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Abstract—We developed Aeris, a non-invasive diagnostic 
platform that analyzes exhaled breath to detect diabetes through 
acetone quantification. The system integrates breath sampling, 
chemical separation, high-sensitivity VOC detection, machine 
learning–based classification, and a clinician-facing web interface. 
Each test is completed in under five minutes and uses low-cost 
consumables suitable for deployment in resource-limited settings. 
Validation confirmed accurate detection of breath acetone at 
clinically relevant concentrations and consistent diagnostic 
classification using benchmark datasets. The integrated workflow 
enables rapid, low-barrier diabetes screening and establishes a 
scalable framework for future breath-based diagnostics.

Index Terms—Acetone, Breath analysis, Diabetes, Diagnostic 
systems, Gas chromatography, Machine learning, Noninvasive 
detection, Photoionization detectors, Volatile organic compounds. 
I. Introduction

A. Motivation & Previous Work
Nearly 47% of people worldwide lack access to essential 

diagnostic services for major diseases such as diabetes, 
hypertension, HIV, tuberculosis, hepatitis B in pregnant 
women, and syphilis in pregnant women [1,2]. This diagnostic 
gap represents a major barrier to early detection, effective 
treatment, and disease management, particularly in low- and 
middle-income countries. Current diagnostic methods, 
including blood testing, imaging, and biopsies, are invasive, 
time-intensive, and require significant expertise and 
infrastructure to administer [3,4]. For example, the Oral 
Glucose Tolerance Test (OGTT), the gold standard for 
diagnosing diabetes, requires overnight fasting, ingestion of a 
controlled glucose solution, and multiple blood draws over 
several hours [5]. These procedures are not only uncomfortable 
for patients but also place heavy logistical demands on 
healthcare systems due to off-site lab processing, making them 
difficult to implement in under-resourced settings.

In response to these challenges, researchers have explored 
breath-based diagnostics as a non-invasive alternative, with 
studies demonstrating that volatile organic compounds (VOCs) 
in exhaled breath can serve as biomarkers for diseases such as 
diabetes, lung cancer, and infectious diseases. However, 
existing breath analysis technologies, such as gas 
chromatography-mass spectrometry (GC-MS) and electronic 
nose systems, have often been prohibitively expensive, limiting 
their clinical adoption outside of research settings. There is 
therefore a pressing need for new diagnostic technologies to 
bridge this critical gap and improve global health equity.

B. Problem Statement 

Existing diagnostic standards are too invasive, slow, 
expensive, and infrastructure-dependent to meet the needs of 
nearly half the world's population. Without alternative 
approaches, timely disease detection remains inaccessible for 
millions, leading to preventable morbidity and mortality 
worldwide.
C. Proposed Solution 

We developed Aeris, a breath-based diagnostic 
platform, to address the limitations of current diagnostics. 
Aeris analyzes exhaled breath for biomarkers whose 
concentrations shift in the presence of specific diseases, 
designed to provide rapid, non-invasive, and affordable 
disease detection. As a proof of concept, Aeris targets the 
diagnosis of diabetes by detecting acetone, a well-established 
biomarker that increases in the breath of individuals with 
elevated blood glucose levels. Breath samples are collected 
through a disposable mouthpiece and analyzed using a photo-
ionization detector sensor to quantify acetone concentrations 
with high accuracy. Aeris then relies on a machine learning 
model to classify patient samples based on acetone levels and 
other features, and provides diagnostic results to clinicians 
through a clear interface. In addition to improving patient 
comfort and expanding accessibility, the system is designed 
with scalability in mind, enabling future adaptation for the 
detection of other diseases based on different breath-borne 
biomarkers.

II. DESIGN AND METHODOLOGY

A. Specifications and Constraints
The breath-based diagnostic system was developed to 

meet specific performance specifications that enable reliable, 
rapid, and non-invasive diabetes screening. The system is 
capable of detecting diabetes-associated volatile organic 
compounds (VOCs) at concentrations in the low parts-per-
billion (ppb) range. Each test is designed to process a single 
1-liter breath sample, and the entire diagnostic process is 
completed in under five minutes. Output data is formatted as 
a CSV file for downstream analysis, and the system is 
compatible with a machine learning–based classification 
model. Additionally, the cost of the disposable mouthpiece 
used per test is $0.33, meeting the affordability target for 
scalable, single-use deployment.

The design was also shaped by several key constraints. 
The device needed to be non-invasive and quick to 
administer, eliminating the need for blood samples and 
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transmitting samples to other laboratories in uncontrolled 
environments. It had to be simple enough for use by 
healthcare professionals with minimal training, particularly 
in low-resource settings. Finally, cost was a critical 
constraint: all consumable components had to remain 
inexpensive to support widespread use in underserved or 
high-volume clinical environments.
B. Design Procedure

The project began with an analysis of diabetes 
biomarkers detectable in human breath, due to our emphasis on 
non-invasive testing. While breath contains hundreds of volatile 
organic compounds in concentrations ranging from parts-per-
trillion to parts-per-million, acetone appears at a relatively high 
concentration of 300-900 parts-per-billion in healthy people. 
More notably, acetone significantly increases in concentration 
(>1800 parts-per-billion) in people with diabetes [6].

Once acetone was identified as the target biomarker, 
we evaluated several chemical separation methods to isolate it 
from the rest of the breath sample. Although molecularly 
imprinted polymers—synthetic materials engineered for high 
selectivity toward specific analytes—offered strong potential 
for acetone separation, their high cost and complex employment 
made them impractical for use in under-resourced healthcare 
settings. As a result, we used gas chromatography (see Gas 
Chromatography) to find the mole fraction of acetone rather 
than separating the acetone prior to the sensor. 

We also considered several gas sensors, initially 
utilizing a metal oxide semiconductor gas sensor with MEMS 
detection principle. However, this sensor gave large 
fluctuations in voltage readings which lead to more varied 
measurements when testing known concentrations in the 
chemical engineering lab. This sensor is also cross sensitive to 
common atmospheric gases. Given that our device needs to 
detect concentrations in the range of breath-borne markers 
(PPB), we switched to ION Science’s MiniPID 2 HS (high 
sensitivity) sensor, which is a photoionization detector, to 
measure the biomarker. 

Finally, we considered various ways for 
communicating the results to patients and/or medical 
professionals, and ultimately decided that our UI should be 
geared toward the professional administering the test. We 
aimed to make the site easy to use with limited knowledge of 
the underlying machine learning algorithm and/or diabetes 
expertise.  

C. System Architecture

Figure 1. Block diagram showing the chemical, electrical, and 
systems components of the system, as well as the interface 
between them. 

The system architecture (Fig 1) follows a modular 
pipeline that processes a patient’s breath sample from collection 
to diagnosis. The process begins with the patient exhaling into 
a disposable mouthpiece, which directs the breath into a Tedlar 
bag for temporary storage. From the Tedlar bag, a portion of the 
sample is passed through a gas chromatography (GC) column 
to separate volatile compounds and determine the response 
factor (RF) of the target biomarker. This RF value is then 
manually entered into the sensor software to calibrate the 
detection process.

Following GC analysis, the carrier gas is routed 
through a rotameter into the Tedlar bag, propelling the sample 
out of the bag and into the sensor. The sensor, a photoionization 
detector (PID), detects the concentration of the aggregate VOCs 
in the breath at parts-per-billion and outputs this value. These 
concentrations are logged in the software and extracted as a 
CSV file, which is then processed by a machine learning model 
trained to classify diagnostic outcomes. The final result is 
presented on a user interface designed for use by healthcare 
professionals.

All physical components in the system are connected 
using silicone tubing and airtight tube connectors to maintain 
sample integrity and prevent contamination or leakage. This 
modular and sealed architecture ensures consistency across 
tests and enables straightforward assembly and maintenance in 
both laboratory and clinical settings.

D. Design Details 
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1. Gas Chromatography 

Figure 2. Sample output of a gas chromatogram. The sample 
is injected at time = 0, and then each gas is eluted from the 
column at a unique retention time. The higher the percentage 
of the gas in the sample, the larger the area under its unique 
peak will be. The area under the peak can then be used to 
determine the exact % of a gas within the overall sample. 

Gas chromatography (GC) is a powerful separation 
technique that is used to isolate volatile components (e.g., 
VOCs) of a gas mixture into its component parts based on 
differences in the mode of partitioning between a flowing 
mobile phase and a stationary phase [7]. In the provided 
application, a Hydrocarbons and Sulfur Gases - HayeSep Q, 
80/100 mesh GC column was employed, which utilizes a 
porous divinylbenzene-based polymer packing material as the 
stationary phase. This packed GC column is ideal for separating 
light hydrocarbons, alcohols, ketones, and sulfur gases [8]. 
Generally, smaller, more volatile compounds such as methane 
will elute (pass through and exit the column) more rapidly than 
less volatile, more interacting compounds such as acetone. This 
provides each molecule a unique retention time (Fig. 2). As 
each molecule is eluted, the GC outputs a peak for which the 
height reflects the instantaneous detector response (signal 
strength) as the compound elutes, and the width reflects how 
long it takes for all the molecules of that compound to pass the 
detector. The area under the peak is proportional to the total 
number of molecules detected. 

GC involves using an inert carrier gas to deliver the 
inputted sample through the packed column. Helium was 
selected as the carrier gas as, in addition to being inert, helium 
also is safe to use, provides good separation efficiency, and is 
cheaper than alternatives [9]. To calibrate the column to be best 
equipped to measure acetone, helium was bubbled through 
liquid acetone to generate a calibration gas at 5℃. To determine 
the percentage of acetone within the calibration gas, the 
saturation pressure of acetone was calculated using Antoine’s 
equation:

log(𝑃𝑆𝐴𝑇) = 𝐴 ― 𝐵
𝑇 𝐶 [1.a]

PSAT = Saturation pressure of species at 
temperature of the bubbler (Bar) 
A, B, C = Antoine constants for Acetone 
for temperature ∈ [259.16 K, 507.60 K] 
T = Temperature of bubbler in Kelvin (K)

Solving Antoine’s equation for the saturation pressure of 
Acetone in the given setup: 

log (𝑃𝑆𝐴𝑇
𝐴𝑐𝑒𝑡𝑜𝑛𝑒) = 104.42448 ― 1312.253

(5 273.15 32.445)  [1.b]

Assuming the setup is at atmospheric pressure (i.e., 1 atm = 
1.01325 bar), the mole fraction of acetone in the calibration gas 
was calculated using a modified Raoult’s law assuming the 
liquid was purely acetone:

 𝑌𝐴𝑐𝑒𝑡𝑜𝑛𝑒 = 𝑃𝑆𝐴𝑇
𝐴𝑐𝑒𝑡𝑜𝑛𝑒/𝑃 [2]

𝑌𝐴𝑐𝑒𝑡𝑜𝑛𝑒 = Mole fraction of acetone in 
calibration gas

𝑃𝑆𝐴𝑇
𝐴𝑐𝑒𝑡𝑜𝑛𝑒 = Saturation pressure of acetone 

at temperature of the bubbler 
(Bar) 

P = Total system pressure (Bar)

This calibration gas was used to generate a peak 
response curve for pure acetone (Fig. 2). The area under the 
acetone curve was numerically determined as 2805.14. After 
the GC was calibrated to measure acetone, breath samples were 
able to be injected into the GC column. Using this calibration, 
the final relationship to determine the percentage of acetone in 
a gas-mixture (i.e., breath) sample was derived as:

𝑦𝐴𝑐𝑒𝑡𝑜𝑛𝑒 = 𝑌𝑎𝑐𝑒𝑡𝑜𝑛𝑒( 𝐴𝑆𝑎𝑚𝑝𝑙𝑒

𝐴𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
) [3]

yAcetone = Mole fraction of Acetone in 
inputted gas sample (breath)
YAcetone = Mole fraction of Acetone in 
calibration gas
ASample = Area under acetone peak of gas-
mixture sample
ACalibration = Area under acetone peak of 
pure-acetone sample

Then, assuming the breath / acetone behave as ideal 
gasses which is reasonable at a relatively low system pressure 
of 1 atm, system temperature far from condensation points, and 
trace levels of acetone resulting in negligible interactions, the 
mole fraction (yacetone) is set approximately equal to the volume 
fraction. This assumption holds because 1 mole of any ideal gas 
occupies the same volume at the same temperature and 
pressure. At that point, the % acetone by volume concentration 
of acetone in the breath sample can be determined by 
multiplying the mole fraction by 106: 
           % 𝐴𝑐𝑒𝑡𝑜𝑛𝑒 𝑏𝑦 𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑦𝐴𝑐𝑒𝑡𝑜𝑛𝑒 ∗ 106  [4]

An example output was created by measuring a breath 
sample on the calibrated GC column (Fig. 3). The area under 
the acetone peak was numerically determined as 0.1832. which, 
when utilizing equation [5], corresponded to an acetone mole 
fraction of 7.8 ppm. 
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Figure 3. a) GC output of signal measurement upon elution of 
breath-borne air, carbon dioxide, and acetone. b) Numerical 
integration values of area under signal curve of respective 
species. 

However, it was noted that the breath-borne acetone 
concentration, particularly for a healthy control, would be in the 
low ppm to ppb range which would not alone be accurately 
enough measured by the GC to validate a diagnosis [10]. It can, 
however, be used to calibrate a PID sensor specific with 
capabilities of measuring to the ppb range which in turn can 
output a higher-certainty secondary result on which to compare 
the diagnosis. The acetone concentration in the breath sample 
as measured by the GC was then corrected to the fraction using 
Procedure X (see PID Sensor). This corrected fraction is used 
to calculate the RF mix for the PID sensor and in turn output a 
more accurate concentration reading for acetone. 

2. Mini PID HS Sensor for Volatile Organic Compound 
(VOC) Detection

The Mini PID HS Sensor is designed to detect volatile 
organic compounds (VOCs) at ppb concentrations. Each VOC 
has a unique ionization energy (IE), which represents the 
minimum energy required to ionize the molecule. The HS 
sensor uses an unfiltered krypton light source with a photon 
energy of 10.6 eV. 

The sensor operates based on photoionization, where 
a gas sample diffuses through a porous membrane into the 
sensor. After passing through, the sample is exposed to an 

ultraviolet (UV) lamp through a crystal lamp window. The lamp 
emits photons that excite electrons within the gas molecules. 
When a photon collides with a photoionizable molecule, it 
provides sufficient energy to ionize the molecule, generating 
positive and negative ions. When the ions separate towards 
oppositely charged electrodes, a current is generated. This 
current is amplified and allows for the sensor to produce a 
voltage output, which can then be converted to a concentration.

The Sensor Development Kit (SDK) includes:
• An integration board for signal processing and 

communication,
• A sensor board housing the Mini PID HS Sensor,
• A gas delivery hood for the sensor to ensure controlled 

exposure to test gases, and
• A PC application that collects and displays real-time 

sensor measurements.

This setup enables precise VOC detection and quantification, 
making it suitable for applications requiring high sensitivity and 
accuracy.

Figure 4: MiniPID 2 Sensor Operating Principle.

The diagram illustrates the working mechanism of the MiniPID 
2 sensor for detecting volatile organic compounds (VOCs) 
using photoionization detection (PID). Test gas diffuses 
through a porous membrane into the sensor chamber, where an 
ultraviolet (UV) lamp emits photons. These photons ionize 
VOC molecules, generating positively charged ions (X⁺) and 
negatively charged electrons (Y⁻). The ions are collected at 
oppositely charged electrodes (anode and cathode), producing 
a small electric current proportional to the VOC concentration. 
A fence electrode prevents interference from external charge 
sources, ensuring measurement accuracy.

The sensor system consists of two Printed Circuit 
Boards (PCBs)—one for the development kit and another for 
the PID sensor. The development kit PCB is powered by a 12V 
DC supply, while the sensor PCB operates at 3.3V to support 
the PID sensor.

The development kit PCB incorporates essential signal 
conditioning circuits, including:

• Amplifiers for signal enhancement,
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• Filters to reduce noise and interference,
• Voltage regulators for stable power delivery, and
• An Analog-to-Digital Converter (ADC) to digitize the 

sensor output.

The sensor PCB contains positive voltage, negative 
voltage, signal(+) which is non-inverting output, and signal(-) 
which is inverting output. The non-inverting output is the 
positive output voltage generated by the sensor in response to 
ionized VOCs. It carries the amplified signal corresponding to 
the detected gas concentration. It is connected to an Analog to 
Digital Converter on the development PCB board to process the 
sensor output. The inverting output is the negative or reference 
signal in the differential output. It reduces noise and improves 
signal integrity. These differential signals lead to higher 
accuracy, better noise reduction, and improved signal integrity, 
ensuring that low level signals are processed.  

The sensor outputs a voltage which is transmitted via 
USB to a computer running the Sensor Development Kit (SDK) 
software. To obtain accurate measurements, the appropriate 
Response Factor (RF) must be entered into the software to 
convert the sensor’s readings. The response factor relates the 
sensitivity of PID to a specific VOC to the sensitivity of the 
calibration gas, which in this case is isobutylene. The software 
then converts the voltage output to a concentration of parts per 
million (ppm) or parts per billion (ppb). 

This integrated system ensures precise VOC 
measurement and enables real-time data acquisition for 
analytical applications. 

3. Machine Learning Model for Diagnosis 
The machine learning (ML) model is designed to process the 

CSV outputs generated from the sensor’s signal. The model’s 
primary function is to classify breath samples as indicating a 
healthy state or a potential case of GDM. In designing the 
model, we have taken cues from recent research on sensor data 
analysis and machine learning in medical diagnostics. 

The machine learning pipeline leverages a random forest 
classifier as its core model to integrate sensor-derived features 
with traditional biometric data for diabetes diagnosis. Initially, 
we validated this model on a benchmark diabetes dataset that 
used conventional biomarkers (such as glucose levels, age, 
weight, and height). This established a baseline model 
performance.

Data Preprocessing and Feature Extraction 
1. Sensor Data Integration: The raw output from the PID 

sensor is processed and stored in CSV format. This 
data will be loaded into the model, with its features 
being normalized using standard scaling techniques to 
mitigate sensor noise and inter-test variability. 

2. Additional Biometric Data: In addition to sensor 
derived features, patient-specific data including age, 
weight, and other relevant parameters are incorporated 
into the model. BMI is calculated based on these 

inputs. This multi-dimensional feature set will allow 
for enhanced diagnostic accuracy by providing a 
comprehensive view of the patient’s metabolic 
profile. 

3. Feature Validation: Given that our sensor measures 
acetone—a biomarker correlated with diabetes—and 
prior studies have demonstrated the utility of such 
biomarkers in non-invasive diagnostics, rigorous 
validation will be performed to ensure that the 
extracted features contribute meaningfully to 
classification accuracy.

Model Training and Evaluation 
1. Algorithm Rationale: A random forest classifier was 

selected for its ability to model nonlinear interactions 
between features, robustness to overfitting, and strong 
empirical performance on medical datasets. Random 
forests also provide feature importance rankings, 
offering some level of interpretability while 
maintaining high classification accuracy. 

2. Training Protocol: The model was trained using k-fold 
cross-validation to ensure robustness and 
generalizability to unseen data. Performance is 
evaluated based on metrics such as accuracy, 
sensitivity, specificity, and the area under the ROC 
curve (AUC). These evaluation metrics are in line with 
methodologies reported in similar sensor-based 
diagnostic studies. 

Comparative Analysis: Preliminary experiments on the 
benchmark diabetes dataset showed that the random forest 
model achieved strong baseline performance, balancing 
predictive power with interpretability. Future work will involve 
optimizing the model and potentially exploring ensemble 
approaches to improve sensitivity and specificity when 
incorporating larger, more diverse acetone datasets.

4.  User Interface for Diagnostic Website
The website serves as the central integration hub for the project, 
allowing healthcare professionals to input data from the GC and 
PID sensor into the ML model and receive an immediate 
diagnostic outcome. The UI is tailored specifically for 
clinicians who manage the test process from start to finish, 
ensuring that every diagnostic result is communicated in a clear, 
concise, and actionable manner.

The website’s design is grounded in two key principles: 
simplicity and actionable data presentation. Its minimalistic 
layout reduces cognitive load by avoiding unnecessary 
technical jargon and emphasizing only the critical diagnostic 
metrics—such as acetone concentration, ML prediction 
confidence, and recommended follow-up actions.

Workflow and Functionality
Test Initiation and Patient Data: Upon logging in, users can 
register each test administration. The system prompts clinicians 
to enter essential patient data—such as name, age, height, and 
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weight—at the start of each new test.
Input and Calibration: When an acetone concentration reading 
is obtained from the GC, the user inputs this value on the 
website. This step provides the necessary response factor for the 
PID sensor.
Sensor Data Integration: After the breath sample is processed 
by the sensor, the resulting CSV file is uploaded to the website. 
This action automatically triggers the ML model, which 
analyzes both the patient data and sensor readings.
Diagnostic Output: The ML model returns a final classification, 
indicating whether the patient has diabetes. This result is 
displayed clearly on the dashboard, with accompanying data 
that supports clinical decision-making.

Figure 5. This workflow depicts the relationship between the 
frontend and backend interactions occurring as a user 
administers a test on the website.
𝑅𝐹𝑀𝐼𝑋 =

𝑦𝐴𝑐𝑒𝑡𝑜𝑛𝑒

𝑅𝐹𝐴𝑐𝑒𝑡𝑜𝑛𝑒
+ (1 𝑦𝐴𝑐𝑒𝑡𝑜𝑛𝑒)

𝑁 1
(∑𝑁

𝑖=2
1

𝑅𝐹(𝑖)
)        [5]

The equation above depicts the logic behind the conversion of 
the GC input (Xacetone) to RF Mix. The RF mix value is then 
fed into the PID sensor. 

Ultimately, the streamlined UI on the website not only 
facilitates a smooth end-to-end process for healthcare 
professionals, but it also ensures that every step (from data entry 
to diagnostic output) is optimized for clarity and efficiency.

III. IMPLEMENTATION

The Aeris diagnostic platform was implemented by 
assembling modular subsystems designed during the 
prototyping phase. System integration involved combining 
hardware, firmware, and software components to create a 
cohesive diagnostic tool.
Hardware Assembly

Physical assembly began with the fabrication of the 
breath sampling system. A disposable mouthpiece was 
connected via airtight silicone tubing to a Tedlar bag, which 
served as a temporary breath reservoir. The Tedlar bag was then 
connected to the GC column via a flow control valve and 
rotameter. After separation, the carrier gas pushed the sample 
through the MiniPID 2 HS sensor for VOC detection. Silicone 

seals and airtight connectors were used at every junction to 
maintain system integrity and minimize sample loss.
Sensor Integration

The MiniPID 2 HS sensor was connected to the Sensor 
Development Kit (SDK), which provided power, signal 
conditioning, and real-time data acquisition capabilities. 
Calibration was performed by introducing known 
concentrations of acetone in helium carrier gas, and 
corresponding response factors were programmed into the SDK 
software. A USB interface enabled the transmission of sensor 
data to a dedicated computer.
Software Development

The CSV files generated by the SDK were processed 
using a machine learning pipeline implemented in Python. The 
Random Forest Classifier was trained and validated on 
benchmark datasets before being adapted for use with the breath 
sensor outputs. A lightweight web application was developed 
to enable healthcare professionals to input calibration data, 
upload test results, and receive diagnostic outputs. The web 
backend processed uploaded CSVs, passed the data through the 
ML model, and displayed a classification result alongside 
sensor metrics.
Deployment

1. A simple startup protocol was defined:
2. Insert a new disposable mouthpiece.
3. Collect a 1-liter breath sample in the Tedlar bag.
4. Open flow control valves to allow GC separation.
5. Calibrate and initialize the PID sensor with updated 

RF values.
6. Record PID sensor outputs and download CSVs.
7. Upload CSVs and patient metadata to the diagnostic 

website.
8. View and interpret diagnostic results.

This structured deployment protocol ensures minimal training 
requirements for healthcare providers in diverse clinical 
environments.

IV. TESTING AND VERIFICATION

A. Testing Procedure
To verify the functionality and accuracy of the Aeris 

system, we conducted a series of tests using both spiked and 
control breath samples. Control samples consisted of real breath 
samples from healthy individuals. Spiked samples were 
prepared by bubbling healthy breath samples through an 
acetone-water solution to simulate the breath acetone 
concentrations typically observed in diabetic patients. Each 
sample was collected in a Tedlar bag and processed through the 
full system workflow.

Verification against standard testing procedures were 
designed to align with relevant ISO (ISO 14971 risk 
management, ISO 18113 labeling) and IEC (IEC 60601 device 
safety) standards. Sensor calibration methods followed 
traceability practices outlined in ISO 17511, and the diagnostic 
reporting adhered to STARD guidelines for clarity and 
accuracy.

B. Results & Analysis
As shown, acetone levels in healthy breath samples were 

consistent with literature-reported ranges of 0.3–0.9 ppm. 
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Spiked samples produced acetone readings well above 5 ppm, 
aligning with diabetic thresholds (>1.8 ppm). PID sensor 
readings closely matched the expected trend, validating the 
calibration protocol. The near-zero values for ambient air 
confirmed minimal baseline contamination and high selectivity 
of the PID.

These results support the system’s ability to accurately 
quantify acetone and classify samples, confirming feasibility 
for diagnostic use. The PID sensor displayed good linearity in 
output across the target range, supporting its integration into 
real-time diagnostic workflows.

C. Future Improvement
To validate diagnostic performance in real-world conditions, 

future testing should include breath samples from actual 
diabetic and non-diabetic individuals. Additional 
improvements may include automating RF calibration input and 
improved methods of ensuring consistent flow through the 
system.

VI. APPLICABLE STANDARDS

Our project is designed to comply with several critical industry 
standards, ensuring it meets the highest standards for ethical 
management, effectiveness, and safety of patient data. These 
standards have influenced the development and implementation 
of our diagnostic tool. 

The physical device component of the project adheres to 
regulations for FDA Class II devices, which requires 510(k) 
premarket approval to confirm safety and effectiveness in clinical 
settings. This classification ensures that our device can be safely 
introduced into healthcare environments. Furthermore, 
compliance with 21 CFR 890 regulations emphasizes the 
importance of performance and safety, specifically tailored to 
physical therapy and diagnostic devices. To address potential 
risks, we have incorporated ISO 14971 standards for risk 
management, enabling systematic identification, evaluation, and 
mitigation of any hazards associated with the device. 
Additionally, our design follows the IEC 60601 Series standards, 
which govern the safety and essential performance of medical 
electrical equipment, ensuring both electrical reliability and user 
safety. 

On the systems side, the project integrates IEEE 11073 
standards for health informatics, facilitating secure and 
interoperable communication between point-of-care medical 
devices. This is crucial for ensuring that data collected by our 
device can be effectively integrated into healthcare systems. Our 
design also adheres to ISO 17511 requirements, ensuring 
metrological traceability of calibrators and samples used in in-
vitro-diagnostic medical devices. Compliance with IEC 62304 
standards has guided the software development lifecycle, 
ensuring that the software we are utilizing for our final website 
and model are tested and reliable. Additionally, the methods used 
to report diagnostic test results align with the STARD guidelines, 
which ensure accurate and transparent reporting of diagnostic test 
performance. 

From the patient’s perspective (regarding patient data), we 
prioritize the secure handling of sensitive information by 
adhering to HIPAA regulations (45 CFR 160). This ensures 
robust data protection and privacy throughout the diagnostic 

process. Moreover, compliance with ISO 18113 standards has 
informed the development of clear and user-friendly labeling and 
instructions for the device, promoting safe and effective use by 
healthcare providers. 

VII. ETHICAL CONSIDERATIONS

Our project aims to expand access to non-invasive, 
affordable, and accurate diagnostic tools, particularly in 
underserved and low-resource settings. Ethically, we prioritize 
patient safety, data privacy, and diagnostic reliability. 
Compliance with HIPAA regulations ensures that patient data 
is securely handled, while adherence to ISO 14971 and IEC 
60601 standards supports safe device operation. 

Socially, the project addresses disparities in diabetes 
screening by offering a painless alternative to traditional blood-
based diagnostics. By simplifying the workflow for healthcare 
providers and reducing barriers to testing, we aim to promote 
early detection of diabetes. Therefore, we prioritize ensuring 
that diagnostic outputs are communicated clearly and used 
appropriately, minimizing the risk of misinterpretation or over-
reliance on a single test result without appropriate medical 
consultation. 

VIII. ENVIRONMENTAL, SOCIAL, OR ECONOMIC IMPACT

Environmental considerations were incorporated into 
the system’s design by minimizing the use of non-recyclable 
materials and ensuring that disposable components (i.e. the 
mouthpiece) are made from cost-effective and lightweight 
plastics. The system operates using a carrier gas, which, while 
inert and safe, requires conscious sourcing when implemented 
in healthcare clinics in underserved communities. In future 
iterations of our system, we hope to explore alternative 
mechanisms to flush each patient’s breath to the sensor. 

Economically, the breath-based diagnostic system was 
designed with affordability and scalability in mind. Each test 
costs approximately $0.33 in consumables, making it a viable 
option for deployment in high-volume or under-resourced 
clinical environments. The modular nature of the device also 
reduces maintenance and replacement costs, supporting long 
term sustainability. By reducing the need for lab processing and 
blood draws, the system may lower overall healthcare costs 
associated with diabetes screening, particularly in community 
health programs. In future iterations of the project, we aim to 
incorporate an alternative GC machine that is specifically 
designed to separate breath biomarkers, which would help 
reduce overall system cost. 

IX. CONCLUSIONS AND REFLECTIONS

This project demonstrated the feasibility of a low-cost, 
non-invasive diagnostic platform for diabetes detection using 
breath acetone analysis. By integrating gas chromatography, a 
photoionization detector, and a machine learning model into a 
streamlined workflow, we successfully developed a modular 
system capable of delivering rapid diagnostic results through a 
clinician-friendly interface. Testing with spiked acetone 
samples confirmed that the system could detect volatile organic 
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compounds at clinically relevant concentrations and produce 
consistent outputs.

However, further development is needed to validate 
Aeris in real-world clinical contexts. Specifically, the system 
must be tested on breath samples from diagnosed diabetic and 
non-diabetic patients to ensure the model’s reliability, account 
for inter-individual variability, and confirm diagnostic 
sensitivity and specificity. Expanding the sample pool will also 
allow for more robust training and validation of the machine 
learning model. Regulatory compliance and long-term 
calibration stability are additional challenges we anticipate as 
we move toward potential clinical deployment.

Future improvements include redesigning the gas 
chromatography setup to reduce cost and optimize separation 
for acetone, automating the response factor calibration process 
to improve consistency, and enhancing the website interface to 
support longitudinal patient tracking and diagnostic history. 
These refinements would support broader adoption and help 
position Aeris as a scalable, accessible solution for breath-based 
disease screening.

X. BUSINESS WRITEUP

A. Value Proposition
Aeris offers a non-invasive, scalable solution to a 

critical global diagnostic gap with nearly 47% of the world’s 
population lacking access to essential diagnostic services, 
including diabetes testing, largely due to limited laboratory 
infrastructure. Traditional blood-based tests can be 
uncomfortable, carry risks such as infection, and require 
complex logistics for sample processing. Aeris replaces this 
with a simple breath test that detects acetone, a biomarker for 
diabetes, eliminating the need for needles, lab equipment, or 
specialized training. This not only improves patient comfort, 
but also accelerates turnaround times and expands access in 
underserved regions. With growing demand for accessible 
chronic disease diagnostics, Aeris represents a high-impact, 
high-need investment opportunity positioned to transform early 
diabetes detection. Its underlying platform also holds long-term 
potential to be adapted for breath-based screening of other 
conditions, enabling broader clinical utility and market reach.

B. Stakeholders
The primary stakeholders for the diabetes diagnostic 

test are global communities with underserved healthcare 
infrastructure. These populations often face significant barriers 
to early detection due to the lack of affordable, accessible 
diagnostic tools. The test is designed to directly address their 
needs by providing a portable, low-cost solution that promotes 
health equity and improves outcomes in resource-limited 
settings. Secondary stakeholders include medical professionals, 
who will use the diagnostic tool in clinical and community 
settings to enhance their ability to identify and treat diabetes at 
an early stage to reduce the risk of consequential conditions. In 
addition, patients, as end-users, benefit directly from improved 
access to diagnostics, reduced financial burden, and better 
health outcomes. Governments also have an interest in the 
device as it has the potential to alleviate the financial burden on 
national healthcare systems as well as improve population 

health. They could also work to ensure the device is integrated 
into public healthcare systems. Finally, insurance companies 
are key stakeholders as the diagnostic tool reduces healthcare 
costs by enabling early detection and minimizing unnecessary 
procedures, aligning with their goal of managing expenditures 
while improving care outcomes.

C. Competition
Competition for this device comes from two primary 

sources: alternative breath-based diabetes diagnostics and non-
breath-based diagnostics. While research has explored the use 
of breath-borne VOCs for detecting diabetes in recent years, no 
commercial device currently exists due to challenges with 
standardizing breath sample collection and ensuring 
repeatability. This gap in the market presents a significant 
opportunity for Aeris to establish itself as a pioneering solution. 
Non-breath-based diagnostics, such as saliva-based tests, are 
another potential competitor. However, like breath-based 
technologies, these alternatives are still in development and not 
yet commercially available. 

Other potential competition comes from traditional 
diagnostic methods such as Oral Glucose Tolerance Tests. 
While these methods are well-established, they are often costly, 
less accessible in underserved areas, and associated with risks 
like bruising and infection. Additionally, advancements in 
machine learning and AI-based predictive models could emerge 
as competition by analyzing existing patient data to predict 
diabetes risk. However, these methods still rely on robust 
healthcare infrastructure and large data sets, which limits their 
applicability in underserved communities. These distinctions 
position Aeris as a unique and highly competitive option in the 
landscape of diabetes diagnostics.

A principal current competitor in the breath-based 
diagnostics market is Owlstone Medical. Owlstone Medical is 
currently leading the breath-based diagnostic market with early 
disease detection in cancer, liver disease, and respiratory 
illnesses. Owlstone’s Breath Biopsy platform focuses on 
scalability and is currently in clinical testing for LC diagnostics, 
which indirectly proves a threat to Aeris’s diabetes value 
proposition. Breath Diagnostics is another company focused on 
breath-based diagnostics that is leveraging its patented 
OneBreath technology. We believe that as there is not yet a 
viable breath-based diagnostic device for diabetes, Aeris is 
competing to get to market as we believe the first mover 
advantage will prove highly influential in market share 
dynamics given friction in switching costs for consumers. 

D. FDA Approval Process
As a novel medical device, one of the primary risks 

Aeris faces is navigating the complex approval process by  
regulatory agencies. This memorandum will focus specifically 
on the FDA’s approval process for medical devices in the US, 
since many international regulatory bodies have followed the 
FDA’s structure for medical device approval. The FDA 
regulates the sale of medical devices in the US to ensure 
devices’ safety and accuracy, and medical devices cannot be 
sold or marketed in the US without first receiving FDA 
approval or clearance [11]. The FDA approval process is 
rigorous, reflecting the agency's commitment to ensuring that 
all medical devices meet high standards of safety and 
effectiveness before they are introduced to the market. The 
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potential of failure to receive FDA approval represents a 
significant risk to Aeris’ success. 

There are two pathways that Aeris could follow to 
pursue FDA approval. The first pathway would be to pursue 
approval as a Class II medical device with Exalenz Bioscience's 
BreathID System as a predicate device. Class II medical 
devices, which make up 43% of all medical devices in the US 
are devices that pose a medium-level of risk to patients, 
including pregnancy tests, electrified wheelchairs, and syringes 
[12]. Aeris’s non-invasive nature means its risks to patients are 
consistent with those of other Class II devices, suggesting that 
it would not be subject to as rigorous an approval process as 
higher-risk Class III devices. However, to pursue approval as a 
Class II medical device, an appropriate predicate device would 
have to be selected to match Aeris’ technology and indication. 
A predicate device is a legally-marketed device that has already 
been approved or cleared by the FDA and can serve as a point 
of comparison for a new medical device seeking approval 
(“Predicate Device”). Exalenz Bioscience's BreathID System, 
an FDA-approved breath-based diagnostic test for H. pylori, 
serves as a potential predicate device for Aeris, given its similar 
use for breath-based diagnostics [13,14] Summary for 
K130524). However, since the indication for the BreathID 
System is not for diabetes diagnostics, it is possible that Aeris 
could fail to secure FDA approval through this pathway if it is 
deemed that BreathID would not serve as a suitable predicate 
device for comparison. Given the novelty of breath-based 
diagnostics for diabetes, Aeris could pursue a second pathway 
for FDA approval, which involves classification as a De Novo 
device instead of Class II classification. De Novo classification 
allows novel technologies and devices to be introduced in the 
US without the prior existence of a comparable predicate device 
(U.S. Food and Drug Administration, "Step 3: Pathway to 
Approval"). However, devices approved through the De Novo 
pathway are subject to lengthy review times. Additionally, user 
fees for De Novo submissions increased in 2017, making the 
approval process more expensive for devices seeking clearance 
through the De Novo pathway [15].

In summary, the FDA approval process poses many 
challenges for Aeris. The ambiguity of an existing Class II 
predicate device for Aeris may mean that Aeris must pursue a 
lengthier review process under De Novo classification. Even if 
Aeris is able to use the BreathID System as a predicate device, 
approval rates of Class II submissions with predicate devices 
have been trending down in recent years, suggesting that even 
Class II classification for Aeris could subject Aeris to a lower 
likelihood of FDA approval [16]. Ultimately, proactive risk 
mitigation strategies – such as early engagement with the FDA 
through pre-submissions, strong clinical testing plan 
development, and hiring talent with regulatory expertise – can 
help Aeris overcome the challenges associated with the FDA 
approval process. For other international regulatory bodies, 
many streamline their approval processes for products already 
approved by the FDA. Therefore, FDA approval provides, in 
many ways, an all encompassing approach to global approval. 

E. IP
As we continue to develop the diagnostic tool, we are 

exploring intellectual property opportunities to protect the 
unique aspects of our design. Potential patents include the GC-

PID separation mechanism, which represents a novel approach 
to combining multiple technologies. The portable device 
design, which integrates sensor technology with machine 
learning capabilities, is another candidate for IP protection. 
Additionally, the proprietary software pipeline, including 
algorithms for real-time data preprocessing and SVM-based 
classification, offers further opportunities for securing 
intellectual property. While the device leverages open-source 
frameworks for development, our innovations in sensor design, 
biomarker separation, and data analysis represent significant 
contributions to the field and merit IP protection. Securing 
patents will not only safeguard our work but also position the 
device for commercialization and competitive differentiation in 
the market.

F. Market Assumptions Methodology
Our financial projections are built on a comprehensive market 
analysis model that accounts for both global trends and regional 
variations in healthcare access. We began with foundational 
market drivers:

• Global population growth rate of 0.8% annually
• 40% of global population without access to diagnostic 

healthcare
• Baseline 1.0% improvement in diagnostic access due 

to non-Aeris solutions

We then developed region-specific adoption models based on 
demographic and healthcare infrastructure data (Appendix B):

• Africa: Represents 18% of world population with 45% 
lacking diagnostic access. Our model targets 5% of 
needed facilities with 1 device per facility and 8% 
annual growth in patients served. We project delivery 
of 20% of needed devices initially as we establish 
presence in this high-need market [17].

• Asia: Comprises 59% of world population with 45% 
lacking diagnostic access [18]. We target 8% of 
needed facilities with 1 device per facility and 8% 
annual growth in service capacity. Our projections 
include 15% of needed devices delivered due to 
infrastructure constraints.

• North America: Contains 8% of world population with 
20% lacking diagnostic access [19]. We target 15% of 
needed facilities, reflecting better existing 
infrastructure, with 10% annual growth in patients 
served and 50% of needed devices delivered due to 
stronger adoption capacity.

• Europe: Represents 9% of world population with only 
4% lacking diagnostic access. We target 15% of 
needed facilities with 5% annual growth in service 
capacity and 50% of needed devices delivered.

• South America and Oceania: Account for 5% and 1% 
of world population respectively, with targeted device 
delivery rates of 20% and 50% reflecting the different 
infrastructure capabilities.

These regional parameters drive our year-by-year projections of 
facility growth, patient access, and device sales, with a 2-year 
timeline for regulatory approval across markets. 
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G. Market Penetration Strategy
Our regional growth strategy accounts for varying market 
conditions:

• North America and EU/Oceania: Higher revenue 
potential with premium pricing and developed 
healthcare systems

• Asia: Priced with slight premium, accounting for 
regional differences within Asia for healthcare 
accessibility

• Africa and South America: Slower market entry due to 
less developed healthcare system, priced without 
premium to maximize accessibility.

H. Revenue Projections
Aeris operates with a dual revenue stream business model based 
on upfront device sales and recurring cartridge usage. Our 
devices cost $21,500 (inclusive of cost per sensor, cost per GC, 
and cost for delivery and installation) and are priced differently 
based on the region of sale.

• In North America, we predict a 100% revenue 
premium to initial cost.

• In the EU/Oceania, we predict a 100% revenue 
premium to initial cost.

• In Asia, we predict a 75% revenue premium to initial 
cost.

• In South America, we predict a 0% revenue premium 
to initial cost.

• In Africa, we predict a 0% revenue premium to initial 
cost.

Despite negligible revenue premiums in several key markets, 
Aeris’s long-term recurring revenue from disposable cartridges 
priced at $0.50 each provides an efficient razor-and-blade 
approach to maximize accessibility while building sustainable 
revenue growth over time.

I. . Cost Structure
Our cost analysis reveals the following breakdown per device:

• Sensor components: $1,200
• Gas chromatography unit: $20,000
• Delivery and installation: $300
• Total Cost: $21,500

The significant investment in the gas chromatography 
technology is essential to maintain clinical-grade accuracy. 
However, with in-house manufacturing, there is significant 
potential to reduce costs in coming years while maintaining 
diagnostic accuracy, ultimately facilitating an even more 
accessible technology.

K. Operational Expenses
Staffing projections include [20]:

• 10 marketing employees ($60k/year each)
• 2 management personnel ($150k/year each)

• 10 technicians ($85k/year each)
• 4 business development specialists ($60/year each)

These staffing levels were calibrated to support our initial 
market penetration while maintaining a lean operational 
structure and enabling rapid scalability of our business. We 
allocate 15% of revenue to ongoing R&D, 12% to working 
capital, and 10% to capital expenditures, with 3% annual 
depreciation of CapEx [21, 22, 23]. These assumptions were 
made by examining previously performed holistic industry 
analyses of MedTech, Biotech, and Pharmaceutical companies 
and utilizing the assumptions that best aligns with Aeris’ 
business model. Together, these analyses were used to construct 
a projected Income Statement for Aeris (Appendix C).

J.  Cost of Capital
The cost of equity was determined by collecting financial 
information on 5 Aeris comps: Delcath Systems, Inc., Sensus 
Healthcare, Inc., Pro-Dex, AngioDynamics, and KORU 
Medical Systems, Inc. The median beta was determined as 0.85 
(the Beta for Delcath) and was subsequently unlevered with 
Delcath’s financial structure and relevered with the proposed 
Aeris structure of 100% equity. The 100% equity assumption, 
though limiting some Aeris value through debt financing for 
projects and additional interest tax shields, was employed to 
provide a fundamental valuation of the company’s operations. 
Given that the NPV of the project was still positive over a range 
of discount rates excluding the cost of debt which often lowers 
the WACC, choosing to make the 100% equity assumption 
provided a reasonable valuation for investors and reaffirmed 
our confidence in Aeris. Ultimately, the cost of equity for Aeris, 
which was equivalent to WACC, came to 9.34% (Appendix D). 

K.  Valuation Output
Our DCF (Appendix E) yields an NPV of $$66,380,764.32 
using a WACC of 9.34%. The valuation output is driven 
primarily on the following assumptions:

• Comparable company analysis using medical device 
firms including Delcath Systems, Sensus Healthcare, 
Pro-Dex, AngioDynamics, and KORU Medical 
Systems (median Beta of 0.85)

• 30-year risk-free rate of 4.74%
• Market risk premium of 5.5%
• Industry-appropriate D/V ratio of 0% with 100% 

equity financing
• Marginal tax rate of 21%

The substantially positive NPV demonstrates the compelling 
return potential on the proposed $7M investment, with positive 
cash flows expected as early as year 4. The valuation was 
sensitized on a range of WACC values to account for the 
potential variation in a debt-financing scenario, or in case the 
cost of equity was higher or lower than anticipated: 
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Additional sensitivities on market sizing were performed on the 
valuation to reaffirm confidence in Aeris’ ability to blend profit 
and purpose by delivering an NPV positive project that greatly 
increases global diagnostic access.
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