Alternative Solutions and Iterations

The end goal is to make data more accessible to non-technical users. The top 3 solutions
we considered to address that problem are as follows:

• Use web crawler to pool data on certain topics and visualize in usable playground (a

search engine for graphs and datasets)

• An excel-like program that is more user friendly (the kids programming language Scratch

but for Excel)

• A text-to-visualization program (give me your desired graph in words and I’ll give you the

visualization that you want)

The last and current approach was ultimately chosen because of the innovative possibility
to meet the non-technical users’ needs but also complement technical users’ preferences.
Text to visualization gives flexibility for customizing your graphs and providing a large range
of visualization types while also being very accessible. Additionally, there does not yet exist
a lightweight hosted website application that performs a plain text English to visualization
conversion so the market is less crowded, unlike the other two top options.

Throughout the year, our project went through many important iterative improvements. The
central improvement was the fine-tuning of our GPT-3 model using OpenAI’s fine-tuning
feature. This allowed us to significantly improve the accuracy and relevancy of our results.
We also continued to iterate on our back-end pre- and post-processing pipelines to provide
better results, stability, and response times.

6

IV.C Societal and Economic Considerations

Societal and economic considerations were central to the technical approach of our project.
As we are an educational and productivity boosting project, user experience was central to
the frontend design. A lot of effort was put into our front-end design work to make the
experience inviting and as frictionless as possible.

Because we used GPT-3, an incredible language model, we also needed to consider the
ethical ramifications of such a powerful tool. As per OpenAI’s guidelines, we needed to
make sure that our product could not be used for hate, harassment, violence, self-harm,
adult, political, spam, deception, or malware purposes. To do this, we followed OpenAI’s 9

safety best practices closely. Our tool should be a fun, easy graphing tool and as such, we
limited the scope of our API usage to only graphing content. Any query that was not
graphing related would simply direct users to an error page with a helpful message. Any
code that was executed in our backend ran in a secure environment, and all datasets were
handled with caution. In addition, our query entry box on our home page was cleaned to
prevent code injection attacks to prevent malicious code from being sent to our server.

From an economic standpoint, we wish to have as low costs as possible to allow the
technology to be as accessible as possible. In our design considerations, we tried to keep
costs low to be able to offer the service to our users as a low-cost subscription model. We
decided to host our application on AWS as this offered pricing flexibility using Amazon Web
Services’ economy of scale. Using the OpenAI API also incurs a low cost per token (which
is about 1 word), so we set a query size limit. In practice, we were never even close to using
up our query size limit that was set. Having one, high-quality API call per graph request
allowed us to keep costs low without compromising on the quality of our results.

IV.D Approach

The central technology of our product is OpenAI’s GPT-3. This model, GPT-3, is an
extremely large and powerful language model which has 175 billion parameters and was
trained on 45TB of text data. GPT-3 can write essays, act as a chat bot, and generate code.
We use this last ability as a key technology for generating custom visualizations from almost
any plain-text English prompt.

We began the year using OpenAI’s Codex variant of GPT-3 as the basis of Viz. Codex is a
model built to take natural language prompts and generate code output. When we began
the process of creating Viz, we thought that this would be the ideal solution to the problem
we were trying to address since it already had the baseline capability of generating code
from plain-text prompts. However, our testing showed that it often gave incorrect and
inconsistent outputs. Due to Codex being in closed beta at the time of development, we
were unable to fine-tune this model in any significant capacity.

 https://beta.openai.com/docs/usage-guidelines/safety-best-practices 9

7

https://beta.openai.com/docs/usage-guidelines/safety-best-practices

After speaking to our advisor and an engineer from OpenAI we decided to switch from using
Codex to using the Instruct model with few shot learning. OpenAI’s Instruct model is not
trained specifically to create code but can follow instructions and is very responsive to
prompt engineering (adding examples in the prompt to tune the model on a few data
points). There was a model that could be fine-tuned called the Completion model but since
it was built to complete prompts rather than follow the instructions specified in them we
were advised against using it.

As we continued development, the Instruct and Completion models were rolled into one
singular general purpose model that could be fine-tuned called the Text model. We
manually generated example prompts and corresponding code completions and created a
fine-tuned Text model that proved to have marked improvements over our original baseline
Codex model. This fine-tuned model became the basis of our final design.

The second major improvement was the front-end user interface. We continued to add more
functionality to improve the user experience including better navigation, dataset feedback,
an interactive python console, and a more streamlined design with bolder font and
instructions.

We began with a basic mockup wireframe using Figma based on our project requirements.
This mockup consisted of the ability to upload a CSV and a plain text prompt, followed by
ability to view the result on a separate screen. Users could also click a button to export the
code that was generated. See Appendix Figure 2 for our Figma mockup.

Once we migrated our design to our web application we simplified the UI further in order to
reduce the number of clicks users had to take in order to access their generated graph and
data.

After speaking with our classmates and instructors during our MVP demo days, we decided
to make some adjustments to our UI based on the feedback we received. We added a
display of column names once a file had been uploaded in order to help users generate
better prompts, and we also incorporated an interactive code editor for users to edit and
play around with generated code.

Shown below is the final iteration of our UI. When a dataset is uploaded, column information
is automatically displayed to give users more information to improve their graph query.
Appendix Figure 3 contains our complete UI from start to finish.

8

Figure IV.D 1: Viz Final UI

IV.E Technical Description

Viz is a full-stack web application. For our web framework we chose to use Django for its 10

ease of use, data flexibility, and because it is a python web framework. Choosing a python
language web framework was especially important as we chose our graph generating code
to be in python. This is because python is one of the most popular languages for data
science. Python has excellent libraries such as matplotlib and pandas which are the 11 12

backbones of our graph visualizations. We also used the python libraries: numpy, scipy, and
wordcloud for our data visualizations. See Appendix Figure 5 for our system architecture.

Our application begins with a home page where users input their dataset and graph query.
Once a file is uploaded, it is analyzed locally to extract column types and this information is
then displayed to the user.

 https://www.djangoproject.com/ 10

 https://matplotlib.org/ 11

 https://pandas.pydata.org/ 12

9

https://www.djangoproject.com/
https://pandas.pydata.org/
https://matplotlib.org/

Once the user is happy with the query and file upload, they can select the “Start Graphing”
button on our home page. This sends their dataset and query to our backend server. We
first pre-process their input. This process includes:

• Cleaning their query of any malicious input

• Spell-checking their query input

• Analyzing their csv for well-formedness (proper column names and check for empty data)

• Augment the query to include special key words that are used by GPT-3 to improve the

relevancy and accuracy of the results. We found that this step was extremely important to
ensure good results and a lot of experimentation was done in this step to find the optimal
augmentation.

Then, the query is sent to our fine-tuned version of GPT-3. In our application, a fine-tuned
GPT-3 Text model takes in a query and outputs python code that utilizes our selected
python libraries (matplotlib, pandas, etc.) to generate visualizations. We take the python
code generated by GPT-3 and post-process it by inserting the proper file names, deleting
unnecessary code, and running the python code to generate the graph visualization. The
python code is run in a container to ensure security. We then send the graph visualization
and code back to the user. All of this happens within a few seconds.

When the user receives the graph, they also receive the code which they can then modify
and rerun in a live Python interpreter. Users are able to zoom in and out of the graph and
move it around to get the best view of the visualization.

Fine-Tuning Process

In order to improve the Davinci-Text model that we settled on as our final GPT-3 model, we
fine-tuned using manually generated prompts and corresponding code. We wanted to
introduce capabilities such as Venn diagram and word cloud generation that we found had
little or no support with the original Codex model so we divided the training data generation
into the seven visualization categories we wanted our solution to be adept in. For each
category we generated a small set of sample prompts from different example datasets we
had found. Each prompt contained the user inputted query, the column names of the csv,
and the csv name. For each prompt we also wrote the corresponding code that would
output the desired graphical result. For part of this data generation process we
experimented with sending the prompts through the Codex model and editing the output
code to fix any errors. However, the majority of our examples were generated manually from
scratch.

This data was then formatted into a JSON file in accordance to the OpenAI API
requirements and used to fine-tune Davinci-Text, the largest text model available, over 4
epochs. Once the fine-tune process was completed, we modified the calls from the web
app to the model to include the same prompt information as our training data.

In order to measure if we were able to create performance improvement by fine-tuning we
decided on a two-sided approach to evaluate our baseline (Codex) model and our new fine-

10

tuned model. For our analysis we defined accuracy as results that were both relevant and
executable. This was based on our initial qualitative analysis of the output code that was
being generated where we saw that some code was able to execute, but it did not provide
the visualization requested—while other times we saw code that had a few minor errors
preventing execution, but this code was actually closer to a relevant answer than other
outputs that could execute.

We evaluated relevance and executability separately. Executability was calculated
automatically with a script that attempted to run the output code for each prompt in our
training data while relevance was evaluated manually. The scores for both were combined
in order to create our final measure of accuracy as the number of examples that were both
relevant and executable over the total number of examples in the dataset.

IV.F Final Status of Project and Test Results

We found that our fine-tuned model showed a dramatic increase in accuracy over the
original baseline (Codex) model. Accuracy jumped from just 16.22% to 72.97% with the
fine-tuned model presenting relevant results twice as often while also presenting a higher
proportion of executable results. Although the test prompts came from the same distribution
as the training data, as both were written by the same group of people, we believe the
magnitude of difference is significant enough to validate our fine-tuning process.

Figure IV.F 1: Pre- and Post- Fine-Tuning Test Results

IV.G Overall Evaluation

Our fine-tuning test results provide a quantitative measurement that allows us to assess
how much improvement fine-tuning has versus the base Davinci-Text model. However, our
end goal as set in the requirements is the user experience. Using our fine-tuning, we were
able to offer a much wider range of plot types while simultaneously improving the accuracy
of the model. This meant that the application was more consistent and more expressive.
Paired with the numerous quality of life improvements to the UI, our application was a lot
more polished and user friendly. Because of this, our team can confidently say that we met
our requirements for the project.

IV.H Conclusion

Over the course of the year, we created a full-stack interactive web application that takes in
queries and robustly outputs graphs that are relevant to the user through a simple user
interface. We created a clean and beautiful user experience and an easy to use workflow. In
the backend, we used a powerful technology GPT3 by OpenAI which allows us to generate
python code and beautiful visualizations. Using a special fine-tuned version of the model,

11

we were able to significantly improve the quality and relevancy of our automatically
generated graph code which allows our program to handle 8 different plot types. Because of
these improvements, Viz is a powerful graphing tool even in the hands of an inexperienced
user.

V. Self-learning

This project has been an immense learning experience for all team members. At the start of
our project, our team was not very familiar with OpenAI’s models and architecture. We did,
however, have decent background knowledge in machine learning from classes like CIS519
and CIS520, which gave us a foundation in understanding neural networks. Two of our team
members also took our advisor CCB’s Introduction to Artificial Intelligence class (CIS521),
which aided in providing domain knowledge in large language models specifically.

With our limited background knowledge, we had a steep learning curve in gaining familiarity
with the OpenAI platform. To gain familiarity with the platform, we read OpenAI’s
documentation and guides–as well as their website blog posts. Our learning primarily
occurred through experimenting with the OpenAI playground, where we tested many
models along the way from the Codex model to the Davinci instruct model to our final
Davinci text model.

Multiple advisors guided us in our learning process along the way. We learned from our
classmate, Ben Wang (co-op at OpenAI), about how to toggle the parameters in the
playground to control the randomness of the output. Our advisor, CCB, suggested
methodologies for fine-tuning the OpenAI models. To this regard, we read research papers
on zero-shot/transfer learning and fine-tuning OpenAI. Our team members also had the
opportunity to participate in CCB’s organized Q&A session with an OpenAI employee from
the R&D team. There, we engaged in dialogue about how to improve our project. On a
different call, we also interfaced with Juston Forte, who suggested alternative methods of
fine-tuning to improve our accuracy.

Finally, we designed a front-end website from scratch. This involved learning to write CSS
code and building a website using Django. We had to learn how to run our code and then
display the resulting graph on our webpage, as well as design appropriate user interface
features (eg. input boxes, buttons, loading pages, etc). We also investigated how to create
our own sandboxed Python interpreter from scratch.

VI. Ethical and Professional Responsibilities

Given the incredible potential of GPT-3, we ensured we followed OpenAI’s charter which
describes the principles used to execute OpenAI’s mission: to ensure that artificial general
intelligence benefits all of humanity. One potential risk of our platform is that it creates
misleading or erroneous visuals by, for example, not understanding the user’s input query.
We are mitigating this risk by cleaning up the query before it is inputted to GPT-3, and we
also provide to the user the opportunity to check column names in their dataset.

12

We also have an ethical responsibility to ensure our platform is used with good intentions.
We currently have no way of screening the CSV file for potentially problematic or sensitive
datasets; however, we can definitely explore this in the future.

VII. Team Meetings

As a group, we met twice a week for between 30-45 minutes each session. In between
sessions, we often worked independently on either testing out Codex, doing research on the
model, or building parts of our backend.

We met with our advisor a couple of times at the start of the semester, and once at the end.
We had more regular 30-minute meetings with him in the spring semester, as he was less
busy this semester. We also were able to briefly engage with an employee of OpenAI and
connected with him over Zoom.

VIII. Timeline & Milestones

All deadlines were met: see Appendix Figure 4 for a chart of our milestones.

IX. Teamwork

This semester, we tried to avoid splitting into separate workloads too early in order to first
get a very clear sense of what our desired outcome would be. We all conducted initial
research into OpenAI and would share our learnings and explore together during our bi-
weekly meetings.

We started splitting on deliverables, where we had a UI subteam working on revamping the
website (Effie helped with the python interpreter, Greg and Anna with the frontend), and a
team working on the cleaning of the query, fine-tuning and backend (Anna, Shannon and
Sophie). This worked well as we were able to make best use of our teammates’ capabilities.

X. Budget & Justification

Software projects are relatively inexpensive and in the end cost $0. While we initially
estimated a budget of $400 to fine tune the model in order to display a larger variety of
visualization types, we were able to secure free credits from OpenAI by meeting with them
over Zoom to share our project and goals. They were excited enough about Viz to lend us
some credits which we did not fully use and therefore did not have to spend additional
funds. We decided not to deploy Viz due to OpenAI’s ongoing and changing guidelines.
OpenAI, per the terms of use, ultimately decides whether a model can be released in
another application. Thus, no additional funds were used for deployment.

13

XI. Engineering Standards & Compliance

Viz focused on three main compliance standards: OpenAI Charter, ISO 9126 (90003)
Quality Management, and IEEE P7002 Data Privacy Standard.

OpenAI Charter includes satisfying the following: Broadly Distributed Benefits, Long-Term
Safety, Technical Leadership, and Cooperative Orientation. If deployed, Viz is a platform
that is accessible to everyone cost-free which is considered broadly distributing benefits.
There is no interaction between users, and the users’ uploaded datasets are immediately
deleted after querying into it for the visualization, thus enabling long-term safety and data
privacy. We consulted both leaders from Penn Engineering and OpenAI themselves to
create a collaborative product.

Quality Management includes the following: functionality, reliability, usability & re-usability,
efficiency/maintainability/portability. Through extensive testing, the model accuracy
(measured by both relevance and execution) exceeds 70% which meets the cited
performance criteria of over 60%. Viz is lightweight and easily maintainable as a software
platform.

XII. Work done since last semester
In our fall minimum viable product (MVP), our website generated functioning code and
visualization of user inputs for one specific testing dataset: quantitative data about Tesla’s
stock price. We chose this dataset since it lent itself to many possible questions that
translated well into plain-text English queries.

This spring semester, we refined our fall MVP and added many more features. In terms of
refinement, we fine-tuned the OpenAI Davinci text model to improve the accuracy of our
results as well as double the number of plot types that we offered. Support for box plots, pie
charts, venn diagrams, and word clouds was added to our product. Furthermore, we added
the ability for users to upload their own datasets (any .csv file) and check the column names
in their dataset prior to plot generation. In the case of poorly formed queries or unintelligible
output from GPT-3, we now redirect users to a fail page from which they can modify their
query. For cases where a graph does appear, users are able to modify the python code
generated in an interactive python console. Our product is now fully functional with support
for any csv dataset visualizations for qualitative plot types in addition to our existing
quantitative plots. The addition of the interactive console provides the user much more
flexibility and customization.

XIII. Discussion and Conclusion

Given the problem statement of making data more accessible to users, Viz is the ideal
solution: a fast, easy-use, educational visualization tool. This website application converts
plain text English visualization needs on the user’s uploaded dataset to working Python
code and visualization display. We fine-tune OpenAI’s davinci model to support more
visualization types and observed user interaction with our site to improve the user
experience. Viz is a unique proof of concept that justifies the possibility of data visualization
without coding, a world that we hope to continue exploring in the future.

14

XIV. Appendix

Figure 1: Examples of Viz Plot Types

 

15

Figure 2: Original Figma Website Mockup

16

Figure 3: Final Website UI

17

Figure 4: Milestone Chart

Goal Effie Shannon Anna Sophie Gregory

MVP 2 (completed MVP 1 in the fall)

Provide user ability to
input csv dataset

1/28 1/28 1/28

Test model on ability
to read any csv

2/4 2/4 2/4 2/4 2/4

MVP 3

Generate 100 input/
output examples to
fine tune model

2/20 2/20 2/20 2/20

Fine-tune model 2/28

Improve site design:
display column names
on home page,
loading icon

2/28

MVP 4 (included spring break)

Improve user query
preprocessing

3/20 3/20

Beta live compiler 4/1

Continue testing
model & fine-tuning as
needed

4/1 4/1

Formalize final demo
day poster,
presentation, demo
deliverable

4/8 4/8 4/8 4/8 4/8

18

Figure 5: Web Application Architecture and Dataflow

19

	I. Executive Summary
	II. Overview and Motivation
	III. Business Analysis
	IV. Technical Description
	V. Self-learning
	VI. Ethical and Professional Responsibilities
	VII. Team Meetings
	VIII. Timeline & Milestones
	IX. Teamwork
	X. Budget & Justification
	XI. Engineering Standards & Compliance
	XII. Work done since last semester
	XIII. Discussion and Conclusion
	XIV. Appendix

