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Executive Summary 
Neural networks are foundational to modern artificial intelligence, yet they are plagued by 
inefficiencies in their energy consumption and computational speed. The current state of AI 
relies heavily on digital hardware, where matrix multiplication, a core operation, incurs high 
costs in time and power. Our project proposes a paradigm shift: developing the first ferroelectric 
neural network accelerator leveraging compute-in-memory (CIM) technology. By integrating a 
ferroelectric diode (FeD) crossbar array into a custom-designed printed circuit board (PCB), we 
aim to reduce the time complexity of matrix-vector multiplication to constant time, giving neural 
nets a way to scale for free. Further, this significantly decreases inference latency and improves 
energy consumption by 700x compared to NVIDIA hardware. 

The compute needed for AI can be partitioned into compute for training and compute for 
inference. Our device is specifically suited for quick matrix-vector multiplication in inference 
rather than training. With our device, we physically “program” weights of the trained neural 
network into the device itself by sending voltage shocks to set the conductance state of specific 
diodes. Our ferroelectric diode-based device saves time moving data from memory, is simpler to 
manufacture, easier to scale, and significantly more energy efficient than existing solutions. 

As the complexity of models only continues to grow exponentially (Fig. 1), we see that 
improving the performance of these models is increasingly dependent on: 

● The size of the network itself (n) 
● The amount of time spent in inference (running the same model over the same trained 

weights and choosing the best outcome) 
This is what has led to the performance improvements of recent models like Deepseek R1, 
GPT4-o1 and -o3, and in Deepseek R1’s case, without the use of massive amounts of training 
compute. Not only does this mean that the decrease in complexity to constant time is more 
impressive for larger and larger n’s, and also means that a lot of that inference time can be 
significantly decreased through our device. 

This innovation addresses critical challenges in the AI ecosystem. Data center power 
consumption has surged alongside the growth of AI, leading to heightened strain on energy grids 
and increasing costs for industry stakeholders. With the slowdown of Moore’s law, data centers 
must turn towards specialized hardware accelerators to improve performance per watt. The 
one-time cost of purchasing these accelerators is outweighed by the energy savings that will 
decrease the operating expenses of datacenters, both at idle time and during computation. 

Our analog neural net accelerator is not just a technological breakthrough but a solution with 
far-reaching implications for edge AI applications, today’s largest hyperscalers, government 
efforts like Stargate, and environmental sustainability. By making energy-efficient computation 
accessible, we aim to disrupt the market dominated by traditional GPUs and provide a targeted 
alternative tailored to fast and efficient inference tasks.  



Value Proposition 

Our device offers unparalleled speed and efficiency for AI inference tasks by enabling 
matrix-vector multiplication to be performed directly in memory. The value of making what is 
currently a digital computation into an analog one are: 

● Unlike existing CPUs and GPUs that rely on power-intensive data transfers between 
memory and computation units, our FeD array integrates these operations, drastically 
reducing energy usage. 

● Since we are computing via hardware, the size of the computation no longer affects the 
latency and energy demands of the computation. This is shown by the decrease in time 

complexity from  to . This means that the exponential increase in the size of 𝑂(𝑛2) 𝑂(1)
models seen since 2018 (Fig. 1) no longer impacts the time and energy it takes to run 
these models. 

 

Figure 1. Size of models in millions of parameters year over year. 

● With the flattening of fundamental laws like Dennard Scaling, Amdahl’s Law, and 
Moore’s Law (Fig. 2), increasing the capabilities of data centers is requiring a greater 
shift towards parallelism in the form of multi-core CPUs and the movement towards 
specialized hardware that accelerate specific functions like GPUs and devices like our 
accelerator. 



 

Figure 2. 42 Years in processor data showing the innovations in CPU development in response 
to the flattening of fundamental laws in semiconductor design. 

Preliminary benchmarks suggest that similar compute-in-memory technologies can achieve up to 
700x efficiency gains per operation. With our innovation, foundation model companies can cut 
operational costs, governments can mitigate energy grid stress, and industries focused on edge 
AI—such as agriculture and space exploration—can access compact, efficient hardware 
solutions. Furthermore, this solution directly aligns with emerging priorities in onshore chip 
production, addressing national security concerns and reducing reliance on global supply chains. 

By the end of this semester, our goal is to show our device in action, complete with 
programmable weights, reading to and from the device, ending in a round of inference with the 
MNIST handwritten digit recognition model. 

Stakeholders 

Key stakeholders for this project include: 

1. Semiconductor Designers and Manufacturers: NVIDIA, AMD, and TSMC dominate 
the semiconductor market but have yet to focus on the specific advantages of 
compute-in-memory technologies. Our analog compute-in-memory technology provides 
significant value over other hardware accelerators due to the decrease in energy 
consumption. GPUs and TPUs have significant problems with both cooling and energy 
consumption, with high consumption in idle states and even requiring on-device liquid 



and plate cooling. By performing computations physically in hardware, our specific 
technological moat provides us significant improvements over existing solutions. 

2. End-Users: Edge AI developers, cloud service providers, and foundation model 
companies will directly benefit from the cost and energy savings offered by our 
accelerator. Due to the slowdown of the rate of performance improvements in single 
threaded cores, companies with large data centers like Google, Meta, Amazon, and 
Microsoft are all investing in hardware accelerators like GPUs and TPUs in order to 
increase compute efficiency per watt of electricity consumed (Fig. 3). These GPUs and 
TPUs are either built in house or bought from the wider semiconductor market.  

 

Figure 3. Relative performance/watt (TDP) of GPU server (blue bar) and TPU server (red bar) to 
CPU server, and TPU server to GPU server (orange bar). TPU’ is an improved TPU. The green 
bar shows its ratio to the CPU server and the blue bar shows its relation to the GPU server. Total 

includes host server power, but incremental doesn’t. GM and WM are the geometric and 
weighted means. 

3. Government and Public Sector: Agencies concerned with energy sustainability and 
national security can benefit from reduced grid stress and localized chip production. The 
increasing strain of generative AI on the energy grid threatens America's aging 
infrastructure. Datacenters that power the cloud now have a greater carbon footprint than 
the airline industry, with one data center consuming the equivalent of 50,000 homes and 
the total energy consumption at 200 TWh surpassing some nation-states. This is why 
companies are even looking to their own power sources, with Microsoft looking to restart 
power generation on Three-Mile Island. This is also why the recent $500 billion Stargate 
initiative was started, with a focus on investing in American AI infrastructure. In the 
coming years, we see that demand for power outpaces our ability to generate electricity. 



The creation of new technology is necessary to find new ways to significantly reduce 
energy consumption in the near future. 

Market Research 

The global semiconductor market is $702.40 billion projected to grow at a compound annual 
growth rate (CAGR) of 8.7%, reaching $980.80 billion by 2029. Within this landscape, GPUs 
and accelerators dominate the AI inference market. However, their reliance on digital 
architectures limits their efficiency for specific tasks. Compute-in-memory technology, by 
contrast, offers a specialized solution with transformative potential. Existing neuromorphic 
devices demonstrate power consumption as low as 0.01 pJ per operation, a 700x decrease from 
existing technologies on the market. 

From our revenue calculations, we calculate a total TAM of $79 billion. This TAM is based on 
our two target customers as revenue streams, and totalling the total revenue of capturing 100% of 
the market. For more on our TAM calculation, see the Revenue Model section. 

Customer feedback and initial advisor consultations indicate strong interest in energy-efficient 
inference devices, particularly for applications where traditional GPUs are overkill, like 
inference. Market demand is further corroborated by the increasing focus on sustainability across 
industries due to increasing operating expenses and the growing shift toward inference 
optimization over model training. 

Customer Segments 

Our primary target customers are hyperscalers and edge computing applications. 

Foundation Model Companies and Hyperscalers: Businesses running large-scale AI inference 
operations, where energy costs constitute a significant overhead are looking for ways to increase 
the overall performance and power efficiency of their data centers proportional with the bursty 
nature of the demand of computation (Fig. 5). Data centers are often running at 10-50% of 
capacity, but servers often have poor energy proportionality, requiring large amounts of energy 
even when idle.  



 

Figure 5. Average activity distribution of a sample of an average shared Google cluster that runs 
mixed workloads. The cluster contains over 20,000 servers, over a period of 3 months. 

In a Google case study modeling the costs per year of a data center at 50% capacity, we see that 
the overhead cost of running the datacenter (DC Opex), server power, server operating expenses, 
and the Power Usage Effectiveness (PUE) overhead account for in total 31% of building and 
running a data center at hyperscale levels (Fig. 6). This implies that improving energy 
proportionality of hardware and software as well as decreasing the sheer amount of energy 
consumed for computation, thereby decreasing cooling requirements and cooling overhead, 
would greatly decrease the day to day costs of running a data center. 

 

Figure 6. Breakdown of the yearly TCO for a 50% utilized data center among data center and 
server-related Opex and Capex components. 



As our device provides the benefits of in-memory analog computing, we can greatly improve the 
energy efficiency and proportionality of matrix-vector computation for inference. As foundation 
model companies and hyperscalers continue to aim to serve not only the developed world but 
also the rest of the world’s population, the sheer scale of inference computations necessary will 
go from the millions to the billions. The importance of improving inference-time computation 
efficiency will only become more apparent as the market of AI-based technologies expands. 

Edge Computing: Innovators in sectors like agriculture, space exploration, and autonomous 
systems require compact, efficient hardware for real-time processing. Current edge computing 
solutions use heavy-handed solutions like NVIDIA Jetson Nano, which have high energy 
consumption costs, leading to overheating problems. At the edge, speed and energy consumption 
are evermore important, as batteries are large and heavy and split second decisions must be made 
constantly. We already see a lot of applications in the autonomous vehicle space. Self driving car 
companies are looking to use large foundation models to aid autonomous driving decision 
making, and making these models run quickly and in an efficient manner is already a challenge. 
Tesla has already been making and using their own silicon to address this challenge, and existing 
assistive features are all AI based. We believe that light weight solutions that prioritize inference 
over training, energy utilization, latency, and temperature maintenance would be significantly 
more attractive for edge computing applications than less powerful energy hungry GPUs.  

Competition 

The AI hardware landscape is dominated by NVIDIA, AMD, and TSMC, whose GPUs and 
TPUs set benchmarks for AI computation. However, these devices are designed for 
general-purpose tasks, leading to inefficiencies for specialized inference operations. Our direct 
competitors include companies exploring neuromorphic and analog computing technologies, 
though most focus on niche applications or remain in experimental stages. Some companies have 
developed related technologies. Micron developed and published a Hafnium Zirconium Oxide 
(HZO) 32Gb nonvolatile (long memory storage) ferroelectric memory chip in 2023 with high 
endurance and retention. HZO is a strong candidate for ferroelectric compute in memory due to 
its highly developed processes in semiconductor manufacturing and its low ferroelectric 
switching voltage. Micron has not made any announcements on HZO compute-in-memory, but 
their recent advances point in that direction. Smaller companies like Mythic AI are working on 
analog compute-in-memory technology, but Mythic uses flash memory and floating gates to 
encode neural network weights. This technology suffers from charge leakage and endurance, 
whereas our FeDs are nonvolatile requiring less power to operate over time. 

Our differentiation lies in our patented FeD array technology, which integrates computation and 
memory to deliver unmatched speed and efficiency. By targeting inference-specific workloads, 
we avoid direct competition with GPUs, positioning ourselves as a complementary technology 



rather than a replacement. Furthermore, our modular design and compliance with IEEE standards 
ensure adaptability and reliability, offering a compelling alternative to traditional solutions. 

Cost 

Currently, we are fabricating these chips using a 4-inch wafer scale process in the cleanroom 
facilities at the University of Pennsylvania. Currently, it costs us $7.75 to produce a chip that can 
encode 16,384 parameters, amounting to $473 per million parameters. The cost breakdown is as 
follows: The 4-inch sapphire wafer costs $200, and five hours of tool use ($25/hour) and six 
hours of total cleanroom time ($35/hour accessed), which include the cost of any deposited 
material, are required to fabricate a full wafer containing 69 arrays.  

However, this cost per parameter can be improved dramatically when produced in a commercial 
fab. First, 90% of the area on the current chip is used by pads for wire bonding and traces that 
connect these pads to the array - the actual memory itself only occupies 10% of the available 
area. The area used by pads and traces can be completely eliminated when the memory array is 
fabricated back-end-of-the-line, that is, directly on top of a CMOS silicon processor, as vertical 
via connections can be used to link the memory array to the processor in a space-efficient 
manner.  

Secondly, the crossbar array design is very amenable to lateral scaling, which has a quadratic 
effect on device density and per-parameter cost. In our research lab, we have demonstrated the 
successful scaling of a single device to a diameter of 50 nm while maintaining the same current 
density, which would increase the device density by 10,000 times. We achieved this feature size 
by using electron beam lithography, but this is also easily achievable with Extreme Ultraviolet 
(EUV) photolithography used in commercial foundries. 

Our devices can be grown on silicon oxide instead of sapphire, which means commercially, 
standard 300 mm silicon wafers can be used, further lowering cost. The average cost of 
production for a fully fabricated 300 mm wafer at TSMC is approximately $6,500, and we can 
use this as a reliable upper bound to how much our process may cost, as it is significantly 
simpler than the fabrication process needed for silicon processors. Assuming this scaling, each 
wafer can support approximately 7 trillion devices, equivalent to 7 trillion parameters, equating 
to a cost of 0.1 cents per million parameters. 

Revenue Model 

There are two potential distribution channels for our device, back-end-of-line and selling full 
off-the-shelf individual systems. Back-end-of-line is a methodology in semiconductor 
manufacturing where we would be able to provide our customers with our technology over their 
existing silicon. We believe that there are applications for this distribution technology in the edge 
computing customer segment, where devices may be very specific to the use case of the edge 



computing application, and space is important. We believe that selling full individual systems 
will be targeted towards data center use cases, where hyperscalers and small data centers can 
purchase our hardware accelerators and incorporate them into their data center build to minimize 
energy consumption and decrease latency. 

We projected our revenue using an adjusted version of a ROIC (Return on Investor Capital) tree 
(Fig. 7). 

 

Figure 7. Revenue Model from two revenue streams. 

We further segmented the edge computing market into the defense, aerospace, and automotive 
industries. We projected $685.72 million from defense, $19 million from aerospace, and $450 
million from automotive. We derive these values from historical data of defense, aerospace, and 
automotive company sales numbers. 

We also segment the data center market into large (hyperscaler sized) data centers and small data 
centers. We projected $76 billion in revenue from hyperscaler data centers and $1.5 billion from 
small data centers. Hyperscalers account for 41% of data centers and recently surpassed over 
1000 data centers across the world in early 2024. These data centers are enormous, with one 



Amazon data center cluster having over 20,000 GPUs. Smaller data centers are much smaller in 
terms of the amount of hardware they have, and thus much less lucrative in terms of revenue. 

We derive pricing values from pricing of competitive products, like NVIDIA GPUs and NVIDIA 
Jetson Nanos for edge applications. 

Intellectual Property 

Our project is grounded in intellectual property developed by Prof. Jariwala’s group, specifically 
Patent Publication Number 20240177759. This patent outlines the use of ferroelectric diodes for 
compute-in-memory applications, a core component of our accelerator. Additional IP may 
emerge as we refine our nanofabrication processes and circuit designs, ensuring a competitive 
edge in the market. 

By building on this foundational IP, we not only secure a technological advantage but also create 
opportunities for licensing and collaboration with academic and industrial partners. Ensuring 
robust protection for our innovations will be critical as we transition from prototype to 
production. 

We note that our advisors’ labs as well as our group members will have a stake in any IP 
resulting from this project. 

Conclusion 

Our ferroelectric neural network accelerator presents a transformative solution to the growing 
energy and computational inefficiencies in AI inference tasks. By leveraging 
compute-in-memory technology and utilizing a ferroelectric diode crossbar array, our device 
reduces the time complexity of matrix-vector multiplication from O(n²) to O(1), offering up to 
700x energy savings compared to traditional digital hardware. This innovation positions our 
technology as a complementary alternative to existing GPUs and TPUs, targeting 
energy-intensive inference workloads, which are becoming increasingly crucial as AI models 
grow in size. With its significant potential to reduce operational costs for hyperscalers and edge 
AI applications, our accelerator can help address the growing strain on data center power 
consumption, aligning with both industry needs and sustainability goals. Furthermore, our 
patented technology, backed by strong intellectual property and scalable manufacturing 
processes, provides a solid foundation for future commercialization and market disruption.



Demo 

Wirebonding the device to the daughterboard: 

 

Device fabrication progress: 

 

Mask creation to fabricate devices at a larger scale: 

 



Motherboard design schematic:

 

DAC Design     ADC Design 
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