
Senior Design Business Analysis: Agility
Serverless Deployment Made Easy

Team: Abhishek Pandya, Aditya Bhati, Anish Bikmal, Jared Asch

Executive Summary

Agility is a simple, effortless way of creating and deploying serverless applications. First, create
your architecture diagram, connecting any resources you need with supported edge types (ex:
create a “write” edge from your Lambda function to a DynamoDB table). Then, with the simple
click of a button, Agility will transform your architecture into a deployable yaml template using
a conversion algorithm. Lastly, using just a single command, deploy your application!

Value Proposition
Our application will accelerate the process of planning, developing, and deploying serverless
applications at scale. Currently, design diagrams are developed with tools such as Google Drive
and draw.io, then undergo review from management, then must be programmed into
CloudFormation configuration files. These configuration files are repetitive and it’s challenging,
even for experienced developers, to properly implement proper security measures. Not only do
the files contain repetitive configuration, they don’t include any additional information from the
service diagram, making them redundant. Our application captures the end-to-end workflow
experience, allowing teams to collaborate on architecture diagrams, and deploy their applications
securely with a single command.

Market Research

According to MarketsandMarkets, the global serverless architecture market size is projected to
grow from 7.6 billion USD to 21.1 billion by 2025. This can also seen in the graph in which we
can also see that there is a 22.7% Compound Annual Growth Rate between 2018 and 2025.
North America, the geography we are targeting, accounts for the largest market size during the
forecast period. As the serverless market continues to grow, the need for a tool that helps
translate serverless design diagrams into CloudFormation configuration files will grow
correspondingly.

Engineering Innovation

There are a few primary areas of engineering innovation that this project involves. The first is the
collaborative editing on the frontend of the application. Different users have the ability to open
shared diagrams and do live collaboration with each other. This is similar to Figma and uses
sockets to transfer information between the users.

The second is the conversion algorithm that our backend uses to convert diagrams into
CloudFormation yaml templates. Each diagram is stored as a graph, a series of vertices and
edges. Our algorithm traverses this graph and produces a minimum CloudFormation templates
which contain resources representing the vertices and connectors representing the edges.

Lastly, we utilize the fact that it takes a single command (sam deploy –guided) to deploy a
serverless application with the appropriate yaml files to empower the user to deploy their
applications with ease.

Stakeholders

Customer Segments

1. Agile Teams
a. Student Teams
b. Startup Companies (not enterprise yet)

2. Developers with minimal dev-ops experiences

Partners

Cloud Providers: Cloud providers such as Amazon Web Services, Google Cloud
Platform, and Microsoft Azure are a key partner for our product. Our plan is to start with
Amazon Web Services as it is currently the most commonly used cloud platform. Users
who are creating CloudFormation configuration files must use a cloud provider and our
product increases ease of use for our customers to integrate with CloudFormation thereby
reducing friction for users of cloud providers.

Competition
Amazon has a tool for designing CloudFormation templates, but it doesn’t target the
same market segments as our product. Their tool is overly complex, and likely only
possible to use if one is already a seasoned AWS engineer. Their product suffers from
information overload, making it challenging to accomplish tasks that serverless is
commonly used for. Additionally, their product doesn’t handle security configuration
automatically, instead leaving that to the user to define.

Another option is for developers to use tools such as Terraform or CloudFormation and
write the configuration files themselves. This provides more control to the developer, but
involves redundant processes, is not well-suited for team collaboration, and is
error-prone.

Another competitor is Juju GUI for OpenStack. This provides a GUI for editing
architecture diagrams, but is targeted at the OpenStack cloud computing platform. This
platform is open-sourced, but has not seen widespread adoption in the same way that
AWS has. Although they have a good core product, it doesn’t translate to a business use
case because AWS is still the industry standard for deployment. Additionally, they don’t
target serverless design, which prevents them from implementing optimization and
automatic generation of certain aspects of configuration.

Revenue and Cost Structure

Our primary revenue stream is a small fixed percentage on the deployment for managing it. This
fee could be <1% can be determined exactly based on similar products and further market
research. As deployments are necessary and the number of them continue to grow, this will
ensure a constant stream of income.

Our application will not incur any costs from the user’s deployments, so our only costs are those
associated with deploying our own application. Although this depends on the number of users
and number of requests that our web application needs to serve, total costs of $20/month would
be a very loose upper bound on cost. Our project requires no physical assets, so the only incurred

costs are monthly deployment costs, and potentially also a one-time fee for domain name
registration.

